1
|
Mohamad NA, Galarza TE, Martín GA. H2 antihistamines: May be useful for combination therapies in cancer? Biochem Pharmacol 2024; 223:116164. [PMID: 38531422 DOI: 10.1016/j.bcp.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.
Collapse
Affiliation(s)
- Nora A Mohamad
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Tamara E Galarza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Rostami M, Yelghi O, Moghaddam ZK, Zeraatchi A, Rezaeejam H, Sadeghi A. Effectiveness of oral famotidine in reducing the hematologic complications of radiotherapy in patients with esophageal and cardia cancers: a randomized controlled trial. Radiat Oncol 2023; 18:83. [PMID: 37210511 DOI: 10.1186/s13014-023-02281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Chemoradiotherapy complications has always been of great concern to both clinicians and patients during the course of treatment. The purpose of the present study was to examine the effectiveness of oral famotidine on the reduction of hematologic complications of patients with esophageal and gastric cardia cancers undergoing radiotherapy. METHODS A single-blind controlled trial was conducted on 60 patients with esophageal and cardia cancers, who were undergoing chemoradiotherapy. Patients were randomly assigned to 2 groups with 30 patients to receive either 40 mg of oral famotidine (daily and 4 h before each session) or placebo. Complete blood count with differential, platelet counts, and hemoglobin levels were obtained weekly during treatment. The main outcome variables were lymphocytopenia, granulocytopenia, thrombocytopenia, and anemia. RESULTS The findings indicated a significant effect of famotidine on reduction of thrombocytopenia among intervention group compared to control group (P < 0.0001). Even so, the effect of intervention was not significant for other outcome variables (All, P ≥ 0.05). The lymphocyte (P = 0.007) and platelet (P = 0.004) counts were also significantly greater in famotidine group in comparison with placebo group at the end of the study. CONCLUSION As evidenced by the findings of the current study, famotidine might be recommended as an effective radioprotective agent among patients with esophageal and gastric cardia cancers to prevent Leukocyte and platelet reduction to some extent. Trial registration This study was prospectively registered at irct.ir (Iranian Registry of Clinical Trials) with the code IRCT20170728035349N1, 2020-08-19.
Collapse
Affiliation(s)
- Mina Rostami
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Yelghi
- Department of Radiation Oncology, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zhaleh Karimi Moghaddam
- Department of Radiation Oncology, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Alireza Zeraatchi
- Department of Emergency Medicine, School of Medicine, Valiasr-e-Asr Hospital, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Sadeghi
- Department of Internal Medicine, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Lledó I, Ibáñez B, Melero A, Montoro A, Merino-Torres JF, San Onofre N, Soriano JM. Vitamins and Radioprotective Effect: A Review. Antioxidants (Basel) 2023; 12:antiox12030611. [PMID: 36978859 PMCID: PMC10045031 DOI: 10.3390/antiox12030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The radioprotective effect ex vivo, in vitro and in vivo of vitamins was reviewed using PubMed and Embase and conducted according to the PRISMA statement. A total of 38 articles were included in this review, which includes the radioprotective effect of vitamins from ex vivo, in vitro and in vivo studies. Vitamins A, C, D and E were used alone, in combination or with other nutritional and non-nutritional compounds. The use of vitamins in natural form or supplementation can be useful to reduce the radiation effect in the body, organs and/or cells. Only four (A, C, D and E) out of thirteen vitamins have been detected with radioprotective properties being mainly vitamin E followed by vitamin C, A and D.
Collapse
Affiliation(s)
- Inés Lledó
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Blanca Ibáñez
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Juan F. Merino-Torres
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Nadia San Onofre
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, 03690 Alicante, Spain
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
4
|
Dizaj KA, Monfared AS, Mozdarani H, Naeiji A, Razzaghdoust A, Hajian-Tilaki K, Aboufazeli B, Niksirat F, Borzoueisileh S. Combined effect of oral famotidine and cimetidine on the survival of lethally irradiated mice: An in vivo study. J Cancer Res Ther 2021; 17:865-869. [PMID: 34528533 DOI: 10.4103/jcrt.jcrt_349_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims The study aims at evaluating the effects of the combinatory famotidine/cimetidine diet on radiated mice's survival. Materials and Methods Two hundred and seventy male mice were categorized into 11 groups, a number of which were comprised of subgroups too. The groups under analysis were posed to varying doses of gamma-radiation, including 6, 7, 8, and 9 Gy, followed by treatments using various drug doses 2, 4, and 8 mg/kg, with survival fractions as long as a month after irradiation being measured and recorded. Results LD50/30 was calculated as 7.47 Gy for the group with radiation only. Following mouse treatment with a concentration of 4 and 20 mg/kg for famotidine and cimetidine, respectively, the survival fraction for the mice grew significantly compared to LD50/30. The combinatory famotidine/cimetidine diet had a higher dose-reduction factor (DRF) than single doses of the drug in radioprotection. The DRF for combinatory famotidine/cimetidine, famotidine, and cimetidine diets was 08.09, 1.1, and 1.01, respectively. Conclusions Results imply that the combined regimen of famotidine + cimetidine in radioprotection had no significant higher DRF than with regimens including each of them separately. In addition, we did not find a synergic effect of combined oral famotidine and cimetidine on irradiated mice.
Collapse
Affiliation(s)
- Karim Afsar Dizaj
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ali Shabestani Monfared
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Naeiji
- Radiology Technology Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Razzaghdoust
- Urology and Nephrology Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karimollah Hajian-Tilaki
- Department of Statistic and Epidmiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Bahareh Aboufazeli
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Niksirat
- Cancer Research Center; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sajad Borzoueisileh
- Student Research Committee; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Rios CI, Cassatt DR, Hollingsworth BA, Satyamitra MM, Tadesse YS, Taliaferro LP, Winters TA, DiCarlo AL. Commonalities Between COVID-19 and Radiation Injury. Radiat Res 2021; 195:1-24. [PMID: 33064832 PMCID: PMC7861125 DOI: 10.1667/rade-20-00188.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023]
Abstract
As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., "COVID toes," suggestive of microvessel damage). Still others alarm healthcare providers with extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. Researchers are quickly refocusing their science to address this enigmatic virus that seems to unveil itself in new ways without discrimination. As investigators begin to identify early markers of disease, identification of common threads with other pathologies may provide some clues. Interestingly, years of research in the field of radiation biology documents the complex multiorgan nature of another disease state that occurs after exposure to high doses of radiation: the acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, and drives the multi-system damage that dramatically alters biological homeostasis. Both conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a demonstrably higher health impact in patients having underlying medical conditions. The potentially dramatic human impact of ARS has guided the science that has identified many biomarkers of radiation exposure, established medical management strategies for ARS, and led to the development of medical countermeasures for use in the event of a radiation public health emergency. These efforts can now be leveraged to help elucidate mechanisms of action of COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to approaches that could accelerate the discovery of treatments for both.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Yeabsera S. Tadesse
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
6
|
DiCarlo AL, Perez Horta Z, Rios CI, Satyamitra MM, Taliaferro LP, Cassatt DR. Study logistics that can impact medical countermeasure efficacy testing in mouse models of radiation injury. Int J Radiat Biol 2020; 97:S151-S167. [PMID: 32909878 PMCID: PMC7987915 DOI: 10.1080/09553002.2020.1820599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022]
Abstract
PURPOSE To address confounding issues that have been noted in planning and conducting studies to identify biomarkers of radiation injury, develop animal models to simulate these injuries, and test potential medical countermeasures to mitigate/treat damage caused by radiation exposure. METHODS The authors completed an intensive literature search to address several key areas that should be considered before embarking on studies to assess efficacy of medical countermeasure approaches in mouse models of radiation injury. These considerations include: (1) study variables; (2) animal selection criteria; (3) animal husbandry; (4) medical management; and (5) radiation attributes. RESULTS It is important to select mouse strains that are capable of responding to the selected radiation exposure (e.g. genetic predispositions might influence radiation sensitivity and proclivity to certain phenotypes of radiation injury), and that also react in a manner similar to humans. Gender, vendor, age, weight, and even seasonal variations are all important factors to consider. In addition, the housing and husbandry of the animals (i.e. feed, environment, handling, time of day of irradiation and animal restraint), as well as the medical management provided (e.g. use of acidified water, antibiotics, routes of administration of drugs, consideration of animal numbers, and euthanasia criteria) should all be addressed. Finally, the radiation exposure itself should be tightly controlled, by ensuring a full understanding and reporting of the radiation source, dose and dose rate, shielding and geometry of exposure, while also providing accurate dosimetry. It is important to understand how all the above factors contribute to the development of radiation dose response curves for a given animal facility with a well-defined murine model. CONCLUSIONS Many potential confounders that could impact the outcomes of studies to assess efficacy of a medical countermeasure for radiation-induced injuries are addressed, and recommendations are made to assist investigators in carrying out research that is robust, reproducible, and accurate.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Zulmarie Perez Horta
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
7
|
Bagheri H, Rezapour S, Najafi M, Motevaseli E, Shekarchi B, Cheki M, Mozdarani H. Protection Against Radiation-Induced Micronuclei in Rat Bone Marrow Erythrocytes by Curcumin and Selenium L-Methionine. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:645-652. [PMID: 30510341 PMCID: PMC6230935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The search for potent radioprotective agents for the amelioration of radiation side effect is an important aim in radiobiology. The present study aimed to evaluate the effects of curcumin and seleno-L-methionine against radiation-induced micronucleus formation in rat bone marrow. METHODS In total, 40 male rats were divided into 8 groups (n=5 each), including control, curcumin or seleno-L-methionine treated alone or in combination, 2 Gy irradiation, irradiation of treated groups with curcumin or seleno-L-methionine or their combination. Curcumin was administrated orally and seleno-L-methionine was injected intraperitoneally 24 hours before irradiation. The frequency of micronucleated normochromatic erythrocytes (MnNCEs) and micronucleated polychromatic erythrocytes (MnPCEs) was scored in 5,000 polychromatic erythrocytes (PCEs) and the cell proliferation ratio [(PCE/(PCE+NCE); NCE=normochromatic erythrocytes] was calculated for each treatment group. Data were analyzed by the SPSS software version 16.0 and P<0.05 was considered as statistically significant differences. RESULTS Pretreatment with curcumin and seleno-L-methionine before irradiation reduced the frequency of MnPCEs and MnNCEs (P=0.01) and increased the cell proliferation ratio. Moreover, the results showed that this pretreatment reduced the frequency of MnPCEs with a protection factor (PF) of 1.2 and 1.6, respectively. The combination of curcumin and seleno-L-methionine in reducing MnPCEs and MnNCEs was not more effective than each agent alone, while improved cell proliferation ratio. CONCLUSION Both curcumin and seleno-L-methionine showed potent protection against radiation induced MN in bone marrow cells. The combination of the two agents further ameliorates this activity, thus leading to improve bone marrow protection.
Collapse
Affiliation(s)
- Hamed Bagheri
- Radiation and Wave Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Saeed Rezapour
- Department of Radiology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Shekarchi
- Radiation and Wave Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiology, Faculty of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Sadic M, Aydinbelge FN, Yumusak N, Karakok E, Akbulut A, Koca G, Korkmaz M. Radioprotective effect of lycopene on the gastrointestinal tract after high-dose radioiodine administration in rat models. Nucl Med Commun 2017; 38:1041-1046. [PMID: 29023335 DOI: 10.1097/mnm.0000000000000760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of lycopene against radioactive iodine (RAI)-related gastrointestinal tract acute damage in a rat model as a novel radioprotective agent. MATERIALS AND METHODS Twenty Wistar albino rats were divided into two equal groups: group 1 was administered only RAI and group 2 was administered RAI and lycopene. All rats were killed 24 h after the last administration of the agents and the gastrointestinal tract organs were removed surgically for histopathological examination. RESULT The presence of lamina propria edema in the duodenum (P=0.003) and ileum (P=0.02), ulcer in the duodenum (P=0.033), mucosal erosion in the stomach (P=0.001), mucosal degeneration in stomach (P=0.02) and colon (P=0.02), necrosis in all tissues (P value for stomach=0.005, duodenum=0.001, ileum=0.001, colon=0.001), inflammation in those tissues (P value for; stomach=0.003, duodenum=0.02, ileum=0.011, colon=0.033), and fibrosis in those tissues (P value for; stomach=0.02, duodenum=0.003, ileum=0.003, colon=0.001) were statistically less frequently observed in the lycopene group compared with the RAI group. CONCLUSION As a first study assessing the protective effect of lycopene on gastrointestinal tract organs in a rat model after RAI, these preliminary basic research findings suggest that lycopene appears to exert radioprotective effects against RAI-induced acute gastrointestinal tract damage.
Collapse
Affiliation(s)
- Murat Sadic
- aDepartment of Nuclear Medicine, University of Health Sciences, Ankara Training and Research Hospital bDepartment of Pathology, University of Harran, Faculty of Veterinary Medicine, Şanliurfa/Turkey cDepartment of Pathology, Ankara Atatürk Training and Research Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
9
|
Coronado LM, Montealegre S, Chaverra Z, Mojica L, Espinosa C, Almanza A, Correa R, Stoute JA, Gittens RA, Spadafora C. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields. PLoS One 2016; 11:e0161207. [PMID: 27537497 PMCID: PMC4990222 DOI: 10.1371/journal.pone.0161207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.
Collapse
Affiliation(s)
- Lorena M. Coronado
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, 522 510, A.P., India
| | - Stephania Montealegre
- School of Biotechnology, Facultad de Ciencias de la Salud “William C. Gorgas”, Universidad Latina, Panama, Republic of Panama
| | - Zumara Chaverra
- School of Biotechnology, Facultad de Ciencias de la Salud “William C. Gorgas”, Universidad Latina, Panama, Republic of Panama
| | - Luis Mojica
- National Center for Metrology of Panama (CENAMEP AIP), City of Knowledge, Panama, Republic of Panama
| | - Carlos Espinosa
- National Center for Metrology of Panama (CENAMEP AIP), City of Knowledge, Panama, Republic of Panama
| | - Alejandro Almanza
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Ricardo Correa
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, 522 510, A.P., India
| | - José A. Stoute
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rolando A. Gittens
- Center for Biodiversity & Drug Discovery (CBDD), INDICASAT AIP, City of Knowledge, Panama, Republic of Panama
| | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| |
Collapse
|