1
|
Okunieff P, Swarts SG, Fenton B, Zhang SB, Zhang Z, Rice L, Zhou D, Carrier F, Zhang L. Radiation Biological Toximetry Using Circulating Cell-Free DNA (cfDNA) for Rapid Radiation/Nuclear Triage. Radiat Res 2024; 202:70-79. [PMID: 38661544 PMCID: PMC11346512 DOI: 10.1667/rade-23-00159.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Optimal triage biodosimetry would include risk stratification within minutes, and it would provide useful triage despite heterogeneous dosimetry, cytokine therapy, mixed radiation quality, race, and age. For regulatory approval, the U.S. Food and Drug Administration (FDA) Biodosimetry Guidance requires suitability for purpose and a validated species-independent mechanism. Circulating cell-free DNA (cfDNA) concentration assays may provide such triage information. To test this hypothesis, cfDNA concentrations were measured in unprocessed monkey plasma using a branched DNA (bDNA) technique with a laboratory developed test. The cfDNA levels, along with hematopoietic parameters, were measured over a 7-day period in Rhesus macaques receiving total body radiation doses ranging from 1 to 6.5 Gy. Low-dose irradiation (0-2 Gy) was easily distinguished from high-dose whole-body exposures (5.5 and 6.5 Gy). Fold changes in cfDNA in the monkey model were comparable to those measured in a bone marrow transplant patient receiving a supralethal radiation dose, suggesting that the lethal threshold of cfDNA concentrations may be similar across species. Average cfDNA levels were 50 ± 40 ng/mL [±1 standard deviation (SD)] pre-irradiation, 120 ± 13 ng/mL at 1 Gy; 242 ± 71 ng/mL at 2 Gy; 607 ± 54 at 5.5 Gy; and 1585 ± 351 at 6.5 Gy (±1 SD). There was an exponential increase in cfDNA concentration with radiation dose. Comparison of the monkey model with the mouse model and the Guskova model, developed using Chernobyl responder data, further demonstrated correlation across species, supporting a similar mechanism of action. The test is available commercially in a Clinical Laboratory Improvement Amendments (CLIA) ready form in the U.S. and the European Union. The remaining challenges include developing methods for further simplification of specimen processing and assay evaluation, as well as more accurate calibration of the triage category with cfDNA concentration cutoffs.
Collapse
Affiliation(s)
- Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Steven G. Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Bruce Fenton
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York
| | - Steven B. Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Zhenhuan Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Lori Rice
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, Center for Innovative Drug Discovery (CIDD), University of Texas Health San Antonio, Texas
| | - France Carrier
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Lurong Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
- First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
2
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
3
|
Bulgakova O, Kussainova A, Kakabayev A, Aripova A, Baikenova G, Izzotti A, Bersimbaev R. The level of free-circulating mtDNA in patients with radon-induced lung cancer. ENVIRONMENTAL RESEARCH 2022; 207:112215. [PMID: 34656631 DOI: 10.1016/j.envres.2021.112215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/15/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE According to the World Health Organization, radon is the second leading cause of lung cancer after smoking. Cell free circulating mitochondrial DNA (cf mtDNA) have been used not only as a biomarker of carcinogenesis but also as a biomarker of exposure to radiation, but nothing is known about changes in the level of cf mtDNA following radon exposure. Therefore, the purpose of this study was to estimate the cf mtDNA copy number as a biomarker of the response to radon exposure in lung cancer pathogenesis. METHODS 207 subjects were examined including 41 radon-exposed lung cancer patients, 40 lung cancer patients without radon exposure and 126 healthy controls exposed/not exposed to high level of radon. Total cell free circulating DNA from blood samples was extracted and used to detect cell free circulating mitochondrial DNA copy number by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our data indicate that the level of cf mtDNA in the radon-induced lung cancer patients was significantly higher than that of the other study participants. There was a significant difference in the level of cf mtDNA in the blood plasma of healthy volunteers exposed and not exposed to high doses of radon. Moreover, in healthy volunteers living in areas with high radon levels, the mtDNA copy number was higher than that in patients with lung cancer who were not exposed to high doses of radon. CONCLUSION Our study provides evidence for a possible role of cf mtDNA as a promising biomarker of lung cancer induced by exposure to high dose of radon.
Collapse
Affiliation(s)
- Olga Bulgakova
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan
| | - Assiya Kussainova
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan; Department of Experimental Medicine, University of Genoa, Italy
| | | | - Akmaral Aripova
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan
| | - Gulim Baikenova
- Sh. Ualikhanov Kokshetau State University, Kokshetau, Kazakhstan
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, Italy; IRCCS Ospedale Policlinico SanMartino, Genoa, Italy.
| | - Rakhmetkazhi Bersimbaev
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan.
| |
Collapse
|
4
|
Helm A, Ebner DK, Tinganelli W, Simoniello P, Bisio A, Marchesano V, Durante M, Yamada S, Shimokawa T. Combining Heavy-Ion Therapy with Immunotherapy: An Update on Recent Developments. Int J Part Ther 2018; 5:84-93. [PMID: 31773022 PMCID: PMC6871592 DOI: 10.14338/ijpt-18-00024.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Clinical trials and case reports of cancer therapies combining radiation therapy with immunotherapy have at times demonstrated total reduction or elimination of metastatic disease. While virtually all trials focus on the use of immunotherapy combined with conventional photon irradiation, the dose-distributive benefits of particles, in particular the distinct biological effects of heavy ions, have unknown potential vis-a-vis systemic disease response. Here, we review recent developments and evidence with a focus on the potential for heavy-ion combination therapy.
Collapse
Affiliation(s)
- Alexander Helm
- Trento Institute for Fundamental Physics and Applications-National Institute for Nuclear Physics, Trento, Italy
| | - Daniel K. Ebner
- Brown University Alpert Medical School, Providence, RI, USA
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Walter Tinganelli
- Trento Institute for Fundamental Physics and Applications-National Institute for Nuclear Physics, Trento, Italy
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | - Alessandra Bisio
- Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valentina Marchesano
- Trento Institute for Fundamental Physics and Applications-National Institute for Nuclear Physics, Trento, Italy
- Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Durante
- Trento Institute for Fundamental Physics and Applications-National Institute for Nuclear Physics, Trento, Italy
| | - Shigeru Yamada
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
5
|
Abdullaev S, Minkabirova G, Karmanova E, Bruskov V, Gaziev A. Metformin prolongs survival rate in mice and causes increased excretion of cell-free DNA in the urine of X-irradiated rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:13-18. [PMID: 29875072 DOI: 10.1016/j.mrgentox.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022]
Abstract
An antidiabetic drug metformin has anticarcinogenic and geroprotective effects and has been used in combination with radiation cancer therapy. The present work is devoted to the study of the effect of metformin on survival in mice, the frequency of micronuclei in mouse bone marrow cells and excretion of cell-free nuclear and mitochondrial DNA in the urine of X-ray-exposed rats. The survival rate and the frequency of micronuclei in mice and excretion of DNA into rat urine were determined after administration of the drug before and after irradiation of animals. The DNA content was measured by qRT-PCR. Metformin shows a radioprotective effect only when administered to mice after the radiation exposure. On the 11th day after irradiation, we observed 100% mortality in the control group; 78% of mice remained alive if metformin was given. Twenty percent of the mice in this group survived for 30 days after irradiation. Metformin has the same effect on the frequency of micronuclei; its reduction is observed, when the drug is administered to the mice after irradiation. Metformin promotes the excretion of nuclear and mitochondrial DNA with the urine of irradiated rats. The results show that metformin acts as a radiomitigation effector. Metformin promotes the active excretion of DNA of dying cells from the tissues of irradiated animals.
Collapse
Affiliation(s)
- Serazhutdin Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Gulchachak Minkabirova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Ekaterina Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation; Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Vadim Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation; Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Azhub Gaziev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| |
Collapse
|
6
|
Gaziev A, Abdullaev S, Minkabirova G, Kamenskikh K. X-rays and metformin cause increased urinary excretion of cell-free nuclear and mitochondrial DNA in aged rats. J Circ Biomark 2017; 5:1849454416670782. [PMID: 28936265 PMCID: PMC5548319 DOI: 10.1177/1849454416670782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Activation of cell death in mammals can be assessed by an increase of an amount of cell-free DNA (cf-DNA) in urine or plasma. We investigated the excretion of cf nuclear DNA (nDNA) and cf mitochondrial DNA (mtDNA) in the urine of rats 3 and 24 months in age after X-irradiation and metformin administration. Analyses showed that prior to treatment, the amount of cf-nDNA was 40% higher and cf-mtDNA was 50% higher in the urine of aged rats compared to that of young animals. At 12 h after irradiation, the content of cf-nDNA and cf-mtDNA in the urine of young rats was increased by 200% and 460%, respectively, relative to the control, whereas in the urine of aged rats, it was 250% and 720% higher. After 6 h following metformin administration, the amount of cf-nDNA and cf-mtDNA in the urine of young rats was elevated by 25% and 55% and by 50% and 160% in the urine of aged rats. Thus, these preliminary data suggest that X-rays and metformin cause a significant increase of cf-DNA in the urine of older rats caused by the active cell death in tissues. These results also suggest that metformin possibly initiates the death of the cells containing structural and functional abnormalities.
Collapse
Affiliation(s)
- Azhub Gaziev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Serazhutdin Abdullaev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Gulchachak Minkabirova
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Kristina Kamenskikh
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| |
Collapse
|