1
|
Sarıyer OS, Erbaş A. Polymer physics view of peripheral chromatin: de Gennes' self-similar carpet. Phys Rev E 2024; 109:054403. [PMID: 38907468 DOI: 10.1103/physreve.109.054403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 06/24/2024]
Abstract
Using scaling arguments to model peripheral chromatin localized near the inner surface of the nuclear envelope (NE) as a flexible polymer chain, we discuss the structural properties of the peripheral chromatin composed of alternating lamin-associated domains (LADs) and inter-LADs. Modeling the attraction of LADs to NE by de Gennes' self-similar carpet, which treats the chromatin layer as a polymer fractal, explains two major experimental observations. (i) The high density of chromatin close to the nuclear periphery decays to a constant density as the distance to the periphery increases. (ii) Due to the decreasing mesh size towards the nuclear periphery, the chromatin carpet inside NE excludes molecules (via nonspecific interactions) above a threshold size that depends on the distance from the nuclear periphery.
Collapse
Affiliation(s)
- Ozan S Sarıyer
- Pîrî Reis University, School of Arts and Sciences, Tuzla 34940, Istanbul, Turkey
| | - Aykut Erbaş
- UNAM National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey and University of Silesia, Institute of Physics, 41-500 Katowice, Poland
| |
Collapse
|
2
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
3
|
Caravaca JM, Mehta M, Gowda S, Tran B. ATAC Sequencing Protocol For Cryopreserved Mammalian Cells. Bio Protoc 2022; 12:e4294. [DOI: 10.21769/bioprotoc.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/02/2022] Open
|
4
|
Papoutsopoulou S, Pollock L, Walker C, Tench W, Samad SS, Bergey F, Lenzi L, Sheibani-Tezerji R, Rosenstiel P, Alam MT, Martins Dos Santos VAP, Müller W, Campbell BJ. Impact of Interleukin 10 Deficiency on Intestinal Epithelium Responses to Inflammatory Signals. Front Immunol 2021; 12:690817. [PMID: 34220850 PMCID: PMC8244292 DOI: 10.3389/fimmu.2021.690817] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin 10 (IL-10) is a pleiotropic, anti-inflammatory cytokine that has a major protective role in the intestine. Although its production by cells of the innate and adaptive immune system has been extensively studied, its intrinsic role in intestinal epithelial cells is poorly understood. In this study, we utilised both ATAC sequencing and RNA sequencing to define the transcriptional response of murine enteroids to tumour necrosis factor (TNF). We identified that the key early phase drivers of the transcriptional response to TNF within intestinal epithelium were NFκB transcription factor dependent. Using wild-type and Il10-/- enteroid cultures, we showed an intrinsic, intestinal epithelium specific effect of IL-10 deficiency on TNF-induced gene transcription, with significant downregulation of identified NFκB target genes Tnf, Ccl20, and Cxcl10, and delayed overexpression of NFκB inhibitor encoding genes, Nfkbia and Tnfaip3. IL-10 deficiency, or immunoblockade of IL-10 receptor, impacted on TNF-induced endogenous NFκB activity and downstream NFκB target gene transcription. Intestinal epithelium-derived IL-10 appears to play a crucial role as a positive regulator of the canonical NFκB pathway, contributing to maintenance of intestinal homeostasis. This is particularly important in the context of an inflammatory environment and highlights the potential for future tissue-targeted IL-10 therapeutic intervention.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Liam Pollock
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Catherine Walker
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - William Tench
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sakim Shakh Samad
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Luca Lenzi
- Centre for Genomic Research (CGR), Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, United Kingdom
| | | | - Phillip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics Research Technology Platform (RTP), University of Warwick, Coventry, United Kingdom
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, Fang Y, Fang D. Overview of Histone Modification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:1-16. [PMID: 33155134 DOI: 10.1007/978-981-15-8104-5_1] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the epi-information beyond the DNA sequence that can be inherited from parents to offspring. From years of studies, people have found that histone modifications, DNA methylation, and RNA-based mechanism are the main means of epigenetic control. In this chapter, we will focus on the general introductions of epigenetics, which is important in the regulation of chromatin structure and gene expression. With the development and expansion of high-throughput sequencing, various mutations of epigenetic regulators have been identified and proven to be the drivers of tumorigenesis. Epigenetic alterations are used to diagnose individual patients more accurately and specifically. Several drugs, which are targeting epigenetic changes, have been developed to treat patients regarding the awareness of precision medicine. Emerging researches are connecting the epigenetics and cancers together in the molecular mechanism exploration and the development of druggable targets.
Collapse
Affiliation(s)
- Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Tianjiao Du
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Nachuan Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
6
|
Ohno M, Ando T, Priest DG, Kumar V, Yoshida Y, Taniguchi Y. Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs. Cell 2019; 176:520-534.e25. [DOI: 10.1016/j.cell.2018.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
|
7
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
8
|
Wójcik E, Smalec E. Constitutive heterochromatin in chromosomes of duck hybrids and goose hybrids. Poult Sci 2016; 96:18-26. [PMID: 27664202 DOI: 10.3382/ps/pew318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/14/2016] [Accepted: 07/28/2016] [Indexed: 02/05/2023] Open
Abstract
Constitutive heterochromatin is a highly condensed fraction of chromatin in chromosomes. It is characterized by a high degree of polymorphism. Heterochromatin is located in the centromeric, telomeric, and interstitial parts of chromosomes. We used the CBG ( C: banding using B: arium hydroxide by G: iemsa) staining technique to identify heterochromatin in chromosomes. Analysis of karyotypes of F1 hybrids resulting from intergeneric hybridization of ducks (A. platyrhynchos × C. moschata) and interspecific crosses of geese (A. anser × A. cygnoides) were used to compare the karyotypes of 2 species of duck and 2 species of geese, as well as to compare the hybrids with the parent species. The localization of C-bands and their size were determined. In the duck hybrid, greater amounts of heterochromatin were noted in the homologous chromosomes from the duck A. platyrhynchos than in the chromosomes from the duck C. moschata. In the goose hybrid more heterochromatin was observed in the homologous chromosomes from the goose A. cygnoides than in the chromosomes from the goose A. anser. Comparison of chromosomes from the duck hybrid with chromosomes of the ducks A. platyrhynchos and C. moschata revealed nearly twice as much constitutive heterochromatin in the chromosomes of the hybrid. When chromosomes from the goose hybrid were compared with those of the geese A. anser and A. cygnoides, differences in the average content of heterochromatin were observed on only a few chromosomes.
Collapse
Affiliation(s)
- E Wójcik
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - E Smalec
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
9
|
Dełeńko K, Niedojadło J, Łabędzka A, Wiśniewska E, Bednarska-Kozakiewicz E. Dedifferentiation of Arabidopsis thaliana cells is accompanied by a strong decrease in RNA polymerase II transcription activity and poly(A+) RNA and 25S rRNA eradication from the cytoplasm. PROTOPLASMA 2015; 252:537-46. [PMID: 25248757 PMCID: PMC4335095 DOI: 10.1007/s00709-014-0700-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/09/2014] [Indexed: 05/09/2023]
Abstract
The mechanisms of plant cell dedifferentiation and the acquisition of totipotency are poorly understood. One of the methods to induce the dedifferentiation process in plant cells is simple and requires the removal of the cell wall. After cell wall removal in protoplasts, large-scale chromatin decondensation is observed (Tessadori et al. in J Cell Sci 120:1200-1208, 2007). Here, we show that in Arabidopsis thaliana protoplasts, despite chromatin decondensation, RNA polymerase II transcriptional activity is reduced. The subsequent investigated stages displayed a clear decrease in the quantity of 25S ribosomal RNA (rRNA) first and then poly(A+) RNA, particularly in the cytoplasm. Therefore, the reduced transcription activity and the removal of these RNA transcripts from the cytoplasm is a crucial process in obtaining totipotency in plant cells. After the cytoplasm cleaning of transcripts derived from mesophyll cells, we observed the resynthesis of these RNAs. An increase in the amount of examined molecules to a level similar to that in differentiated mesophyll cells precedes the divisions of already undifferentiated cells. In this work, we show changes in RNA polymerase II transcription dynamics and the quantity of poly(A+) RNA and 25S rRNA during dedifferentiation and re-entry into the cell cycle.
Collapse
Affiliation(s)
- Konrad Dełeńko
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland
| | - Janusz Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland
| | - Agata Łabędzka
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland
| | - Ewa Wiśniewska
- Department of Clinical Pathomorphology, Ludwik Rydygier Collegium Medium Bydgoszcz, Nicolaus Copernicus University in Toruń, Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland
| |
Collapse
|
10
|
Schubert V. RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet Genome Res 2014; 143:69-77. [PMID: 25060696 DOI: 10.1159/000365233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic genes. In mammalian nuclei, RNAPII is mainly localized in relatively few distinct transcription factories. In this study--applying super-resolution microscopy--it is shown that in plants, inactive (non-phosphorylated) and active (phosphorylated) RNAPII modifications compose distinct 'transcription networks' within the euchromatin. These reticulate structures sometimes attach to each other, but they are absent from heterochromatin and nucleoli. The global RNAPII distribution within nuclei is not influenced by interphase chromatin organization such as Rabl (rye) versus non-Rabl (Arabidopsis thaliana) orientation. Replication of sister chromatids without cell division causes endopolyploidy, a phenomenon widespread in plants and animals. Endopolyploidy raises the number of gene copies per nucleus. Here, it is shown that the amounts of active and inactive RNAPII enzymes in differentiated 2-32C leaf nuclei of A. thaliana proportionally increase with rising endopolyploidy. Thus, increasing the transcriptional activity of cells and tissues seems to be an important function of endopolyploidy.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
11
|
Budworth H, McMurray CT. Bidirectional transcription of trinucleotide repeats: roles for excision repair. DNA Repair (Amst) 2013; 12:672-84. [PMID: 23669397 DOI: 10.1016/j.dnarep.2013.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic instability at repetitive DNA regions in cells of the nervous system leads to a number of neurodegenerative and neuromuscular diseases, including those with an expanded trinucleotide repeat (TNR) tract at or nearby an expressed gene. Expansion causes disease when a particular base sequence is repeated beyond the normal range, interfering with the expression or properties of a gene product. Disease severity and onset depend on the number of repeats. As the length of the repeat tract grows, so does the size of the successive expansions and the likelihood of another unstable event. In fragile X syndrome, for example, CGG repeat instability and pathogenesis are not typically observed below tracts of roughly 50 repeats, but occur frequently at or above 55 repeats, and are virtually certain above 100-300 repeats. Recent evidence points to bidirectional transcription as a new aspect of TNR instability and pathophysiology. Bidirectional transcription of TNR genes produces novel proteins and/or regulatory RNAs that influence both toxicity and epigenetic changes in TNR promoters. Bidirectional transcription of the TNR tract appears to influence aspects of its stability, gene processing, splicing, gene silencing, and chemical modification of DNAs. Paradoxically, however, some of the same effects are observed on both the expanded TNR gene and on its normal gene counterpart. In this review, we discuss the possible normal and abnormal effects of bidirectional transcription on trinucleotide repeat instability, the role of DNA repair in causing, preventing, or maintaining methylation, and chromatin environment of TNR genes.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
12
|
Bire S, Rouleux-Bonnin F. Transgene Site-Specific Integration: Problems and Solutions. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Pandey SN, Cabotage J, Shi R, Dixit M, Sutherland M, Liu J, Muger S, Harper SQ, Nagaraju K, Chen YW. Conditional over-expression of PITX1 causes skeletal muscle dystrophy in mice. Biol Open 2012; 1:629-639. [PMID: 23125914 PMCID: PMC3486706 DOI: 10.1242/bio.20121305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Paired-like homeodomain transcription factor 1 (PITX1) was specifically up-regulated in patients with facioscapulohumeral muscular dystrophy (FSHD) by comparing the genome-wide mRNA expression profiles of 12 neuromuscular disorders. In addition, it is the only known direct transcriptional target of the double homeobox protein 4 (DUX4) of which aberrant expression has been shown to be the cause of FSHD. To test the hypothesis that up-regulation of PITX1 contributes to the skeletal muscle atrophy seen in patients with FSHD, we generated a tet-repressible muscle-specific Pitx1 transgenic mouse model in which expression of PITX1 in skeletal muscle can be controlled by oral administration of doxycycline. After PITX1 was over-expressed in the skeletal muscle for 5 weeks, the mice exhibited significant loss of body weight and muscle mass, decreased muscle strength, and reduction of muscle fiber diameters. Among the muscles examined, the tibialis anterior, gastrocnemius, quadricep, bicep, tricep and deltoid showed significant reduction of muscle mass, while the soleus, masseter and diaphragm muscles were not affected. The most prominent pathological change was the development of atrophic muscle fibers with mild necrosis and inflammatory infiltration. The affected myofibers stained heavily with NADH-TR with the strongest staining in angular-shaped atrophic fibers. Some of the atrophic fibers were also positive for embryonic myosin heavy chain using immunohistochemistry. Immunoblotting showed that the p53 was up-regulated in the muscles over-expressing PITX1. The results suggest that the up-regulation of PITX1 followed by activation of p53-dependent pathways may play a major role in the muscle atrophy developed in the mouse model.
Collapse
Affiliation(s)
- Sachchida N. Pandey
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jennifer Cabotage
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Rongye Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Manjusha Dixit
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Margret Sutherland
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jian Liu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Stephanie Muger
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| |
Collapse
|
14
|
Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 2012; 121:369-87. [PMID: 22476443 DOI: 10.1007/s00412-012-0367-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
The spatial chromatin organisation and molecular interactions within and between chromatin domains and chromosome territories (CTs) are essential for fundamental processes such as replication, transcription and DNA repair via homologous recombination. To analyse the distribution and interaction of whole CTs, centromeres, (sub)telomeres and ~100-kb interstitial chromatin segments in endopolyploid nuclei, specific FISH probes from Arabidopsis thaliana were applied to 2-64C differentiated leaf nuclei. Whereas CTs occupy a distinct and defined volume of the nucleus and do not obviously intermingle with each other in 2-64C nuclei, ~100-kb sister chromatin segments within these CTs become more non-cohesive with increasing endopolyploidy. Centromeres, preferentially located at the nuclear periphery, may show ring- or half-moon like shapes in 2C and 4C nuclei. Sister centromeres tend to associate up to the 8C level. From 16C nuclei on, they become progressively separated. The higher the polyploidy level gets, the more separate chromatids are present. Due to sister chromatid separation in highly endopolyploid nuclei, the centromeric histone variant CENH3, the 180-bp centromeric repeats and pericentromeric heterochromatin form distinct subdomains at adjacent but not intermingling positions. The (sub)telomeres are frequently associated with each other and with the nucleolus and less often with centromeres. The extent of chromatid separation and of chromatin decondensation at subtelomeric chromatin segments varies between chromosome arms. A mainly random distribution and similar shapes of CTs even at higher ploidy levels indicate that in general no substantial CT reorganisation occurs during endopolyploidisation. Non-cohesive sister chromatid regions at chromosome arms and at the (peri)centromere are accompanied by a less dense chromatin conformation in highly endopolyploid nuclei. We discuss the possible function of this conformation in comparison to transcriptionally active regions at insect polytene chromosomes.
Collapse
|
15
|
Koon HW, Shih DQ, Hing TC, Chen J, Ho S, Zhao D, Targan SR, Pothoulakis C. Substance P induces CCN1 expression via histone deacetylase activity in human colonic epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2315-26. [PMID: 21945803 DOI: 10.1016/j.ajpath.2011.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/05/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
We have shown that substance P (SP) and its neurokinin-1 receptor (NK-1R) regulate intestinal angiogenesis by increasing expression of protein CYR61 (the cysteine-rich angiogenic inducer 61, or CCN1) in colonic epithelial cells. However, the mechanism involved in SP-induced CCN1 expression has not been studied, and the outcome of increased CCN1 expression in the development of colitis is not fully understood. Because histone deacetylase (HDAC) modulates transcription of several genes involved in inflammation, we investigated participation of HDAC in SP-induced CCN1 expression in human colonic epithelial NCM460 cells overexpressing NK-1R (NCM460-NK-1R) and in primary colonocytes. SP increased HDAC activity with deacetylation and dephosphorylation of nucleosome protein histone H3 in NCM460-NK-1R and/or primary colonocytes. Histone deacetylation and dephosphorylation was observed in colonic mucosa from irritable bowel disease patients. Similarly, colonic mucosal tissues from mice exposed to dextran sulfate sodium showed histone H3 deacetylation and dephosphorylation and increased HDAC activity that was reversed by the NK-1R antagonist CJ-12255. SP-induced increased CCN1 expression in NCM460-NK-1R cells was abolished by pharmacological HDAC inhibition. HDAC overexpression activated basal and SP-induced CCN1 promoter activity. Intracolonic CCN1 overexpression significantly ameliorated dextran sulfate sodium-induced colitis, with reduction of proinflammatory cytokine expression in mice. Thus, SP-mediated CCN1 expression in the inflamed human and mouse colon involves increased HDAC activity. Our results strongly suggest that increased CCN1 expression may be involved in mucosal healing during colitis.
Collapse
Affiliation(s)
- Hon Wai Koon
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lisse TS, Hewison M, Adams JS. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling. Steroids 2011; 76:331-9. [PMID: 21236284 PMCID: PMC3042887 DOI: 10.1016/j.steroids.2011.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/11/2023]
Abstract
Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements.
Collapse
Affiliation(s)
- Thomas S Lisse
- Department of Orthopaedic Surgery and Molecular Biology Institute, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
17
|
Manteifel VM, Karu TY. Loosening of condensed chromatin in human blood lymphocytes exposed to irradiation with a low-energy He-Ne laser. BIOL BULL+ 2009. [DOI: 10.1134/s1062359009060028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Pai DA, Engelke DR. Spatial organization of genes as a component of regulated expression. Chromosoma 2009; 119:13-25. [PMID: 19727792 DOI: 10.1007/s00412-009-0236-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 12/15/2022]
Abstract
The DNA of living cells is highly compacted. Inherent in this spatial constraint is the need for cells to organize individual genetic loci so as to facilitate orderly retrieval of information. Complex genetic regulatory mechanisms are crucial to all organisms, and it is becoming increasingly evident that spatial organization of genes is one very important mode of regulation for many groups of genes. In eukaryotic nuclei, it appears not only that DNA is organized in three-dimensional space but also that this organization is dynamic and interactive with the transcriptional state of the genes. Spatial organization occurs throughout evolution and with genes transcribed by all classes of RNA polymerases in all eukaryotic nuclei, from yeast to human. There is an increasing body of work examining the ways in which this organization and consequent regulation are accomplished. In this review, we discuss the diverse strategies that cells use to preferentially localize various classes of genes.
Collapse
Affiliation(s)
- Dave A Pai
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0606, USA
| | | |
Collapse
|
19
|
Poptsova MS, Larionov SA, Ryadchenko EV, Rybalko SD, Zakharov IA, Loskutov A. Hidden chromosome symmetry: in silico transformation reveals symmetry in 2D DNA walk trajectories of 671 chromosomes. PLoS One 2009; 4:e6396. [PMID: 19636424 PMCID: PMC2712679 DOI: 10.1371/journal.pone.0006396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/23/2009] [Indexed: 11/18/2022] Open
Abstract
Maps of 2D DNA walk of 671 examined chromosomes show composition complexity change from symmetrical half-turn in bacteria to pseudo-random trajectories in archaea, fungi and humans. In silico transformation of gene order and strand position returns most of the analyzed chromosomes to a symmetrical bacterial-like state with one transition point. The transformed chromosomal sequences also reveal remarkable segmental compositional symmetry between regions from different strands located equidistantly from the transition point. Despite extensive chromosome rearrangement the relation of gene numbers on opposite strands for chromosomes of different taxa varies in narrow limits around unity with Pearson coefficient r = 0.98. Similar relation is observed for total genes' length (r = 0.86) and cumulative GC (r = 0.95) and AT (r = 0.97) skews. This is also true for human coding sequences (CDS), which comprise only several percent of the entire chromosome length. We found that frequency distributions of the length of gene clusters, continuously located on the same strand, have close values for both strands. Eukaryotic gene distribution is believed to be non-random. Contribution of different subsystems to the noted symmetries and distributions, and evolutionary aspects of symmetry are discussed.
Collapse
Affiliation(s)
- Maria S Poptsova
- University of Connecticut, Storrs, Connecticut, United States of America.
| | | | | | | | | | | |
Collapse
|
20
|
Batram C, Baddeley D, Kreth G, Cremer C. High precision size measurement of centromere 8 and the 8q24/c-myc gene region in metaphase and interphase human fibroblasts indicate differential condensation. J Struct Biol 2008; 164:293-303. [PMID: 18835450 DOI: 10.1016/j.jsb.2008.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 11/28/2022]
Abstract
The hypothesis that distinct chromatin domains expand and are remodelled differently when they undergo transcription, replication or cell cycle processes is well accepted. The condensation changes by which chromosomes are transformed at the metaphase-interphase transition are especially interesting and therefore extensively studied by light microscopy; however, quantitative information of the size on specific small chromatin domains during the cell cycle is scarce. In this respect, a serious problem is the determination of structural features close to the resolution limit. In this report we use a novel approach to quantify the lateral extent of the 8q24/c-myc gene domain and the centromeric region of chromosome 8 in doubly labelled normal human foreskin fibroblasts using confocal laser scanning microscopy (CLSM). The domains were analysed in both metaphase spreads and interphase nuclei. These high precision measurements revealed a somewhat smaller (few 10s of nm) lateral extension of the centromere region in metaphase compared to interphase. Surprisingly, within the same cells the lateral extension of the 8q24/c-myc region was significantly smaller in interphase than in metaphase. For comparison the centromere size was more condensed in metaphase than in interphase. This implies a different folding behaviour for specific chromatin domains with opposite condensation behaviour.
Collapse
Affiliation(s)
- C Batram
- Applied Optics and Information Processing, Kirchhoff Institute of Physics, University of Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
21
|
Arbibe L. Immune subversion by chromatin manipulation: a new face of hostbacterial pathogen interaction. Cell Microbiol 2008; 10:1582-90. [DOI: 10.1111/j.1462-5822.2008.01170.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Lucey MM, Wang Y, Bustin M, Duncan MK. Differential expression of the HMGN family of chromatin proteins during ocular development. Gene Expr Patterns 2008; 8:433-437. [PMID: 18502697 DOI: 10.1016/j.gep.2008.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 04/08/2008] [Accepted: 04/13/2008] [Indexed: 02/04/2023]
Abstract
The HMGN proteins are a group of non-histone nuclear proteins that associate with the core nucleosome and alter the structure of the chromatin fiber. We investigated the distribution of the three best characterized HMGN family members, HMGN1, HMGN2 and HMGN3 during mouse eye development. HMGN1 protein is evenly distributed in all ocular structures of 10.5 days post-coitum (dpc) mouse embryos however, by 13.5dpc, relatively less HMGN1 is detected in the newly formed lens fiber cells compared to other cell types. In the adult, HMGN1 is detected throughout the retina and lens, although in the cornea, HMGN1 protein is predominately located in the epithelium. HMGN2 is also abundant in all ocular structures of mouse embryos, however, unlike HMGN1, intense immunolabeling is maintained in the lens fiber cells at 13.5dpc. In the adult eye, HMGN2 protein is still found in all lens nuclei while in the cornea, HMGN2 protein is mostly restricted to the epithelium. In contrast, the first detection of HMGN3 in the eye is in the presumptive corneal epithelium and lens fiber cells at 13.5dpc. In the lens, HMGN3 remained lens fiber cell preferred into adulthood. In the cornea, HMGN3 is transiently upregulated in the stroma and endothelium at birth while its expression is restricted to the corneal epithelium in adulthood. In the retina, HMGN3 upregulates around 2 weeks of age and is found at relatively high levels in the inner nuclear and ganglion cell layers of the adult retina. RT-PCR analysis determined that the predominant HMGN3 splice form found in ocular tissues is HMGN3b which lacks the chromatin unfolding domain although HMGN3a mRNA is also detected. These results demonstrate that the HMGN class of chromatin proteins has a dynamic expression pattern in the developing eye.
Collapse
Affiliation(s)
- Michelle M Lucey
- Department of Biological Sciences, University of Delaware, 327 Wolf Hall, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
23
|
Rego A, Sinclair PB, Tao W, Kireev I, Belmont AS. The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J Cell Sci 2008; 121:1119-27. [DOI: 10.1242/jcs.026104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian inactive X chromosome (Xi) is a model for facultative heterochromatin. Increased DNA compaction for the Xi, and for facultative heterochromatin in general, has long been assumed based on recognition of a distinct Barr body using nucleic-acid staining. This conclusion has been challenged by a report revealing equal volumes occupied by the inactive and active X chromosomes. Here, we use light and electron microscopy to demonstrate in mouse and human fibroblasts a unique Xi ultrastructure, distinct from euchromatin and constitutive heterochromatin, containing tightly packed, heterochromatic fibers/domains with diameters in some cases approaching that of prophase chromatids. Significant space between these packed structures is observed even within condensed regions of the Xi. Serial-section analysis also reveals extensive contacts of the Xi with the nuclear envelope and/or nucleolus, with nuclear envelope association being observed in all cells. Implications of our results for models of Xi gene silencing and chromosome territory organization are discussed.
Collapse
Affiliation(s)
- Alena Rego
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Paul B. Sinclair
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Wei Tao
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Igor Kireev
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Chen ZY, Riu E, He CY, Xu H, Kay MA. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 2008; 16:548-56. [PMID: 18253155 DOI: 10.1038/sj.mt.6300399] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Minicircle DNA vectors devoid of plasmid bacterial backbone, (BB) DNAs, are transcriptionally persistent, whereas their parent plasmid counterparts are silenced in the liver. In this study we establish that circular plasmid BB provided in trans did not silence a transgene expression cassette in vivo, further confirming our previous conclusions that the covalent attachment of the plasmid BB to the expression cassette is required for DNA silencing. Given the high concentration of CpG dinucleotides in the plasmid BB, we investigated the role of DNA methylation on transgene silencing in vivo. The presence or absence of methylation in CpG motifs in routine plasmid BBs had no significant effect on transcriptional silencing. Furthermore, the removal of the CpG motifs from the BB did not ameliorate transcriptional silencing. Transgene silencing was partially inhibited when two tandem copies of the chicken cHS4 insulator at each end of a routine plasmid vector were used. These results are consistent with the idea that the transcriptional repression observed with plasmid DNA vectors in the liver is caused by formation of repressive heterochromatin on the plasmid DNA backbone, which then spreads and inactivates the transgene in cis, and that CpG content or methylation has little or no influence in the process.
Collapse
Affiliation(s)
- Zhi-Ying Chen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
25
|
Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 2007; 28:227-36. [PMID: 17938198 DOI: 10.1128/mcb.01245-07] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nucleosome arrays undergo salt-dependent self-association into large oligomers in a process thought to recapitulate essential aspects of higher-order tertiary chromatin structure formation. Lysine acetylation within the core histone tail domains inhibits self-association, an effect likely related to its role in facilitating transcription. As acetylation of specific tail domains may encode distinct functions, we investigated biochemical and self-association properties of model nucleosome arrays containing combinations of native and mutant core histones with lysine-to-glutamine substitutions to mimic acetylation. Acetylation mimics within the tail domains of H2B and H4 caused the largest inhibition of array self-association, while modification of the H3 tail uniquely affected the stability of DNA wrapping within individual nucleosomes. In addition, the effect of acetylation mimics on array self-association is inconsistent with a simple charge neutralization mechanism. For example, acetylation mimics within the H2A tail can have either a positive or negative effect on self-association, dependent upon the acetylation state of the other tails and nucleosomal repeat length. Finally, we demonstrate that glutamine substitutions and lysine acetylation within the H4 tail domain have identical effects on nucleosome array self-association. Our results indicate that acetylation of specific tail domains plays distinct roles in the regulation of chromatin structure.
Collapse
|
26
|
Rajasekhar VK, Begemann M. Concise Review: Roles of Polycomb Group Proteins in Development and Disease: A Stem Cell Perspective. Stem Cells 2007; 25:2498-510. [PMID: 17600113 DOI: 10.1634/stemcells.2006-0608] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The acquisition and maintenance of cell fate are essential for metazoan growth and development. A strict coordination between genetic and epigenetic programs regulates cell fate determination and maintenance. Polycomb group (PcG) genes are identified as essential in these epigenetic developmental processes. These genes encode components of multimeric transcriptional repressor complexes that are crucial in maintaining cell fate. PcG proteins have also been shown to play a central role in stem cell maintenance and lineage specification. PcG proteins, together with a battery of components including sequence-specific DNA binding/accessory factors, chromatin remodeling factors, signaling pathway intermediates, noncoding small RNAs, and RNA interference machinery, generally define a dynamic cellular identity through tight regulation of specific gene expression patterns. Epigenetic modification of chromatin structure that results in expression silencing of specific genes is now emerging as an important molecular mechanism in this process. In embryonic stem (ES) cells and adult stem cells, such specific genes represent those associated with differentiation and development, and silencing of these genes in a PcG protein-dependent manner confers stemness. ES cells also contain novel chromatin motifs enriched in epigenetic modifications associated with both activation and repression of genes, suggesting that certain genes are poised for activation or repression. Interestingly, these chromatin domains are highly coincident with the promoters of developmental regulators, which are also found to be occupied by PcG proteins. The epigenetic integrity is compromised, however, by mutations or other alterations that affect the function of PcG proteins in stem cells leading to aberrant cell proliferation and tissue transformation, a hallmark of cancer. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Vinagolu K Rajasekhar
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Rockefeller Research Laboratories, Room #945, New York, New York 10021, USA.
| | | |
Collapse
|
27
|
Fakan S, van Driel R. The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 2007; 18:676-81. [PMID: 17920313 DOI: 10.1016/j.semcdb.2007.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/29/2022]
Abstract
The perichromatin region has emerged as an important functional domain of the interphase nucleus. Major nuclear functions, such as DNA replication and transcription, as well as different RNA processing factors, occur within this domain. In this review, we summarize in situ observations regarding chromatin structure analysed by transmission electron microscopy and compare results to data obtained by other methods. In particular, we address the functional architecture of the perichromatin region and the way chromatin may be folded within this nucleoplasmic domain.
Collapse
Affiliation(s)
- Stanislav Fakan
- Centre of Electron Microscopy, University of Lausanne, 27 Bugnon, CH-1005 Lausanne, Switzerland.
| | | |
Collapse
|
28
|
Kalmárová M, Smirnov E, Masata M, Koberna K, Ligasová A, Popov A, Raska I. Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli. J Struct Biol 2007; 160:49-56. [PMID: 17698369 PMCID: PMC2446407 DOI: 10.1016/j.jsb.2007.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/19/2007] [Accepted: 06/21/2007] [Indexed: 01/15/2023]
Abstract
It is widely accepted that chromosomes occupy more or less fixed positions in mammalian interphase nucleus. However, relation between large-scale order of chromosome positioning and gene activity remains unclear. We used the model of the human ribosomal genes to address specific aspects of this problem. Ribosomal genes are organized at particular chromosomal sites in clusters termed nucleolus organizer regions (NORs). Only some NORs, called competent are generally accepted to be transcriptionally active during interphase. Importantly in this respect, the regularities in distribution of competent, and non-competent NORs among the specific chromosomes were already established in two human-derived cell lines: transformed HeLa and primary LEP cells. In the present study, using FISH and immunocytochemistry, we found that in HeLa and LEP cells the large-scale positioning of the NOR-bearing chromosomes with regard to nucleoli is linked to the transcription activity of rDNA. Namely, the tendency of rDNA-bearing chromosomes to associate with nucleoli correlates with the number of transcriptionally competent NORs in the respective chromosome homologs. Regarding the position of NORs, we found that not only competent but also most of the non-competent NORs are included in the nucleoli. Some intranucleolar NORs (supposedly non-competent) are situated on elongated chromatin protrusions connecting nucleoli with respective chromosome territories spatially distanced from nucleoli.
Collapse
Affiliation(s)
- Markéta Kalmárová
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: Are the pieces now in place? J Cell Biochem 2007; 104:1964-87. [PMID: 17546585 DOI: 10.1002/jcb.21364] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
30
|
Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U. The triploid endosperm genome of Arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. THE PLANT CELL 2007; 19:1782-94. [PMID: 17557811 PMCID: PMC1955730 DOI: 10.1105/tpc.106.046235] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 05/04/2007] [Accepted: 05/21/2007] [Indexed: 05/15/2023]
Abstract
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. PLANT METHODS 2006; 2:18. [PMID: 17081287 PMCID: PMC1635696 DOI: 10.1186/1746-4811-2-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 11/02/2006] [Indexed: 05/08/2023]
Abstract
Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.
Collapse
Affiliation(s)
- Ana Paula Santos
- Plant Genetic Engineering Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| | - Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - George C Allen
- Plant Transformation Laboratory (PTL), Departments of Crop Science and Horticultural Science, Campus Box 7550, North Carolina State University, Raleigh, NC 27695, USA
| | - William F Thompson
- Plant Gene Expression Laboratory, Campus Box 7550, North Carolina State University Raleigh, NC 27695, USA
| | - Eva Stoger
- Institute for Molecular Biotechnology, RWTH Aachen, 52074 Aachen, Germany
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| |
Collapse
|
33
|
Martín-Subero JI, Klapper W, Sotnikova A, Callet-Bauchu E, Harder L, Bastard C, Schmitz R, Grohmann S, Höppner J, Riemke J, Barth TFE, Berger F, Bernd HW, Claviez A, Gesk S, Frank GA, Kaplanskaya IB, Möller P, Parwaresch RM, Rüdiger T, Stein H, Küppers R, Hansmann ML, Siebert R. Chromosomal Breakpoints Affecting Immunoglobulin Loci Are Recurrent in Hodgkin and Reed-Sternberg Cells of Classical Hodgkin Lymphoma. Cancer Res 2006; 66:10332-8. [PMID: 17079453 DOI: 10.1158/0008-5472.can-06-1992] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromosomal breakpoints affecting immunoglobulin (IG) loci are recurrent in many subtypes of B-cell lymphomas. However, despite the predominant B-cell origin of the Hodgkin and Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL), the presence of chromosomal translocations in IG loci has not yet been systematically explored. Therefore, we have investigated a series of cHL for chromosomal breakpoints in the IGH (n = 230), IGL (n = 139), and IGK (n = 138) loci by interphase cytogenetics. Breakpoints in the IGH, IGL, or IGK locus were observed in the HRS cells of 26 of 149 (17%), 2 of 70, and 1 of 77 evaluable cHLs, respectively. The IG partners could be identified in eight cHLs and involved chromosomal bands 2p16 (REL), 3q27 (BCL6, two cases), 8q24.1 (MYC), 14q24.3, 16p13.1, 17q12, and 19q13.2 (BCL3/RELB). In 65 of 85 (76%) cHLs evaluable for an IGH triple-color probe, the HRS cells showed evidence for a (partial) deletion of the IGH constant region, suggesting the presence of class switch recombination (CSR). Furthermore, analyses with this probe in cases with IGH breakpoints indicated that at least part of them seem to be derived from CSR defects. Our results show that chromosomal breakpoints affecting the IG loci are recurrent in cHL.
Collapse
Affiliation(s)
- José I Martín-Subero
- Institutes of Human Genetics and Hematopathology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Matzke AJM, Huettel B, van der Winden J, Matzke M. Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. PLANT PHYSIOLOGY 2005; 139:1586-96. [PMID: 16339805 PMCID: PMC1310544 DOI: 10.1104/pp.105.071068] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/07/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
Sixteen distinct sites distributed on all five Arabidopsis (Arabidopsis thaliana) chromosomes have been tagged using different fluorescent proteins and one of two different bacterial operator-repressor systems: (1) a yellow fluorescent protein-Tet repressor fusion protein bound to tet operator sequences, or (2) a green or red fluorescent protein-Lac repressor fusion protein bound to lac operator sequences. Individual homozygous lines and progeny of intercrosses between lines have been used to study various aspects of interphase chromosome organization in root cells of living, untreated seedlings. Features reported here include distances between transgene alleles, distances between transgene inserts on different chromosomes, distances between transgene inserts on the same chromatin fiber, alignment of homologous chromosomes, and chromatin movement. The overall findings are consistent with a random and largely static arrangement of interphase chromosomes in nuclei of root cells. These transgenic lines provide tools for in-depth analyses of interphase chromosome organization, expression, and dynamics in living plants.
Collapse
Affiliation(s)
- Antonius J M Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|