1
|
Brancato D, Bruno F, Coniglio E, Sturiale V, Saccone S, Federico C. The Chromatin Organization Close to SNP rs12913832, Involved in Eye Color Variation, Is Evolutionary Conserved in Vertebrates. Int J Mol Sci 2024; 25:6602. [PMID: 38928306 PMCID: PMC11204186 DOI: 10.3390/ijms25126602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the HERC2 gene, which interacts with the promoter region of the contiguous OCA2 gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional activity of OCA2, directly affecting eye color pigmentation. Recent advancements in technology have elucidated the precise spatial organization of the genome within the cell nucleus, with chromatin architecture playing a pivotal role in regulating various genome functions. In this study, we investigated the organization of the chromatin close to the HERC2/OCA2 locus in human lymphocyte nuclei using fluorescence in situ hybridization (FISH) and high-throughput chromosome conformation capture (Hi-C) data. The 3 Mb of genomic DNA that belonged to the chromosomal region 15q12-q13.1 revealed the presence of three contiguous chromatin loops, which exhibited a different level of compaction depending on the presence of the A or G allele in the SNP rs12913832. Moreover, the analysis of the genomic organization of the genes has demonstrated that this chromosomal region is evolutionarily highly conserved, as evidenced by the analysis of syntenic regions in species from other Vertebrate classes. Thus, the role of rs12913832 variant is relevant not only in determining the transcriptional activation of the OCA2 gene but also in the chromatin compaction of a larger region, underscoring the critical role of chromatin organization in the proper regulation of the involved genes. It is crucial to consider the broader implications of this finding, especially regarding the potential regulatory role of similar polymorphisms located within intronic regions, which do not influence the same gene by modulating the splicing process, but they regulate the expression of adjacent genes. Therefore, caution should be exercised when utilizing whole-exome sequencing for diagnostic purposes, as intron sequences may provide valuable gene regulation information on the region where they reside. Thus, future research efforts should also be directed towards gaining a deeper understanding of the precise mechanisms underlying the role and mode of action of intronic SNPs in chromatin loop organization and transcriptional regulation.
Collapse
Affiliation(s)
| | | | | | | | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (D.B.); (F.B.); (E.C.); (V.S.); (C.F.)
| | | |
Collapse
|
2
|
Federico C, Brancato D, Bruno F, Galvano D, Caruso M, Saccone S. Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect. Genes (Basel) 2024; 15:722. [PMID: 38927657 PMCID: PMC11202415 DOI: 10.3390/genes15060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Daiana Galvano
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Mariella Caruso
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| |
Collapse
|
3
|
Engineered model of t(7;12)(q36;p13) AML recapitulates patient-specific features and gene expression profiles. Oncogenesis 2022; 11:50. [PMID: 36057683 PMCID: PMC9440899 DOI: 10.1038/s41389-022-00426-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukaemia carrying the translocation t(7;12)(q36;p13) is an adverse-risk leukaemia uniquely observed in infants. Despite constituting up to 30% of cases in under 2-year-olds, it remains poorly understood. Known molecular features are ectopic overexpression of the MNX1 gene and generation of a fusion transcript in 50% of patients. Lack of research models has hindered understanding of t(7;12) biology, which has historically focused on MNX1 overexpression rather than the cytogenetic entity itself. Here, we employed CRISPR/Cas9 to generate t(7;12) in the human K562 cell line, and in healthy CD34+ haematopoietic progenitors where the translocation was not sustained in long-term cultures or through serial replating. In contrast, in K562 cells, t(7;12) was propagated in self-renewing clonogenic assays, with sustained myeloid bias in colony formation and baseline depletion of erythroid signatures. Nuclear localisation analysis revealed repositioning of the translocated MNX1 locus to the interior of t(7;12)-harbouring K562 nuclei — a known phenomenon in t(7;12) patients which associates with ectopic overexpression of MNX1. Crucially, the K562-t(7;12) model successfully recapitulated the transcriptional landscape of t(7;12) patient leukaemia. In summary, we engineered a clinically-relevant model of t(7;12) acute myeloid leukaemia with the potential to unravel targetable molecular mechanisms of disease.
Collapse
|
4
|
Chromosomal Rearrangements and Altered Nuclear Organization: Recent Mechanistic Models in Cancer. Cancers (Basel) 2021; 13:cancers13225860. [PMID: 34831011 PMCID: PMC8616464 DOI: 10.3390/cancers13225860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary New methodologies and technologies developed in the last few decades have highlighted the precise spatial organization of the genome into the cell nucleus, with chromatin architecture playing a central role in controlling several genome functions. Genes are expressed in a well-defined way and at a well-defined time during cell differentiation, and alterations in genome organization can lead to genetic diseases, such as cancers. Here we review how the genome is organized in the cell nucleus and the evidence of genome misorganization leading to cancer diseases. Abstract The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.
Collapse
|
5
|
Chromosomal positioning in spermatogenic cells is influenced by chromosomal factors associated with gene activity, bouquet formation and meiotic sex chromosome inactivation. Chromosoma 2021; 130:163-175. [PMID: 34231035 DOI: 10.1007/s00412-021-00761-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Chromosome territoriality is not random along the cell cycle and it is mainly governed by intrinsic chromosome factors and gene expression patterns. Conversely, very few studies have explored the factors that determine chromosome territoriality and its influencing factors during meiosis. In this study, we analysed chromosome positioning in murine spermatogenic cells using three-dimensionally fluorescence in situ hybridization-based methodology, which allows the analysis of the entire karyotype. The main objective of the study was to decipher chromosome positioning in a radial axis (all analysed germ-cell nuclei) and longitudinal axis (only spermatozoa) and to identify the chromosomal factors that regulate such an arrangement. Results demonstrated that the radial positioning of chromosomes during spermatogenesis was cell-type specific and influenced by chromosomal factors associated to gene activity. Chromosomes with specific features that enhance transcription (high GC content, high gene density and high numbers of predicted expressed genes) were preferentially observed in the inner part of the nucleus in virtually all cell types. Moreover, the position of the sex chromosomes was influenced by their transcriptional status, from the periphery of the nucleus when its activity was repressed (pachytene) to a more internal position when it is partially activated (spermatid). At pachytene, chromosome positioning was also influenced by chromosome size due to the bouquet formation. Longitudinal chromosome positioning in the sperm nucleus was not random either, suggesting the importance of ordered longitudinal positioning for the release and activation of the paternal genome after fertilisation.
Collapse
|
6
|
From FISH to Hi-C: The Chromatin Architecture of the Chromosomal Region 7q36.3, Frequently Rearranged in Leukemic Cells, Is Evolutionary Conserved. Int J Mol Sci 2021; 22:ijms22052338. [PMID: 33652823 PMCID: PMC7956786 DOI: 10.3390/ijms22052338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) and Hi-C methods are largely used to investigate the three-dimensional organization of the genome in the cell nucleus and are applied here to study the organization of genes (LMBR1, NOM1, MNX1, UBE3C, PTPRN2) localized in the human 7q36.3 band. This region contains the MNX1 gene, which is normally not expressed in human lymphocytes beyond embryonic development. However, this homeobox gene is frequently activated in leukemic cells and its expression is associated with an altered gene positioning in the leukemia cell nuclei. In this study, we used FISH on 3D-preserved nuclei to investigate the nuclear positioning of MNX1 in the leukemia-derived cell line K562. Of the five copies of the MNX1 gene present in K562, four alleles were positioned in the nuclear periphery and only one in the nuclear interior. Using the Juicebox’s Hi-C dataset, we identified five chromatin loops in the 7q36.3 band, with different extensions related to the size and orientation of the genes located here, and independent from their expression levels. We identified similar loops in 11 human and three mouse cell lines, showing that these loops are highly conserved in different human cell lines and during evolution. Moreover, the chromatin loop organization is well conserved also during neuronal cell differentiation, showing consistency in genomic organization of this region in development. In this report, we show that FISH and Hi-C are two different approaches that complement one another and together give complete information on the nuclear organization of specific chromosomal regions in different conditions, including cellular differentiation and genetic diseases.
Collapse
|
7
|
Federico C, Owoka T, Ragusa D, Sturiale V, Caponnetto D, Leotta CG, Bruno F, Foster HA, Rigamonti S, Giudici G, Cazzaniga G, Bridger JM, Sisu C, Saccone S, Tosi S. Deletions of Chromosome 7q Affect Nuclear Organization and HLXB9Gene Expression in Hematological Disorders. Cancers (Basel) 2019; 11:cancers11040585. [PMID: 31027247 PMCID: PMC6521283 DOI: 10.3390/cancers11040585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
The radial spatial positioning of individual gene loci within interphase nuclei has been associated with up- and downregulation of their expression. In cancer, the genome organization may become disturbed due to chromosomal abnormalities, such as translocations or deletions, resulting in the repositioning of genes and alteration of gene expression with oncogenic consequences. In this study, we analyzed the nuclear repositioning of HLXB9 (also called MNX1), mapping at 7q36.3, in patients with hematological disorders carrying interstitial deletions of 7q of various extents, with a distal breakpoint in 7q36. We observed that HLXB9 remains at the nuclear periphery, or is repositioned towards the nuclear interior, depending upon the compositional properties of the chromosomal regions involved in the rearrangement. For instance, a proximal breakpoint leading the guanine-cytosine (GC)-poor band 7q21 near 7q36 would bring HLXB9 to the nuclear periphery, whereas breakpoints that join the GC-rich band 7q22 to 7q36 would bring HLXB9 to the nuclear interior. This nuclear repositioning is associated with transcriptional changes, with HLXB9 in the nuclear interior becoming upregulated. Here we report an in cis rearrangement, involving one single chromosome altering gene behavior. Furthermore, we propose a mechanistic model for chromatin reorganization that affects gene expression via the influences of new chromatin neighborhoods.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Temitayo Owoka
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Denise Ragusa
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Valentina Sturiale
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Domenica Caponnetto
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Claudia Giovanna Leotta
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
- College of Health and Life Science, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Silvia Rigamonti
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Giovanni Giudici
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Giovanni Cazzaniga
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Joanna M Bridger
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Cristina Sisu
- College of Health and Life Science, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Sabrina Tosi
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| |
Collapse
|
8
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
9
|
Chromosome positioning and male infertility: it comes with the territory. J Assist Reprod Genet 2018; 35:1929-1938. [PMID: 30229502 DOI: 10.1007/s10815-018-1313-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 01/30/2023] Open
Abstract
The production of functional spermatozoa through spermatogenesis requires a spatially and temporally highly regulated gene expression pattern, which in case of alterations, leads to male infertility. Changes of gene expression by chromosome anomalies, gene variants, and epigenetic alterations have been described as the main genetic causes of male infertility. Recent molecular and cytogenetic approaches have revealed that higher order chromosome positioning is essential for basic genome functions, including gene expression. This review addresses this issue by exposing well-founded evidences which support that alterations on the chromosome topology in spermatogenetic cells leads to defective sperm function and could be considered as an additional genetic cause of male infertility.
Collapse
|
10
|
Federico C, Gil L, Bruno F, D'Amico AG, D'Agata V, Saccone S. Phosphorylated nucleolar Tau protein is related to the neuronal in vitro differentiation. Gene 2018; 664:1-11. [PMID: 29684490 DOI: 10.1016/j.gene.2018.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 02/02/2023]
Abstract
Tau is a multifunctional protein, originally identified as a cytoplasmic protein associated with microtubules. It is codified by the MAPT gene, and the alternative splicing, in the neuronal cells, results in six different isoforms. Tau was subsequently observed in the cell nucleus, where its function is not yet clearly understood. Here, we studied the MAPT gene and the cellular localization of the AT8 and Tau-1 epitopes of Tau protein, in the SK-N-BE cell line, which differentiates in neuronal-like cells after retinoic acid treatment. These epitopes correspond to the phosphorylated Ser202/Thr205 and unphosphorylated Pro189/Gly207 amino acid residues, respectively, possibly involved in conformational changes of the protein. Our results demonstrated the presence of the smaller Tau isoform (352 amino acids), whose amount increases in differentiated SK-N-BE cells, with Tau-1/AT8 nuclear distribution related to the differentiation process. Tau-1 showed a spot-like nucleolar localization, in both replicative and differentiated cells, while AT8 was only detected in the differentiated cells, diffusely occupying the entire nucleolar region. Moreover, in the replicative cells exposed to actinomycin-D, AT8 and Tau-1 move to the nucleolar periphery and colocalize, in few spots, with the upstream binding transcription factor (UBTF). Our results, also obtained with lymphocytes exposed to the mitogenic compound phytohaemagglutinin, indicate the AT8 epitope of Tau as a marker of neuronal cell differentiation, whose presence in the nucleolus appears to be related to rDNA transcriptional inactivation.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Laura Gil
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Agata Grazia D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy.
| |
Collapse
|
11
|
Genomic properties of chromosomal bands are linked to evolutionary rearrangements and new centromere formation in primates. Chromosome Res 2017; 25:261-276. [PMID: 28717965 DOI: 10.1007/s10577-017-9560-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
Chromosomal rearrangements in humans are largely related to pathological conditions, and phenotypic effects are also linked to alterations in the expression profile following nuclear relocation of genes between functionally different compartments, generally occupying the periphery or the inner part of the cell nuclei. On the other hand, during evolution, chromosomal rearrangements may occur apparently without damaging phenotypic effects and are visible in currently phylogenetically related species. To increase our insight into chromosomal reorganisation in the cell nucleus, we analysed 18 chromosomal regions endowed with different genomic properties in cell lines derived from eight primate species covering the entire evolutionary tree. We show that homologous loci, in spite of their evolutionary relocation along the chromosomes, generally remain localised to the same functional compartment of the cell nuclei. We conclude that evolutionarily successful chromosomal rearrangements are those that leave the nuclear position of the regions involved unchanged. On the contrary, in pathological situations, the effect typically observed is on gene structure alteration or gene nuclear reposition. Moreover, our data indicate that new centromere formation could potentially occur everywhere in the chromosomes, but only those emerging in very GC-poor/gene-poor regions, generally located in the nuclear periphery, have a high probability of being retained through evolution. This suggests that, in the cell nucleus of related species, evolutionary chromosomal reshufflings or new centromere formation does not alter the functionality of the regions involved or the interactions between different loci, thus preserving the expression pattern of orthologous genes.
Collapse
|
12
|
Di Stefano M, Paulsen J, Lien TG, Hovig E, Micheletti C. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization. Sci Rep 2016; 6:35985. [PMID: 27786255 PMCID: PMC5081523 DOI: 10.1038/srep35985] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/30/2016] [Indexed: 11/10/2022] Open
Abstract
Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling.
Collapse
Affiliation(s)
- Marco Di Stefano
- SISSA, International School for Advanced Studies, Trieste, I-34136, Italy
| | - Jonas Paulsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Tonje G. Lien
- University of Oslo, Department of Mathematics, Oslo, 0316, Norway
| | - Eivind Hovig
- Institute for Cancer Research, Oslo University Hospital, Department of Tumor Biology, Oslo, 0310, Norway
- University of Oslo, Department of Informatics, Oslo, 0316, Norway
- Institute of Cancer Genetics and Informatics, Oslo, 0310, Norway
| | | |
Collapse
|
13
|
Sehgal N, Fritz AJ, Vecerova J, Ding H, Chen Z, Stojkovic B, Bhattacharya S, Xu J, Berezney R. Large-scale probabilistic 3D organization of human chromosome territories. Hum Mol Genet 2016; 25:419-36. [PMID: 26604142 PMCID: PMC4731017 DOI: 10.1093/hmg/ddv479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/07/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023] Open
Abstract
There is growing evidence that chromosome territories (CT) have a probabilistic non-random arrangement within the cell nucleus of mammalian cells including radial positioning and preferred patterns of interchromosomal interactions that are cell-type specific. While it is generally assumed that the three-dimensional (3D) arrangement of genes within the CT is linked to genomic regulation, the degree of non-random organization of individual CT remains unclear. As a first step to elucidating the global 3D organization (topology) of individual CT, we performed multi-color fluorescence in situ hybridization using six probes extending across each chromosome in human WI38 lung fibroblasts. Six CT were selected ranging in size and gene density (1, 4, 12, 17, 18 and X). In-house computational geometric algorithms were applied to measure the 3D distances between every combination of probes and to elucidate data-mined structural patterns. Our findings demonstrate a high degree of non-random arrangement of individual CT that vary from chromosome to chromosome and display distinct changes during the cell cycle. Application of a classic, well-defined data mining and pattern recognition approach termed the 'k-means' generated 3D models for the best fit arrangement of each chromosome. These predicted models correlated well with the detailed distance measurements and analysis. We propose that the unique 3D topology of each CT and characteristic changes during the cell cycle provide the structural framework for the global gene expression programs of the individual chromosomes.
Collapse
Affiliation(s)
| | | | | | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Zihe Chen
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Sambit Bhattacharya
- Department of Mathematics and Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | | |
Collapse
|
14
|
Clements CS, Bikkul U, Ahmed MH, Foster HA, Godwin LS, Bridger JM. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization. Methods Mol Biol 2016; 1411:387-406. [PMID: 27147055 DOI: 10.1007/978-1-4939-3530-7_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH.
Collapse
Affiliation(s)
- Craig S Clements
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Ural Bikkul
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Mai Hassan Ahmed
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Helen A Foster
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Lauren S Godwin
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Joanna M Bridger
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK.
| |
Collapse
|
15
|
Affiliation(s)
- Huy Q. Nguyen
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755;
| | - Giovanni Bosco
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
16
|
Tosi S, Mostafa Kamel Y, Owoka T, Federico C, Truong TH, Saccone S. Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects. Biomark Res 2015; 3:21. [PMID: 26605042 PMCID: PMC4657620 DOI: 10.1186/s40364-015-0041-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/25/2015] [Indexed: 12/05/2022] Open
Abstract
The presence of chromosomal abnormalities is one of the most important criteria for leukaemia diagnosis and management. Infant leukaemia is a rare disease that affects children in their first year of life. It has been estimated that approximately one third of infants with acute myeloid leukaemia harbour the t(7;12)(q36;p13) rearrangement in their leukaemic blasts. However, the WHO classification of acute myeloid leukaemia does not yet include the t(7;12) as a separate entity among the different genetic subtypes, although the presence of this chromosomal abnormality has been associated with an extremely poor clinical outcome. Currently, there is no consensus treatment for t(7;12) leukaemia patients. However, with the inferior outcome with the standard induction therapy, stem cell transplantation may offer a better chance for disease control. A better insight into the chromosome biology of this entity might shed some light into the pathogenic mechanisms arising from this chromosomal translocation, that at present are not fully understood. Further work is needed to improve our understanding of the molecular and genetic basis of this disorder. This will hopefully open some grounds for possible tailored treatment for this subset of very young patients with inferior disease outcome. This review aims at highlighting the cytogenetic features that characterise the t(7;12) leukaemias for a better detection of the abnormality in the diagnostic setting. We also review treatment and clinical outcome in the cases reported to date.
Collapse
Affiliation(s)
- Sabrina Tosi
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Yasser Mostafa Kamel
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Temitayo Owoka
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Concetta Federico
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| | - Tony H Truong
- Division of Pediatric Oncology, Blood and Marrow Transplant, Alberta Children's Hospital, University of Calgary, Calgary, Canada
| | - Salvatore Saccone
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Leotta CG, Federico C, Brundo MV, Tosi S, Saccone S. HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLoS One 2014; 9:e105481. [PMID: 25136833 PMCID: PMC4138170 DOI: 10.1371/journal.pone.0105481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/23/2014] [Indexed: 01/26/2023] Open
Abstract
Different parts of the genome occupy specific compartments of the cell nucleus based on the gene content and the transcriptional activity. An example of this is the altered nuclear positioning of the HLXB9 gene in leukaemia cells observed in association with its over-expression. This phenomenon was attributed to the presence of a chromosomal translocation with breakpoint proximal to the HLXB9 gene. Before becoming an interesting gene in cancer biology, HLXB9 was studied as a developmental gene. This homeobox gene is also known as MNX1 (motor neuron and pancreas homeobox 1) and it is relevant for both motor neuronal and pancreatic beta cells development. A spectrum of mutations in this gene are causative of sacral agenesis and more broadly, of what is known as the Currarino Syndrome, a constitutional autosomal dominant disorder. Experimental work on animal models has shown that HLXB9 has an essential role in motor neuronal differentiation. Here we present data to show that, upon treatment with retinoic acid, the HLXB9 gene becomes over-expressed during the early stages of neuronal differentiation and that this corresponds to a reposition of the gene in the nucleus. More precisely, we used the SK-N-BE human neuroblastoma cell line as an in vitro model and we demonstrated a transient transcription of HLXB9 at the 4th and 5th days of differentiation that corresponded to the presence, predominantly in the cell nuclei, of the encoded protein HB9. The nuclear positioning of the HLXB9 gene was monitored at different stages: a peripheral location was noted in the proliferating cells whereas a more internal position was noted during differentiation, that is while HLXB9 was transcriptionally active. Our findings suggest that HLXB9 can be considered a marker of early neuronal differentiation, possibly involving chromatin remodeling pathways.
Collapse
Affiliation(s)
- Claudia Giovanna Leotta
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| | - Concetta Federico
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| | - Maria Violetta Brundo
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| | - Sabrina Tosi
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University, London, United Kingdom
| | - Salvatore Saccone
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
- * E-mail:
| |
Collapse
|
18
|
Zhao FY, Yang X, Chen DY, Ma WY, Zheng JG, Zhang XM. A method for simultaneously delineating multiple targets in 3D-FISH using limited channels, lasers, and fluorochromes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 43:53-8. [PMID: 24305663 DOI: 10.1007/s00249-013-0938-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/20/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022]
Abstract
Many studies have suggested a link between the spatial organization of genomes and fundamental biological processes such as genome reprogramming, gene expression, and differentiation. Multicolor fluorescence in situ hybridization on three-dimensionally preserved nuclei (3D-FISH), in combination with confocal microscopy, has become an effective technique for analyzing 3D genome structure and spatial patterns of defined nucleus targets including entire chromosome territories and single gene loci. This technique usually requires the simultaneous visualization of numerous targets labeled with different colored fluorochromes. Thus, the number of channels and lasers must be sufficient for the commonly used labeling scheme of 3D-FISH, "one probe-one target". However, these channels and lasers are usually restricted by a given microscope system. This paper presents a method for simultaneously delineating multiple targets in 3D-FISH using limited channels, lasers, and fluorochromes. In contrast to other labeling schemes, this method is convenient and simple for multicolor 3D-FISH studies, which may result in widespread adoption of the technique. Lastly, as an application of the method, the nucleus locations of chromosome territory 18/21 and centromere 18/21/13 in normal human lymphocytes were analyzed, which might present evidence of a radial higher order chromatin arrangement.
Collapse
Affiliation(s)
- F Y Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
19
|
Panova AV, Nekrasov ED, Lagarkova MA, Kiselev SL, Bogomazova AN. Late replication of the inactive x chromosome is independent of the compactness of chromosome territory in human pluripotent stem cells. Acta Naturae 2013; 5:54-61. [PMID: 23819036 PMCID: PMC3695353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi), as well as constitutive heterochromatin, replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosomal folding has been proposed to define the late replication of Xi. In contrast to mouse pluripotent stem cells (PSCs), the status of X chromosome inactivation in human PSCs may vary significantly. Fluorescence in situ hybridization with a whole X-chromosome- specific DNA probe revealed that late-replicating Xi may occupy either compact or dispersed territory in human PSCs. Thus, the late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs. However, the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.
Collapse
Affiliation(s)
- A V Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str., 3, Moscow, Russia, 119991
| | | | | | | | | |
Collapse
|
20
|
Mehta I, Chakraborty S, Rao BJ. IMACULAT - an open access package for the quantitative analysis of chromosome localization in the nucleus. PLoS One 2013; 8:e61386. [PMID: 23577217 PMCID: PMC3620108 DOI: 10.1371/journal.pone.0061386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/07/2013] [Indexed: 01/16/2023] Open
Abstract
The alteration in the location of the chromosomes within the nucleus upon action of internal or external stimuli has been implicated in altering genome function. The effect of stimuli at a whole genome level is studied by using two-dimensional fluorescence in situ hybridization (FISH) to delineate whole chromosome territories within a cell nucleus, followed by a quantitative analysis of the spatial distribution of the chromosome. However, to the best of our knowledge, open access software capable of quantifying spatial distribution of whole chromosomes within cell nucleus is not available. In the current work, we present a software package that computes localization of whole chromosomes - Image Analysis of Chromosomes for computing localization (IMACULAT). We partition the nucleus into concentric elliptical compartments of equal area and the variance in the quantity of any chromosome in these shells is used to determine its localization in the nucleus. The images are pre-processed to remove the smudges outside the cell boundary. Automation allows high throughput analysis for deriving statistics. Proliferating normal human dermal fibroblasts were subjected to standard a two-dimensional FISH to delineate territories for all human chromosomes. Approximately 100 images from each chromosome were analyzed using IMACULAT. The analysis corroborated that these chromosome territories have non-random gene density based organization within the interphase nuclei of human fibroblasts. The ImageMagick Perl API has been used for pre-processing the images. The source code is made available at www.sanchak.com/imaculat.html.
Collapse
Affiliation(s)
- Ishita Mehta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
21
|
Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosome Res 2012; 20:875-87. [DOI: 10.1007/s10577-012-9323-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 01/06/2023]
|
22
|
Ioannou D, Meershoek EJ, Christopikou D, Ellis M, Thornhill AR, Griffin DK. Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis. Chromosome Res 2011; 19:741-53. [PMID: 21947956 DOI: 10.1007/s10577-011-9238-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
Abstract
Organisation of chromosome territories in interphase nuclei has been studied in many systems and positional alterations have been associated with disease phenotypes (e.g. laminopathies, cancer) in somatic cells. Altered nuclear organisation is also reported in developmental processes such as mammalian spermatogenesis where a "chromocentre" model is proposed with the centromeres and sex chromosomes repositioning to the nuclear centre. The purpose of this study was to test the hypothesis that alterations in nuclear organisation of human spermatozoa are associated with defects upstream in spermatogenesis (as manifest in certain infertility phenotypes). The nuclear address of (peri-) centromeric loci for 18 chromosomes (1-4, 6-12, 15-18, 20, X and Y) was assayed in 20 males using established algorithms for 3D extrapolations of 2D data. The control group comprised 10 fertile sperm donors while the test group was 10 patients with severely compromised semen parameters including high sperm aneuploidy. All loci examined in the control group adopted defined, interior positions thus providing supporting evidence for the presence of a chromocentre and interior sex chromosome territories. In the test group however there were subtle alterations in the nuclear address for certain centromeres in individual patients and, when all patient results were pooled, some different nuclear addresses were observed for chromosomes 3, 6, 12 and 18. Considering the extensive impairment of spermatogenesis in the test group (evidenced by compromised semen parameters and increased chromosome abnormalities), the observed differences in nuclear organisation for centromeric loci compared to the controls were modest. A defined pattern of nuclear reorganisation of centromeric loci in sperm heads therefore appears to be a remarkably robust process, even if spermatogenesis is severely compromised.
Collapse
Affiliation(s)
- Dimitris Ioannou
- School of Biosciences, University of Kent, Canterbury CT27NJ, UK
| | | | | | | | | | | |
Collapse
|
23
|
Transcriptomic and nuclear architecture of immune cells after LPS activation. Chromosoma 2011; 120:501-20. [DOI: 10.1007/s00412-011-0328-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/06/2023]
|
24
|
Ioannou D, Griffin DK. Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res 2010; 133:269-79. [PMID: 21088381 DOI: 10.1159/000322060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have implicated the role of gross genomic rearrangements in male infertility, e.g., constitutional aneuploidy, translocations, inversions, Y chromosome deletions, elevated sperm disomy, and DNA damage. The primary purpose of this paper is to review male fertility studies associated with such abnormalities. In addition, we speculate whether altered nuclear organization, another chromosomal/whole genome-associated phenomenon, is also concomitant with male factor infertility. Nuclear organization has been studied in a range of systems and implicated in several diseases. For many applications the measurement of the relative position of chromosome territories is sufficient to determine patterns of nuclear organization. Initial evidence has suggested that, unlike in the more usual 'size-related' or 'gene density-related' models, mammalian (including human) sperm heads display a highly organized pattern including a chromocenter with the centromeres located to the center of the nucleus and the telomeres near the periphery. More recent evidence, however, suggests there may be size- and gene density-related components to nuclear organization in sperm. It seems reasonable to hypothesize therefore that alterations in this pattern may be associated with male factor infertility. A small handful of studies have addressed this issue; however, to date it remains an exciting avenue for future research with possible implications for diagnosis and therapy.
Collapse
Affiliation(s)
- D Ioannou
- School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
25
|
Snow KJ, Wright SM, Woo Y, Titus LC, Mills KD, Shopland LS. Nuclear positioning, higher-order folding, and gene expression of Mmu15 sequences are refractory to chromosomal translocation. Chromosoma 2010; 120:61-71. [PMID: 20703494 DOI: 10.1007/s00412-010-0290-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/20/2010] [Indexed: 01/21/2023]
Abstract
Nuclear localization influences the expression of certain genes. Chromosomal rearrangements can reposition genes in the nucleus and thus could impact the expression of genes far from chromosomal breakpoints. However, the extent to which chromosomal rearrangements influence nuclear organization and gene expression is poorly understood. We examined mouse progenitor B cell lymphomas with a common translocation, der(12)t(12;15), which fuses a gene-rich region of mouse chromosome 12 (Mmu 12) with a gene-poor region of mouse chromosome 15 (Mmu 15). We found that sequences 2.3 Mb proximal and 2.7 Mb distal to the der(12)t(12;15) breakpoint had different nuclear positions measured relative to the nuclear radius. However, their positions were similar on unrearranged chromosomes in the same tumor cells and normal progenitor B cells. In addition, higher-order chromatin folding marked by three-dimensional gene clustering was not significantly altered for the 7 Mb of Mmu 15 sequence distal to this translocation breakpoint. Translocation also did not correspond to significant changes in gene expression in this region. Thus, any changes to Mmu 15 structure and function imposed by the der(12)t(12;15) translocation are constrained to sequences near (<2.5 Mb) the translocation junction. These data contrast with those of certain other chromosomal rearrangements and suggest that significant changes to Mmu 15 sequence are structurally and functionally tolerated in the tumor cells examined.
Collapse
Affiliation(s)
- Kathy J Snow
- Institute for Molecular Biophysics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The nuclear periphery is a specialized environment in the nucleus that contributes to genome organization and correspondingly to gene regulation. Mammalian chromosomes and certain genes occupy defined positions within the nucleus that are heritable and tissue specific. Genes located at the nuclear periphery tend to be inactive and this negative regulation can be reversed when they are released from the periphery in certain differentiation systems. Recent work using specially designed systems has shown that genes can be artificially tethered to the nuclear periphery by an affinity mechanism. The next important step will be to identify the endogenous NE (nuclear envelope) and chromatin proteins that participate in affinity-driven NE tethering and determine how they are regulated.
Collapse
|
27
|
Harewood L, Schütz F, Boyle S, Perry P, Delorenzi M, Bickmore WA, Reymond A. The effect of translocation-induced nuclear reorganization on gene expression. Genome Res 2010; 20:554-64. [PMID: 20212020 DOI: 10.1101/gr.103622.109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.
Collapse
Affiliation(s)
- Louise Harewood
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 2009; 118:647-63. [DOI: 10.1007/s00412-009-0225-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/24/2022]
|
29
|
Hiratani I, Takebayashi SI, Lu J, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect--part II. Curr Opin Genet Dev 2009; 19:142-9. [PMID: 19345088 DOI: 10.1016/j.gde.2009.02.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 11/15/2022]
Abstract
Replication timing is frequently discussed superficially in terms of its relationship to transcriptional activity via chromatin structure. However, so little is known about what regulates where and when replication initiates that it has been impossible to identify mechanistic and causal relationships. Moreover, much of our knowledge base has been anecdotal, derived from analyses of a few genes in unrelated cell lines. Recent studies have revisited long-standing hypotheses using genome-wide approaches. In particular, the foundation of this field was recently shored up with incontrovertible evidence that cellular differentiation is accompanied by coordinated changes in replication timing and transcription. These changes accompany subnuclear repositioning, and take place at the level of megabase-sized domains that transcend localized changes in chromatin structure or transcription. Inferring from these results, we propose that there exists a key transition during the middle of S-phase and that changes in replication timing traversing this period are associated with subnuclear repositioning and changes in the activity of certain classes of promoters.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
30
|
Ectopic expression of the HLXB9 gene is associated with an altered nuclear position in t(7;12) leukaemias. Leukemia 2009; 23:1179-82. [PMID: 19212340 DOI: 10.1038/leu.2009.15] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Cvačková Z, Mašata M, Staněk D, Fidlerová H, Raška I. Chromatin position in human HepG2 cells: although being non-random, significantly changed in daughter cells. J Struct Biol 2009; 165:107-17. [PMID: 19056497 PMCID: PMC2658736 DOI: 10.1016/j.jsb.2008.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 12/22/2022]
Abstract
Mammalian chromosomes occupy chromosome territories within nuclear space the positions of which are generally accepted as non-random. However, it is still controversial whether position of chromosome territories/chromatin is maintained in daughter cells. We addressed this issue and investigated maintenance of various chromatin regions of unknown composition as well as nucleolus-associated chromatin, a significant part of which is composed of nucleolus organizer region-bearing chromosomes. The photoconvertible histone H4-Dendra2 was used to label such regions in transfected HepG2 cells, and its position was followed up to next interphase. The distribution of labeled chromatin in daughter cells exhibited a non-random character. However, its distribution in a vast majority of daughter cells extensively differed from the original ones and the labeled nucleolus-associated chromatin differently located into the vicinity of different nucleoli. Therefore, our results were not consistent with a concept of preservation chromatin position. This conclusion was supported by the finding that the numbers of nucleoli significantly differed between the two daughter cells. Our results support a view that while the transfected daughter HepG2 cells maintain some features of the parental cell chromosome organization, there is also a significant stochastic component associated with reassortment of chromosome territories/chromatin that results in their positional rearrangements.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Raška
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Albertov 4, 128 00 Prague 2, Czech Republic
| |
Collapse
|
32
|
Yang S, Illner D, Teller K, Solovei I, van Driel R, Joffe B, Cremer T, Eils R, Rohr K. Structural analysis of interphase X-chromatin based on statistical shape theory. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2089-99. [PMID: 18789978 DOI: 10.1016/j.bbamcr.2008.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 08/09/2008] [Accepted: 08/19/2008] [Indexed: 12/26/2022]
Abstract
The 3D folding structure formed by different genomic regions of a chromosome is still poorly understood. So far, only relatively simple geometric features, like distances and angles between different genomic regions, have been evaluated. This work is concerned with more complex geometric properties, i.e., the complete shape formed by genomic regions. Our work is based on statistical shape theory and we use different approaches to analyze the considered structures, e.g., shape uniformity test, 3D point-based registration, Fisher distribution, and 3D non-rigid image registration for shape normalization. We have applied these approaches to analyze 3D microscopy images of the X-chromosome where four consecutive genomic regions (BACs) have been simultaneously labeled by multicolor FISH. We have acquired two sets of four consecutive genomic regions with an overlap of three regions. From the experimental results, it turned out that for all data sets the complete structure is non-random. In addition, we found that the shapes of active and inactive X-chromosomal genomic regions are statistically independent. Moreover, we reconstructed the average 3D structure of chromatin in a small genomic region (below 4 Mb) based on five BACs resulting from two overlapping four BAC regions. We found that geometric normalization with respect to the nucleus shape based on non-rigid image registration has a significant influence on the location of the genomic regions.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg, BIOQUANT, IPMB, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fedorova E, Zink D. Nuclear architecture and gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2174-84. [PMID: 18718493 DOI: 10.1016/j.bbamcr.2008.07.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 12/27/2022]
Abstract
The spatial organization of eukaryotic genomes in the cell nucleus is linked to their transcriptional regulation. In mammals, on which this review will focus, transcription-related chromatin positioning is regulated at the level of chromosomal sub-domains and individual genes. Most of the chromatin remains stably positioned during interphase. However, some loci display dynamic relocalizations upon transcriptional activation, which are dependent on nuclear actin and myosin. Transcription factors in association with chromatin modifying complexes seem to play a central role in regulating chromatin dynamics and positioning. Recent results obtained in this regard also give insight into the question how the different levels of transcriptional regulation are integrated and coordinated with other processes involved in gene expression. Corresponding findings will be discussed.
Collapse
Affiliation(s)
- Elena Fedorova
- Russian Academy of Sciences, I.P. Pavlov Institute of Physiology, Department of Sensory Physiology, Nab. Makarova 6, 199034 St. Petersburg, Russia
| | | |
Collapse
|