1
|
Sinclair KD. Developmental epigenetics: Understanding genetic and sexually dimorphic responses to parental diet and outcomes following assisted reproduction. J Dairy Sci 2024:S0022-0302(24)01392-4. [PMID: 39701526 DOI: 10.3168/jds.2024-25811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
The developmental integrity and wellbeing of offspring are influenced by events that occur in utero, particularly around the time of conception. While extraneous factors such as environmental temperature and exposure to environmental chemicals can each have a bearing on these events, the epigenetic mechanisms that direct cellular differentiation during early development in ruminants are best described for studies which have investigated the effects of parental nutrition or pregnancy outcomes following assisted reproduction. In this article the case is made that the genetic constitution of an individual directs epigenetic responses to environmental stimuli, and consideration in this regard is also given to the origins of sexual dimorphism and mechanisms of germline intergenerational inheritance. These aspects are considered in the context of epigenetic modifications that take place during the normal course of gametogenesis and embryogenesis, and again following either dietary or procedural interventions such as embryo culture. A recurring feature of such interventions, irrespective of species, is that one carbon metabolic pathways are invariably disrupted, and this affects the provision of methyl groups for chromatin and RNA methylation. Inter-specific variation in how these pathways operate, both within the liver and in germ cells, indicates that ruminants may be particularly sensitive in this regard. Recent advances in genomic technologies should enable rapid progress in these areas. Knowledge gained can be integrated into breed improvement programs and used to tailor management practices to specific breeds and strains (including sexes) within breeds. Ultimately, consideration should be given to integrating metagenomics into analyses of genetic-directed epigenetic programming of animal development.
Collapse
Affiliation(s)
- Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, UK, LE12 5RD.
| |
Collapse
|
2
|
Yu P, Chen Y, Ge C, Wang H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit Rev Toxicol 2021; 51:555-570. [PMID: 34666604 DOI: 10.1080/10408444.2021.1977237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD), intrauterine exposure to adverse environments can affect fetus and birth outcomes and lead to long-term disease susceptibility. Evidence has shown that neonatal outcomes and the timing and severity of adult diseases are sexually dimorphic. As the link between mother and fetus, the placenta is an essential regulator of fetal development programming. It is found that the physiological development trajectory of the placenta has sexual dimorphism. Furthermore, under pathological conditions, the placental function undergoes sex-specific adaptation to ensure fetal survival. Therefore, the placenta may be an important mediator of sexual dimorphism in neonatal outcomes and adult disease susceptibility. Few systematic reviews have been conducted on sexual dimorphism in placental development and its underlying mechanisms. In this review, sex chromosomes and sex hormones, as the main reasons for sexual differentiation of the placenta, will be discussed. Besides, in the etiology of fetal-originated adult diseases, overexposure to glucocorticoids is closely related to adverse neonatal outcomes and long-term disease susceptibility. Studies have found that prenatal glucocorticoid overexposure leads to sexually dimorphic expression of placental glucocorticoid receptor isoforms, resulting in different sensitivity of the placenta to glucocorticoids, and may further affect fetal development. The present review examines what is currently known about sex differences in placental development and the underlying regulatory mechanisms of this sex bias. This review highlights the importance of placental contributions to the origins of sexual dimorphism in health and diseases. It may help develop personalized diagnosis and treatment strategies for fetal development in pathological pregnancies.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
3
|
Inkster AM, Fernández-Boyano I, Robinson WP. Sex Differences Are Here to Stay: Relevance to Prenatal Care. J Clin Med 2021; 10:3000. [PMID: 34279482 PMCID: PMC8268816 DOI: 10.3390/jcm10133000] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
Sex differences exist in the incidence and presentation of many pregnancy complications, including but not limited to pregnancy loss, spontaneous preterm birth, and fetal growth restriction. Sex differences arise very early in development due to differential gene expression from the X and Y chromosomes, and later may also be influenced by the action of gonadal steroid hormones. Though offspring sex is not considered in most prenatal diagnostic or therapeutic strategies currently in use, it may be beneficial to consider sex differences and the associated mechanisms underlying pregnancy complications. This review will cover (i) the prevalence and presentation of sex differences that occur in perinatal complications, particularly with a focus on the placenta; (ii) possible mechanisms underlying the development of sex differences in placental function and pregnancy phenotypes; and (iii) knowledge gaps that should be addressed in the development of diagnostic or risk prediction tools for such complications, with an emphasis on those for which it would be important to consider sex.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Icíar Fernández-Boyano
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
4
|
Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutiérrez-Adán A. Early sex-dependent differences in response to environmental stress. Reproduction 2017; 155:R39-R51. [PMID: 29030490 DOI: 10.1530/rep-17-0466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and prevention/intervention protocols.
Collapse
Affiliation(s)
| | | | | | - Pat Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
5
|
Disteche CM. Dosage compensation of the sex chromosomes and autosomes. Semin Cell Dev Biol 2016; 56:9-18. [PMID: 27112542 DOI: 10.1016/j.semcdb.2016.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
Abstract
Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA; Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA.
| |
Collapse
|
6
|
Balthazart J. Sex differences in partner preferences in humans and animals. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150118. [PMID: 26833838 PMCID: PMC4785903 DOI: 10.1098/rstb.2015.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 11/12/2022] Open
Abstract
A large number of morphological, physiological and behavioural traits are differentially expressed by males and females in all vertebrates including humans. These sex differences, sometimes, reflect the different hormonal environment of the adults, but they often remain present after subjects of both sexes are placed in the same endocrine conditions following gonadectomy associated or not with hormonal replacement therapy. They are then the result of combined influences of organizational actions of sex steroids acting early during development, or genetic differences between the sexes, or epigenetic mechanisms differentially affecting males and females. Sexual partner preference is a sexually differentiated behavioural trait that is clearly controlled in animals by the same type of mechanisms. This is also probably true in humans, even if critical experiments that would be needed to obtain scientific proof of this assertion are often impossible for pragmatic or ethical reasons. Clinical, epidemiological and correlative studies provide, however, converging evidence strongly suggesting, if not demonstrating, that endocrine, genetic and epigenetic mechanisms acting during the pre- or perinatal life control human sexual orientation, i.e. homosexuality versus heterosexuality. Whether they interact with postnatal psychosexual influences remains, however, unclear at present.
Collapse
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 avenue Hippocrate, 4000 Liège, Belgium
| |
Collapse
|
7
|
Stocks M, Dean R, Rogell B, Friberg U. Sex-specific trans-regulatory variation on the Drosophila melanogaster X chromosome. PLoS Genet 2015; 11:e1005015. [PMID: 25679222 PMCID: PMC4334168 DOI: 10.1371/journal.pgen.1005015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change.
Collapse
Affiliation(s)
- Michael Stocks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Rebecca Dean
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- * E-mail: (RD); (UF)
| | - Björn Rogell
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Urban Friberg
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
- IFM Biology, AVIAN Behaviour and Genomics group, Linköping University, Linköping, Sweden
- * E-mail: (RD); (UF)
| |
Collapse
|