1
|
Sala A, Labrador M, Buitrago D, De Jorge P, Battistini F, Heath I, Orozco M. An integrated machine-learning model to predict nucleosome architecture. Nucleic Acids Res 2024; 52:10132-10143. [PMID: 39162225 PMCID: PMC11417389 DOI: 10.1093/nar/gkae689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods.
Collapse
Affiliation(s)
- Alba Sala
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Labrador
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diana Buitrago
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pau De Jorge
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Isabelle Brun Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Routhier E, Joubert A, Westbrook A, Pierre E, Lancrey A, Cariou M, Boulé JB, Mozziconacci J. In silico design of DNA sequences for in vivo nucleosome positioning. Nucleic Acids Res 2024; 52:6802-6810. [PMID: 38828788 PMCID: PMC11229325 DOI: 10.1093/nar/gkae468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
The computational design of synthetic DNA sequences with designer in vivo properties is gaining traction in the field of synthetic genomics. We propose here a computational method which combines a kinetic Monte Carlo framework with a deep mutational screening based on deep learning predictions. We apply our method to build regular nucleosome arrays with tailored nucleosomal repeat lengths (NRL) in yeast. Our design was validated in vivo by successfully engineering and integrating thousands of kilobases long tandem arrays of computationally optimized sequences which could accommodate NRLs much larger than the yeast natural NRL (namely 197 and 237 bp, compared to the natural NRL of ∼165 bp). RNA-seq results show that transcription of the arrays can occur but is not driven by the NRL. The computational method proposed here delineates the key sequence rules for nucleosome positioning in yeast and should be easily applicable to other sequence properties and other genomes.
Collapse
Affiliation(s)
- Etienne Routhier
- Laboratoire de Physique Théorique, CNRS, Sorbonne Université, Paris, France de la Matière Condensée, CNRS, Sorbonne Université, Paris, France
| | - Alexandra Joubert
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Alex Westbrook
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Edgard Pierre
- Laboratoire de Physique Théorique, CNRS, Sorbonne Université, Paris, France de la Matière Condensée, CNRS, Sorbonne Université, Paris, France
| | - Astrid Lancrey
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Marie Cariou
- Acquisition et Analyse de données pour l’histoire naturelle, Museum National d’Histoire Naturelle, CNRS, Paris, France
| | - Jean-Baptiste Boulé
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Julien Mozziconacci
- Laboratoire de Physique Théorique, CNRS, Sorbonne Université, Paris, France de la Matière Condensée, CNRS, Sorbonne Université, Paris, France
- Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, CNRS, INSERM, Paris, France
- Acquisition et Analyse de données pour l’histoire naturelle, Museum National d’Histoire Naturelle, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Oberbeckmann E, Oudelaar AM. Genome organization across scales: mechanistic insights from in vitro reconstitution studies. Biochem Soc Trans 2024; 52:793-802. [PMID: 38451192 PMCID: PMC11088924 DOI: 10.1042/bst20230883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Eukaryotic genomes are compacted and organized into distinct three-dimensional (3D) structures, which range from small-scale nucleosome arrays to large-scale chromatin domains. These chromatin structures play an important role in the regulation of transcription and other nuclear processes. The molecular mechanisms that drive the formation of chromatin structures across scales and the relationship between chromatin structure and function remain incompletely understood. Because the processes involved are complex and interconnected, it is often challenging to dissect the underlying principles in the nuclear environment. Therefore, in vitro reconstitution systems provide a valuable approach to gain insight into the molecular mechanisms by which chromatin structures are formed and to determine the cause-consequence relationships between the processes involved. In this review, we give an overview of in vitro approaches that have been used to study chromatin structures across scales and how they have increased our understanding of the formation and function of these structures. We start by discussing in vitro studies that have given insight into the mechanisms of nucleosome positioning. Next, we discuss recent efforts to reconstitute larger-scale chromatin domains and loops and the resulting insights into the principles of genome organization. We conclude with an outlook on potential future applications of chromatin reconstitution systems and how they may contribute to answering open questions concerning chromatin architecture.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A. Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Dynamic nucleosome landscape elicits a noncanonical GATA2 pioneer model. Nat Commun 2022; 13:3145. [PMID: 35672415 PMCID: PMC9174260 DOI: 10.1038/s41467-022-30960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge gaps remain on how nucleosome organization and dynamic reorganization are governed by specific pioneer factors in a genome-wide manner. In this study, we generate over three billons of multi-omics sequencing data to exploit dynamic nucleosome landscape governed by pioneer factors (PFs), FOXA1 and GATA2. We quantitatively define nine functional nucleosome states each with specific characteristic nucleosome footprints in LNCaP prostate cancer cells. Interestingly, we observe dynamic switches among nucleosome states upon androgen stimulation, accompanied by distinct differential (gained or lost) binding of FOXA1, GATA2, H1 as well as many other coregulators. Intriguingly, we reveal a noncanonical pioneer model of GATA2 that it initially functions as a PF binding at the edge of a nucleosome in an inaccessible crowding array. Upon androgen stimulation, GATA2 re-configures an inaccessible to accessible nucleosome state and subsequently acts as a master transcription factor either directly or recruits signaling specific transcription factors to enhance WNT signaling in an androgen receptor (AR)-independent manner. Our data elicit a pioneer and master dual role of GATA2 in mediating nucleosome dynamics and enhancing downstream signaling pathways. Our work offers structural and mechanistic insight into the dynamics of pioneer factors governing nucleosome reorganization.
Collapse
|
5
|
Krietenstein N, Rando OJ. Mammalian Micro-C-XL. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2458:321-332. [PMID: 35103975 DOI: 10.1007/978-1-0716-2140-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chromosome Conformation Capture (3C) methods are a family of sequencing-based assays to measure the three-dimensional structure of genomes, with Hi-C as the most prominent method in widespread use. The Micro-C-XL protocol is technical variant that improves the resolution and signal-to-noise ratio of the Hi-C protocol and therefore offers enhanced detection of chromatin features such as chromosome loops and fine-grained resolution of topologically associated domains. Here we describe a detailed step-by-step protocol for Micro-C-XL in mammalian cells.
Collapse
Affiliation(s)
- Nils Krietenstein
- The Novo Nordisk Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Trotta E. GC content strongly influences the role of poly(dA) in the intrinsic nucleosome positioning in Saccharomyces cerevisiae. Yeast 2022; 39:262-271. [PMID: 35348238 PMCID: PMC9541940 DOI: 10.1002/yea.3701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
The nucleosome is the basic structural element of genomic DNA packaging and plays a role in transcription, replication, and recombination. Poly(dA) tracts are considered major sequence determinants of nucleosome positioning, although their role is not well understood. Here, we show that the homopolymeric character and the low GC content of poly(dA)s play different roles in nucleosome formation. We found that the inherent low GC content of poly(dA) alone can account for the deep and anisotropic nucleosome depletion at structurally and functionally important regions of promoters and origins of replication. We also show that the level of nucleosome occupancy at poly(dA) is strongly related to the local nucleotide background and its high frequency of occurrence in Saccharomyces cerevisiae does not appear merely to be associated with its intrinsic nucleosome-excluding properties. In addition, we show that the GC content alone can predict more than 60% of the in vitro nucleosome map, providing further evidence that the intrinsic nucleosome positioning is more greatly determined by GC content than poly(dA) stretches. Our results are consistent with a model in which poly(dA) stretches act at two distinct levels: first, by its low GC content, which intrinsically contributes to hinder nucleosome formation, and second, by its contiguous runs of dA that selectively drive the recruitment of non-histone proteins with structural and functional roles.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| |
Collapse
|
7
|
Liu X, Liu M, Zhang J, Chang Y, Cui Z, Ji B, Nielsen J, Qi Q, Hou J. Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in Yarrowia lipolytica. ACS Synth Biol 2022; 11:216-227. [PMID: 34958561 DOI: 10.1021/acssynbio.1c00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome-scale mutagenesis, phenotypic screening, and tracking the causal mutations is a powerful approach for genetic analysis. However, classic mutagenesis approaches require extensive effort to identify causal mutations. It is desirable to demonstrate a powerful approach for rapid trackable mutagenesis. Here, we mapped the distribution of nonhomologous end joining (NHEJ)-mediated integration for the first time and demonstrated that it can be used for constructing the genome-scale trackable mutagenesis library in Yarrowia lipolytica. The sequencing of 9.15 × 105 insertions showed that NHEJ-mediated integration inserted DNA randomly across the chromosomes, and the transcriptional regulatory regions exhibited integration preference. The insertions were located in both nucleosome-occupancy regions and nucleosome-free regions. Using NHEJ-mediated integration to construct the genome-scale mutagenesis library, the new targets that improved β-carotene biosynthesis and acetic acid tolerance were identified rapidly. This mutagenesis approach is readily applicable to other organisms with strong NHEJ preference and will contribute to cell factory construction.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Yizhao Chang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| |
Collapse
|
8
|
Barnes T, Korber P. The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. Int J Mol Sci 2021; 22:ijms22158233. [PMID: 34360997 PMCID: PMC8347975 DOI: 10.3390/ijms22158233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(dA:dT) tracts cause nucleosome depletion in many species, e.g., at promoters and replication origins. Their intrinsic biophysical sequence properties make them stiff and unfavorable for nucleosome assembly, as probed by in vitro nucleosome reconstitution. The mere correlation between nucleosome depletion over poly(dA:dT) tracts in in vitro reconstituted and in in vivo chromatin inspired an intrinsic nucleosome exclusion mechanism in vivo that is based only on DNA and histone properties. However, we compile here published and new evidence that this correlation does not reflect mechanistic causation. (1) Nucleosome depletion over poly(dA:dT) in vivo is not universal, e.g., very weak in S. pombe. (2) The energy penalty for incorporating poly(dA:dT) tracts into nucleosomes is modest (<10%) relative to ATP hydrolysis energy abundantly invested by chromatin remodelers. (3) Nucleosome depletion over poly(dA:dT) is much stronger in vivo than in vitro if monitored without MNase and (4) actively maintained in vivo. (5) S. cerevisiae promoters evolved a strand-biased poly(dA) versus poly(dT) distribution. (6) Nucleosome depletion over poly(dA) is directional in vivo. (7) The ATP dependent chromatin remodeler RSC preferentially and directionally displaces nucleosomes towards 5′ of poly(dA). Especially distribution strand bias and displacement directionality would not be expected for an intrinsic mechanism. Together, this argues for an in vivo mechanism where active and species-specific read out of intrinsic sequence properties, e.g., by remodelers, shapes nucleosome organization.
Collapse
|
9
|
Kato H, Shimizu M, Urano T. Chemical map-based prediction of nucleosome positioning using the Bioconductor package nuCpos. BMC Bioinformatics 2021; 22:322. [PMID: 34120589 PMCID: PMC8201924 DOI: 10.1186/s12859-021-04240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Assessing the nucleosome-forming potential of specific DNA sequences is important for understanding complex chromatin organization. Methods for predicting nucleosome positioning include bioinformatics and biophysical approaches. An advantage of bioinformatics methods, which are based on in vivo nucleosome maps, is the use of natural sequences that may contain previously unknown elements involved in nucleosome positioning in vivo. The accuracy of such prediction attempts reflects the genomic coordinate resolution of the nucleosome maps applied. Nucleosome maps are constructed using micrococcal nuclease digestion followed by high-throughput sequencing (MNase-seq). However, as MNase has a strong preference for A/T-rich sequences, MNase-seq may not be appropriate for this purpose. In addition to MNase-seq-based maps, base pair-resolution chemical maps of in vivo nucleosomes from three different species (budding and fission yeasts, and mice) are currently available. However, these chemical maps have yet to be integrated into publicly available computational methods. Results We developed a Bioconductor package (named nuCpos) to demonstrate the superiority of chemical maps in predicting nucleosome positioning. The accuracy of chemical map-based prediction in rotational settings was higher than that of the previously developed MNase-seq-based approach. With our method, predicted nucleosome occupancy reasonably matched in vivo observations and was not affected by A/T nucleotide frequency. Effects of genetic alterations on nucleosome positioning that had been observed in living yeast cells could also be predicted. nuCpos calculates individual histone binding affinity (HBA) scores for given 147-bp sequences to examine their suitability for nucleosome formation. We also established local HBA as a new parameter to predict nucleosome formation, which was calculated for 13 overlapping nucleosomal DNA subsequences. HBA and local HBA scores for various sequences agreed well with previous in vitro and in vivo studies. Furthermore, our results suggest that nucleosomal subsegments that are disfavored in different rotational settings contribute to the defined positioning of nucleosomes. Conclusions Our results demonstrate that chemical map-based statistical models are beneficial for studying nucleosomal DNA features. Studies employing nuCpos software can enhance understanding of chromatin regulation and the interpretation of genetic alterations and facilitate the design of artificial sequences. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04240-2.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo, 191-8506, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
10
|
Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nat Commun 2021; 12:3231. [PMID: 34050142 PMCID: PMC8163841 DOI: 10.1038/s41467-021-23016-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/07/2021] [Indexed: 11/26/2022] Open
Abstract
The fundamental molecular determinants by which ATP-dependent chromatin remodelers organize nucleosomes across eukaryotic genomes remain largely elusive. Here, chromatin reconstitutions on physiological, whole-genome templates reveal how remodelers read and translate genomic information into nucleosome positions. Using the yeast genome and the multi-subunit INO80 remodeler as a paradigm, we identify DNA shape/mechanics encoded signature motifs as sufficient for nucleosome positioning and distinct from known DNA sequence preferences of histones. INO80 processes such information through an allosteric interplay between its core- and Arp8-modules that probes mechanical properties of nucleosomal and linker DNA. At promoters, INO80 integrates this readout of DNA shape/mechanics with a readout of co-evolved sequence motifs via interaction with general regulatory factors bound to these motifs. Our findings establish a molecular mechanism for robust and yet adjustable +1 nucleosome positioning and, more generally, remodelers as information processing hubs that enable active organization and allosteric regulation of the first level of chromatin. DNA sequence preferences or statistical positioning of histones has not explained genomic patterns of nucleosome organisation in vivo. Here, the authors establish DNA shape/mechanics as key elements that have evolved together with binding sites of DNA sequence-specific barriers so that such information directs nucleosome positioning by chromatin remodelers.
Collapse
|
11
|
Peculiarities of Plasmodium falciparum Gene Regulation and Chromatin Structure. Int J Mol Sci 2021; 22:ijms22105168. [PMID: 34068393 PMCID: PMC8153576 DOI: 10.3390/ijms22105168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The highly complex life cycle of the human malaria parasite, Plasmodium falciparum, is based on an orchestrated and tightly regulated gene expression program. In general, eukaryotic transcription regulation is determined by a combination of sequence-specific transcription factors binding to regulatory DNA elements and the packaging of DNA into chromatin as an additional layer. The accessibility of regulatory DNA elements is controlled by the nucleosome occupancy and changes of their positions by an active process called nucleosome remodeling. These epigenetic mechanisms are poorly explored in P. falciparum. The parasite genome is characterized by an extraordinarily high AT-content and the distinct architecture of functional elements, and chromatin-related proteins also exhibit high sequence divergence compared to other eukaryotes. Together with the distinct biochemical properties of nucleosomes, these features suggest substantial differences in chromatin-dependent regulation. Here, we highlight the peculiarities of epigenetic mechanisms in P. falciparum, addressing chromatin structure and dynamics with respect to their impact on transcriptional control. We focus on the specialized chromatin remodeling enzymes and discuss their essential function in P. falciparum gene regulation.
Collapse
|
12
|
Wolff MR, Schmid A, Korber P, Gerland U. Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. eLife 2021; 10:58394. [PMID: 33666171 PMCID: PMC8004102 DOI: 10.7554/elife.58394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chromatin dynamics are mediated by remodeling enzymes and play crucial roles in gene regulation, as established in a paradigmatic model, the Saccharomyces cerevisiae PHO5 promoter. However, effective nucleosome dynamics, that is, trajectories of promoter nucleosome configurations, remain elusive. Here, we infer such dynamics from the integration of published single-molecule data capturing multi-nucleosome configurations for repressed to fully active PHO5 promoter states with other existing histone turnover and new chromatin accessibility data. We devised and systematically investigated a new class of 'regulated on-off-slide' models simulating global and local nucleosome (dis)assembly and sliding. Only seven of 68,145 models agreed well with all data. All seven models involve sliding and the known central role of the N-2 nucleosome, but regulate promoter state transitions by modulating just one assembly rather than disassembly process. This is consistent with but challenges common interpretations of previous observations at the PHO5 promoter and suggests chromatin opening by binding competition.
Collapse
Affiliation(s)
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ulrich Gerland
- Department of Physics, Technical University of Munich, Garching, Germany
| |
Collapse
|
13
|
Kenzaki H, Takada S. Linker DNA Length is a Key to Tri-nucleosome Folding. J Mol Biol 2020; 433:166792. [PMID: 33383034 DOI: 10.1016/j.jmb.2020.166792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
The folding of a nucleosome array has long been one of the fundamental and unsolved problems in chromatin biology. In this study, we address how nucleosome array folding depends on the length of linker DNA. We performed molecular dynamics simulations of a tri-nucleosome, a minimal model of chromatin folding, with various linker lengths (LLs) ranging from 20 to 40 base pairs (bps). We found that the tri-nucleosome folding strongly depends on LLs, and classified the structure ensemble into five classes, named from trinuc-1 to trinuc-5. As a function of LL, the different classes appear, on average, every 2 bps with a period of 10 bps, and are characterized by distinct inter-nucleosome interactions. The trinuc-1 conformation corresponds to LL ~ 10n, where n is an integer, and is stabilized by the tight packing between the first and the third nucleosomes, consistent with a zigzag fiber form. Structures of the other four classes are more diverse and distributed continuously in the space of possible configurations. Histone-DNA electrostatic interactions in the tri-nucleosome are further analyzed.
Collapse
Affiliation(s)
- Hiroo Kenzaki
- Information Systems Division, Head Office for Information Systems and Cybersecurity, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
14
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
15
|
Ben Imeddourene A, Zargarian L, Buckle M, Hartmann B, Mauffret O. Slow motions in A·T rich DNA sequence. Sci Rep 2020; 10:19005. [PMID: 33149183 PMCID: PMC7642443 DOI: 10.1038/s41598-020-75645-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023] Open
Abstract
In free B-DNA, slow (microsecond-to-millisecond) motions that involve equilibrium between Watson-Crick (WC) and Hoogsteen (HG) base-pairing expand the DNA dynamic repertoire that could mediate DNA-protein assemblies. R1ρ relaxation dispersion NMR methods are powerful tools to capture such slow conformational exchanges in solution using 13C/15 N labelled DNA. Here, these approaches were applied to a dodecamer containing a TTAAA element that was assumed to facilitate nucleosome formation. NMR data and inferred exchange parameters assign HG base pairs as the minor, transient conformers specifically observed in three successive A·T base pairs forming the TAA·TTA segment. The abundance of these HG A·T base pairs can be up to 1.2% which is high compared to what has previously been observed. Data analyses support a scenario in which the three adenines undergo non-simultaneous motions despite their spatial proximity, thus optimising the probability of having one HG base pair in the TAA·TTA segment. Finally, revisiting previous NMR data on H2 resonance linewidths on the basis of our results promotes the idea of there being a special propensity of A·T base pairs in TAA·TTA tracts to adopt HG pairing. In summary, this study provides an example of a DNA functional element submitted to slow conformational exchange. More generally, it strengthens the importance of the role of the DNA sequence in modulating its dynamics, over a nano- to milli-second time scale.
Collapse
Affiliation(s)
- A Ben Imeddourene
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - L Zargarian
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - M Buckle
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - B Hartmann
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - O Mauffret
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Institut D'Alembert, Université Paris-Saclay, 4, avenue des Sciences, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Reca S, Galello F, Ojeda L, Pautasso C, Cañonero L, Moreno S, Portela P, Rossi S. Chromatin remodeling and transcription of the TPK1 subunit of PKA during stress in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194599. [DOI: 10.1016/j.bbagrm.2020.194599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
|
17
|
Retureau R, Foloppe N, Elbahnsi A, Oguey C, Hartmann B. A dynamic view of DNA structure within the nucleosome: Biological implications. J Struct Biol 2020; 211:107511. [PMID: 32311461 DOI: 10.1016/j.jsb.2020.107511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
Abstract
Most of eukaryotic cellular DNA is packed in nucleosome core particles (NCPs), in which the DNA (DNANCP) is wrapped around histones. The influence of this organization on the intrinsic local dynamics of DNA is largely unknown, in particular because capturing such information from experiments remains notoriously challenging. Given the importance of dynamical properties in DNA functions, we addressed this issue using CHARMM36 MD simulations of a nucleosome containing the NCP positioning 601 sequence and four related free dodecamers. Comparison between DNANCP and free DNA reveals a limited impact of the dense DNA-histone interface on correlated motions of dinucleotide constituents and on fluctuations of inter base pair parameters. A characteristic feature intimately associated with the DNANCP super-helical path is a set of structural periodicities that includes a marked alternation of regions enriched in backbone BI and BII conformers. This observation led to uncover a convincing correspondence between the sequence effect on BI/BII propensities in both DNANCP and free DNA, strengthening the idea that the histone preference for particular DNA sequences relies on those intrinsic structural properties. These results offer for the first time a detailed view of the DNA dynamical behavior within NCP. They show in particular that the DNANCP dynamics is substantial enough to preserve the ability to structurally adjust to external proteins, for instance remodelers. Also, fresh structural arguments highlight the relevance of relationships between DNA sequence and structural properties for NCP formation. Overall, our work offers a more rational framework to approach the functional, biological roles of NCP.
Collapse
Affiliation(s)
- Romain Retureau
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Laboratoire de biologie et pharmacologie appliquée, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | | | - Ahmad Elbahnsi
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Laboratoire de biologie et pharmacologie appliquée, 61 avenue du Président Wilson, 94235 Cachan cedex, France; LPTM, UMR8089, CNRS, CY Cergy Paris Université, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| | - Christophe Oguey
- LPTM, UMR8089, CNRS, CY Cergy Paris Université, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| | - Brigitte Hartmann
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Laboratoire de biologie et pharmacologie appliquée, 61 avenue du Président Wilson, 94235 Cachan cedex, France.
| |
Collapse
|
18
|
Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol 2020; 27:109-118. [PMID: 32042149 DOI: 10.1038/s41594-019-0368-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.
Collapse
|
19
|
Epigenome Regulation by Dynamic Nucleosome Unwrapping. Trends Biochem Sci 2020; 45:13-26. [PMID: 31630896 PMCID: PMC10168609 DOI: 10.1016/j.tibs.2019.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Gene regulation in eukaryotes requires the controlled access of sequence-specific transcription factors (TFs) to their sites in a chromatin landscape dominated by nucleosomes. Nucleosomes are refractory to TF binding, and often must be removed from regulatory regions. Recent genomic studies together with in vitro measurements suggest that the nucleosome barrier to TF binding is modulated by dynamic nucleosome unwrapping governed by ATP-dependent chromatin remodelers. Genome-wide occupancy and the regulation of subnucleosomal intermediates have gained recent attention with the application of high-resolution approaches for precision mapping of protein-DNA interactions. We summarize here recent findings on nucleosome substructures and TF binding dynamics, and highlight how unwrapped nucleosomal intermediates provide a novel signature of active chromatin.
Collapse
|
20
|
Oberbeckmann E, Wolff M, Krietenstein N, Heron M, Ellins JL, Schmid A, Krebs S, Blum H, Gerland U, Korber P. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res 2019; 29:1996-2009. [PMID: 31694866 PMCID: PMC6886505 DOI: 10.1101/gr.253419.119] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022]
Abstract
Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation because nucleosomes modulate DNA access by their positioning along the genome. A cell-population nucleosome map requires two observables: nucleosome positions along the DNA ("Where?") and nucleosome occupancies across the population ("In how many cells?"). All available genome-wide nucleosome mapping techniques are yield methods because they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or nonnucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions, but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby cross-validating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9-bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (±SD). Depending on nucleosome position calling procedures, there are 57,000 to 60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but correlate with increased presence of the nucleosome-evicting chromatin structure remodeling (RSC) complex, and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Michael Wolff
- Physik Department, Technische Universität München, 85748 Garching, Germany
| | - Nils Krietenstein
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Mark Heron
- Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jessica L Ellins
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefan Krebs
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Gerland
- Physik Department, Technische Universität München, 85748 Garching, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
21
|
ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning. Genes (Basel) 2019; 10:genes10100765. [PMID: 31569414 PMCID: PMC6827144 DOI: 10.3390/genes10100765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/04/2023] Open
Abstract
Nucleosomes are the basic units of eukaryotes. The accurate positioning of nucleosomes plays a significant role in understanding many biological processes such as transcriptional regulation mechanisms and DNA replication and repair. Here, we describe the development of a novel method, termed ZCMM, based on Z-curve theory and position weight matrix (PWM). The ZCMM was trained and tested using the nucleosomal and linker sequences determined by support vector machine (SVM) in Saccharomyces cerevisiae (S. cerevisiae), and experimental results showed that the sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews correlation coefficient (MCC) values for ZCMM were 91.40%, 96.56%, 96.75%, and 0.88, respectively, and the average area under the receiver operating characteristic curve (AUC) value was 0.972. A ZCMM predictor was developed to predict nucleosome positioning in Homo sapiens (H. sapiens), Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (D. melanogaster) genomes, and the accuracy (Acc) values were 77.72%, 85.34%, and 93.62%, respectively. The maximum AUC values of the four species were 0.982, 0.861, 0.912 and 0.911, respectively. Another independent dataset for S. cerevisiae was used to predict nucleosome positioning. Compared with the results of Wu's method, it was found that the Sn, Sp, Acc, and MCC of ZCMM results for S. cerevisiae were all higher, reaching 96.72%, 96.54%, 94.10%, and 0.88. Compared with the Guo's method 'iNuc-PseKNC', the results of ZCMM for D. melanogaster were better. Meanwhile, the ZCMM was compared with some experimental data in vitro and in vivo for S. cerevisiae, and the results showed that the nucleosomes predicted by ZCMM were highly consistent with those confirmed by these experiments. Therefore, it was further confirmed that the ZCMM method has good accuracy and reliability in predicting nucleosome positioning.
Collapse
|
22
|
Buttinelli M, Panetta G, Bucci A, Frascaria D, Morea V, Miele AE. Protein Engineering of Multi-Modular Transcription Factor Alcohol Dehydrogenase Repressor 1 (Adr1p), a Tool for Dissecting In Vitro Transcription Activation. Biomolecules 2019; 9:biom9090497. [PMID: 31533362 PMCID: PMC6769490 DOI: 10.3390/biom9090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Studying transcription machinery assembly in vitro is challenging because of long intrinsically disordered regions present within the multi-modular transcription factors. One example is alcohol dehydrogenase repressor 1 (Adr1p) from fermenting yeast, responsible for the metabolic switch from glucose to ethanol. The role of each individual transcription activation domain (TAD) has been previously studied, but their interplay and their roles in enhancing the stability of the protein is not known. In this work, we designed five unique miniAdr1 constructs containing either TADs I-II-III or TAD I and III, connected by linkers of different sizes and compositions. We demonstrated that miniAdr1-BL, containing only PAR-TAD I+III with a basic linker (BL), binds the cognate DNA sequence, located in the promoter of the ADH2 (alcohol dehydrogenase 2) gene, and is necessary to stabilize the heterologous expression. In fact, we found that the sequence of the linker between TAD I and III affected the solubility of free miniAdr1 proteins, as well as the stability of their complexes with DNA. miniAdr1-BL is the stable unit able to recognize ADH2 in vitro, and hence it is a promising tool for future studies on nucleosomal DNA binding and transcription machinery assembly in vitro.
Collapse
Affiliation(s)
- Memmo Buttinelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Gianna Panetta
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ambra Bucci
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Daniele Frascaria
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Veronica Morea
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Erica Miele
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS–UCBL-Université de Lyon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
- Correspondence: ; Tel.: +39-06-4991-0556
| |
Collapse
|
23
|
Challal D, Barucco M, Kubik S, Feuerbach F, Candelli T, Geoffroy H, Benaksas C, Shore D, Libri D. General Regulatory Factors Control the Fidelity of Transcription by Restricting Non-coding and Ectopic Initiation. Mol Cell 2019; 72:955-969.e7. [PMID: 30576657 DOI: 10.1016/j.molcel.2018.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters. This generates many novel non-coding RNAs and transcript isoforms with diverse stability, drastically altering the coding potential of the transcriptome. Ectopic transcription initiation strongly correlates with altered nucleosome positioning. We provide evidence that Rap1 can suppress ectopic initiation by a "place-holder" mechanism whereby it physically occludes inappropriate sites for pre-initiation complex formation. These results reveal an essential role for GRFs in the fidelity of transcription initiation and in the suppression of pervasive transcription, profoundly redefining current models for their function. They have important implications for the mechanism of transcription initiation and the control of gene expression.
Collapse
Affiliation(s)
- Drice Challal
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France; Université Paris Saclay, Ecole doctorale Structure et Dynamique des Systèmes Vivants, 91190 Gif sur Yvette, France
| | - Mara Barucco
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGe3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank Feuerbach
- Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525 Paris, France
| | - Tito Candelli
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Hélène Geoffroy
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Chaima Benaksas
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGe3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Domenico Libri
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|
24
|
Nucleosome positioning and spacing: from genome-wide maps to single arrays. Essays Biochem 2019; 63:5-14. [PMID: 31015380 DOI: 10.1042/ebc20180058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/07/2023]
Abstract
The positioning of nucleosomes relative to DNA and their neighboring nucleosomes represents a fundamental layer of chromatin organization. Changes in nucleosome positioning and spacing affect the accessibility of DNA to regulatory factors and the formation of higher order chromatin structures. Sequencing of mononucleosomal fragments allowed mapping nucleosome positions on a genome-wide level in many organisms. This revealed that successions of evenly spaced and well-positioned nucleosomes-so called phased nucleosome arrays-occur at the 5' end of many active genes and in the vicinity of transcription factor and other protein binding sites. Phased arrays arise from the interplay of barrier elements on the DNA, which position adjacent nucleosomes, and the nucleosome spacing activity of ATP-dependent chromatin remodelers. A shortcoming of classic mononucleosomal mapping experiments is that they only reveal nucleosome spacing and array regularity at select sites in the genome with well-positioned nucleosomes. However, new technological approaches elucidate nucleosome array structure throughout the genome and with single-cell resolution. In the future, it will be interesting to see whether changes in nucleosome array regularity and spacing contribute to the formation of higher order chromatin structures and the spatial organization of the genome in vivo.
Collapse
|
25
|
Kubik S, O'Duibhir E, de Jonge WJ, Mattarocci S, Albert B, Falcone JL, Bruzzone MJ, Holstege FCP, Shore D. Sequence-Directed Action of RSC Remodeler and General Regulatory Factors Modulates +1 Nucleosome Position to Facilitate Transcription. Mol Cell 2019; 71:89-102.e5. [PMID: 29979971 DOI: 10.1016/j.molcel.2018.05.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Accessible chromatin is important for RNA polymerase II recruitment and transcription initiation at eukaryotic promoters. We investigated the mechanistic links between promoter DNA sequence, nucleosome positioning, and transcription. Our results indicate that positioning of the transcription start site-associated +1 nucleosome in yeast is critical for efficient TBP binding and is driven by two key factors, the essential chromatin remodeler RSC and a small set of ubiquitous general regulatory factors (GRFs). Our findings indicate that the strength and directionality of RSC action on promoter nucleosomes depends on the arrangement and proximity of two specific DNA motifs. This, together with the effect on nucleosome position observed in double depletion experiments, suggests that, despite their widespread co-localization, RSC and GRFs predominantly act through independent signals to generate accessible chromatin. Our results provide mechanistic insight into how the promoter DNA sequence instructs trans-acting factors to control nucleosome architecture and stimulate transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jean-Luc Falcone
- Center for Advanced Modeling Sciences, Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
26
|
Brahma S, Henikoff S. RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast. Mol Cell 2018; 73:238-249.e3. [PMID: 30554944 PMCID: PMC6475595 DOI: 10.1016/j.molcel.2018.10.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently disputed by contradictory reports as to whether wider (≳150 bp) NDRs instead contain unstable, micrococcal nuclease-sensitive ("fragile") nucleosomal particles. To determine the composition of fragile particles, we introduce CUT&RUN.ChIP, in which targeted nuclease cleavage and release is followed by chromatin immunoprecipitation. We find that fragile particles represent the occupancy of the RSC (remodeling the structure of chromatin) nucleosome remodeling complex and RSC-bound, partially unwrapped nucleosomal intermediates. We also find that general regulatory factors (GRFs) bind to partially unwrapped nucleosomes at these promoters. We propose that RSC binding and its action cause nucleosomes to unravel, facilitate subsequent binding of GRFs, and constitute a dynamic cycle of nucleosome deposition and clearance at the subset of wide Pol II promoter NDRs.
Collapse
Affiliation(s)
- Sandipan Brahma
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
27
|
Genome-wide Rules of Nucleosome Phasing in Drosophila. Mol Cell 2018; 72:661-672.e4. [DOI: 10.1016/j.molcel.2018.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
|
28
|
Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq). Methods Mol Biol 2018; 1689:83-101. [PMID: 29027167 DOI: 10.1007/978-1-4939-7380-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
MNase-seq allows the genome-wide examination of the nucleosome landscape by determination of nucleosome positioning and occupancy. Typically, native or formaldehyde fixed chromatin is subjected to digestion by micrococcal nuclease (MNase), which degrades linker DNA and yields mainly mono-nucleosomes. The resulting material can be processed directly or can be subjected to an optional chromatin immunoprecipitation step (MNase-ChIP-seq). De-crosslinked and purified DNA is then subjected to next-generation sequencing. The protocol presented here has been tailored for the analysis of nucleosome landscape in the malaria parasite, Plasmodium falciparum, but most steps are directly applicable to other cell types. We also discuss general considerations for experimental design and computational analysis, which are crucial for accurate investigation of the nucleosome landscape.
Collapse
|
29
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
30
|
Meng H, Li H, Zheng Y, Yang Z, Jia Y, Bo S. Evolutionary analysis of nucleosome positioning sequences based on New Symmetric Relative Entropy. Genomics 2017; 110:154-161. [PMID: 28917635 DOI: 10.1016/j.ygeno.2017.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
New Symmetric Relative Entropy (NSRE) was applied innovatively to analyze the nucleosome sequences in S. cerevisiae, S. pombe and Drosophila. NSRE distributions could well reflect the characteristic differences of nucleosome sequences among three organisms, and the differences indicate a concerted evolution in the sequence usage of nucleosome. Further analysis about the nucleosomes around TSS shows that the constitutive property of +1/-1 nucleosomes in S. cerevisiae is different from that in S. pombe and Drosophila, which indicates that S. cerevisiae has a different transcription regulation mechanism based on nucleosome. However, in either case, the nucleosome dyad region is conserved and always has a higher NSRE. Base composition analysis shows that this conservative property in nucleosome dyad region is mainly determined by base A and T, and the dependence degrees on base A and T are consistent in three organisms.
Collapse
Affiliation(s)
- Hu Meng
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Hong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | - Yan Zheng
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Zhenhua Yang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yun Jia
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Suling Bo
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
31
|
Kubik S, Bruzzone MJ, Shore D. Establishing nucleosome architecture and stability at promoters: Roles of pioneer transcription factors and the RSC chromatin remodeler. Bioessays 2017; 39. [PMID: 28345796 DOI: 10.1002/bies.201600237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Improvements in deep sequencing, together with methods to rapidly deplete essential transcription factors (TFs) and chromatin remodelers, have recently led to a more detailed picture of promoter nucleosome architecture in yeast and its relationship to transcriptional regulation. These studies revealed that ∼40% of all budding yeast protein-coding genes possess a unique promoter structure, where we propose that an unusually unstable nucleosome forms immediately upstream of the transcription start site (TSS). This "fragile" nucleosome (FN) promoter architecture relies on the combined action of the essential RSC (Remodels Structure of Chromatin) nucleosome remodeler and pioneer transcription factors (PTFs). FNs are associated with genes whose expression is high, coupled to cell growth, and characterized by low cell-to-cell variability (noise), suggesting that they may promote these features. Recent studies in metazoans suggest that the presence of dynamic nucleosomes upstream of the TSS at highly expressed genes may be conserved throughout evolution.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning. PLoS Pathog 2016; 12:e1006080. [PMID: 28033404 PMCID: PMC5198986 DOI: 10.1371/journal.ppat.1006080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/19/2016] [Indexed: 11/19/2022] Open
Abstract
The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome. Nucleosomes are not positioned randomly on DNA but on preferential sites with respect to the underlying DNA sequence. Histones belong to the most conserved eukaryotic proteins, as sequence dependent nucleosome positioning is an essential regulatory feature of nucleosomes, determining the accessibility of regulatory factors to DNA. We determined the biochemical properties of plasmodium histones and show that they are distinct from human forms, explaining the accessible chromatin structure of P. falciparum. Amino acid exchanges in the histones do not present an adaption to the AT-rich genome, but rather reduce the binding affinity to GC-rich DNA sequences, resulting in rather unstable nucleosomes with labile H2A and H2B, requiring extra-nucleosomal positioning signals to keep them on place. Plasmodium chromatin exhibits the shortest nucleosome spacing known to date potentially inhibiting the formation of higher order structures and maintaining chromatin accessible.
Collapse
|
33
|
Xiong J, Gao S, Dui W, Yang W, Chen X, Taverna SD, Pearlman RE, Ashlock W, Miao W, Liu Y. Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin. Nucleic Acids Res 2016; 44:10091-10105. [PMID: 27488188 PMCID: PMC5137421 DOI: 10.1093/nar/gkw684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 02/06/2023] Open
Abstract
The ciliate protozoan Tetrahymena thermophila contains two types of structurally and functionally differentiated nuclei: the transcriptionally active somatic macronucleus (MAC) and the transcriptionally silent germ-line micronucleus (MIC). Here, we demonstrate that MAC features well-positioned nucleosomes downstream of transcription start sites and flanking splice sites. Transcription-associated trans-determinants promote nucleosome positioning in MAC. By contrast, nucleosomes in MIC are dramatically delocalized. Nucleosome occupancy in MAC and MIC are nonetheless highly correlated with each other, as well as with in vitro reconstitution and predictions based upon DNA sequence features, revealing unexpectedly strong contributions from cis-determinants. In particular, well-positioned nucleosomes are often matched with GC content oscillations. As many nucleosomes are coordinately accommodated by both cis- and trans-determinants, we propose that their distribution is shaped by the impact of these nucleosomes on the mutational and transcriptional landscape, and driven by evolutionary selection.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,These authors contributed equally to this work as first authors
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China,These authors contributed equally to this work as first authors
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences and The Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ronald E. Pearlman
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wendy Ashlock
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,Correspondence may also be addressed to Wei Miao.
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,To whom correspondence should be addressed. Tel: +1 734 6154239;
| |
Collapse
|
34
|
González S, García A, Vázquez E, Serrano R, Sánchez M, Quintales L, Antequera F. Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome. Genome Res 2016; 26:1532-1543. [PMID: 27662899 PMCID: PMC5088595 DOI: 10.1101/gr.207241.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
In the yeast genome, a large proportion of nucleosomes occupy well-defined and stable positions. While the contribution of chromatin remodelers and DNA binding proteins to maintain this organization is well established, the relevance of the DNA sequence to nucleosome positioning in the genome remains controversial. Through quantitative analysis of nucleosome positioning, we show that sequence changes distort the nucleosomal pattern at the level of individual nucleosomes in three species of Schizosaccharomyces and in Saccharomyces cerevisiae. This effect is equally detected in transcribed and nontranscribed regions, suggesting the existence of sequence elements that contribute to positioning. To identify such elements, we incorporated information from nucleosomal signatures into artificial synthetic DNA molecules and found that they generated regular nucleosomal arrays indistinguishable from those of endogenous sequences. Strikingly, this information is species-specific and can be combined with coding information through the use of synonymous codons such that genes from one species can be engineered to adopt the nucleosomal organization of another. These findings open the possibility of designing coding and noncoding DNA molecules capable of directing their own nucleosomal organization.
Collapse
Affiliation(s)
- Sara González
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique Vázquez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rebeca Serrano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Luis Quintales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain.,Departamento de Informática y Automática, Universidad de Salamanca/Facultad de Ciencias, 37007 Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
35
|
Yague-Sanz C, Vázquez E, Sánchez M, Antequera F, Hermand D. A conserved role of the RSC chromatin remodeler in the establishment of nucleosome-depleted regions. Curr Genet 2016; 63:187-193. [PMID: 27558480 PMCID: PMC5383693 DOI: 10.1007/s00294-016-0642-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022]
Abstract
The occupancy of nucleosomes governs access to the eukaryotic genomes and results from a combination of biophysical features and the effect of ATP-dependent remodelling complexes. Most promoter regions show a conserved pattern characterized by a nucleosome-depleted region (NDR) flanked by nucleosomal arrays. The conserved RSC remodeler was reported to be critical to establish NDR in vivo in budding yeast but other evidences suggested that this activity may not be conserved in fission yeast. By reanalysing and expanding previously published data, we propose that NDR formation requires, at least partially, RSC in both yeast species. We also discuss the most prominent biological role of RSC and the possibility that non-essential subunits do not define alternate versions of the complex.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- URPHYM-GEMO, Namur Research College (NARC), The University of Namur, 5000, Namur, Belgium
| | - Enrique Vázquez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Damien Hermand
- URPHYM-GEMO, Namur Research College (NARC), The University of Namur, 5000, Namur, Belgium.
| |
Collapse
|
36
|
Kubik S, Bruzzone MJ, Jacquet P, Falcone JL, Rougemont J, Shore D. Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast. Mol Cell 2016; 60:422-34. [PMID: 26545077 DOI: 10.1016/j.molcel.2015.10.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/30/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Previous studies indicate that eukaryotic promoters display a stereotypical chromatin landscape characterized by a well-positioned +1 nucleosome near the transcription start site and an upstream -1 nucleosome that together demarcate a nucleosome-free (or -depleted) region. Here we present evidence that there are two distinct types of promoters distinguished by the resistance of the -1 nucleosome to micrococcal nuclease digestion. These different architectures are characterized by two sequence motifs that are broadly deployed at one set of promoters where a nuclease-sensitive ("fragile") nucleosome forms, but concentrated in a narrower, nucleosome-free region at all other promoters. The RSC nucleosome remodeler acts through the motifs to establish stable +1 and -1 nucleosome positions, while binding of a small set of general regulatory (pioneer) factors at fragile nucleosome promoters plays a key role in their destabilization. We propose that the fragile nucleosome promoter architecture is adapted for regulation of highly expressed, growth-related genes.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Philippe Jacquet
- Swiss Institute of Bioinformatics (SIB) and Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Luc Falcone
- Center for Advanced Modeling Sciences, Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | - Jacques Rougemont
- Swiss Institute of Bioinformatics (SIB) and Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
37
|
Quintales L, Soriano I, Vázquez E, Segurado M, Antequera F. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins. Open Biol 2016; 5:140218. [PMID: 25854683 PMCID: PMC4422121 DOI: 10.1098/rsob.140218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.
Collapse
Affiliation(s)
- Luis Quintales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ignacio Soriano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Enrique Vázquez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
38
|
Kensche PR, Hoeijmakers WAM, Toenhake CG, Bras M, Chappell L, Berriman M, Bártfai R. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences. Nucleic Acids Res 2015; 44:2110-24. [PMID: 26578577 PMCID: PMC4797266 DOI: 10.1093/nar/gkv1214] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen.
Collapse
Affiliation(s)
- Philip Reiner Kensche
- Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | | | | | - Maaike Bras
- Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Lia Chappell
- Parasite Genomics Group, Wellcome Trust Sanger Institute, CB10 1SA Hinxton, UK
| | - Matthew Berriman
- Parasite Genomics Group, Wellcome Trust Sanger Institute, CB10 1SA Hinxton, UK
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
39
|
Abstract
Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.
Collapse
|
40
|
Li M, Hada A, Sen P, Olufemi L, Hall MA, Smith BY, Forth S, McKnight JN, Patel A, Bowman GD, Bartholomew B, Wang MD. Dynamic regulation of transcription factors by nucleosome remodeling. eLife 2015; 4. [PMID: 26047462 PMCID: PMC4456607 DOI: 10.7554/elife.06249] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes. DOI:http://dx.doi.org/10.7554/eLife.06249.001 Cells contain thousands of genes that are encoded by molecules of DNA. In yeast and other eukaryotic organisms, this DNA is wrapped around proteins called histones to make structures called nucleosomes. This compacts the DNA and allows it to fit inside the tiny nucleus within the cell. The positioning of the nucleosomes influences how tightly packed the DNA is, which in turn influences the activity of genes. Less active genes tend to be found within regions of DNA that are tightly packed, while more active genes are found in less tightly packed regions. To activate a gene, proteins called transcription factors bind to a section of DNA within the gene called the promoter. Enzymes known as ‘chromatin remodelers’ can alter the locations of nucleosomes on DNA to allow the transcription factors access to the promoters of particular genes. In yeast, the SWI/SNF family of chromatin remodelers can disassemble nucleosomes to promote gene activity, while the ISW1 family organises nucleosomes into closely spaced groups to repress gene activity. However, it is not clear if, or how, chromatin remodelers can influence transcription factors that are already bound to DNA. Here, Li et al. studied the interactions between a transcription factor and the chromatin remodelers in yeast. The experiment used a piece of DNA that contained a bound transcription factor and a single nucleosome. Li et al. used a technique called ‘single molecule DNA unzipping’, which enabled them to precisely locate the position of the nucleosome and transcription factor before and after the nucleosome was remodeled. The experiments found that a chromatin remodeler called ISW1a moved the nucleosome away from the transcription factor, while a SWI/SNF chromatin remodeler moved the nucleosome towards it. Significantly, Li et al. also found that a transcription factor is a major barrier to ISW1a's remodeling activity, suggesting that ISW1a may use transcription factors as reference points to position nucleosomes. In contrast, SWI/SNF was able to slide a nucleosome past the transcription factor, which led to the transcription factor falling off the DNA. Therefore, SWI/SNF is able to move transcription factors out of the way to deactivate genes. Li et al. propose a new model for how chromatin remodelers can move nucleosomes and regulate transcription factors to alter gene activity. A future challenge will be to observe these types of activities in living cells. DOI:http://dx.doi.org/10.7554/eLife.06249.002
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Arjan Hada
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, United States
| | - Payel Sen
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, United States
| | - Lola Olufemi
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, United States
| | - Michael A Hall
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| | - Benjamin Y Smith
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| | - Scott Forth
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| | - Jeffrey N McKnight
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - Ashok Patel
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - Gregory D Bowman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - Blaine Bartholomew
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, United States
| | - Michelle D Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| |
Collapse
|