1
|
ChroMo, an Application for Unsupervised Analysis of Chromosome Movements in Meiosis. Cells 2021; 10:cells10082013. [PMID: 34440781 PMCID: PMC8392469 DOI: 10.3390/cells10082013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Nuclear movements during meiotic prophase, driven by cytoskeleton forces, are a broadly conserved mechanism in opisthokonts and plants to promote pairing between homologous chromosomes. These forces are transmitted to the chromosomes by specific associations between telomeres and the nuclear envelope during meiotic prophase. Defective chromosome movements (CMs) harm pairing and recombination dynamics between homologues, thereby affecting faithful gametogenesis. For this reason, modelling the behaviour of CMs and their possible microvariations as a result of mutations or physico-chemical stress is important to understand this crucial stage of meiosis. Current developments in high-throughput imaging and image processing are yielding large CM datasets that are suitable for data mining approaches. To facilitate adoption of data mining pipelines, we present ChroMo, an interactive, unsupervised cloud application specifically designed for exploring CM datasets from live imaging. ChroMo contains a wide selection of algorithms and visualizations for time-series segmentation, motif discovery, and assessment of causality networks. Using ChroMo to analyse meiotic CMs in fission yeast, we found previously undiscovered features of CMs and causality relationships between chromosome morphology and trajectory. ChroMo will be a useful tool for understanding the behaviour of meiotic CMs in yeast and other model organisms.
Collapse
|
2
|
Hou H, Kyriacou E, Thadani R, Klutstein M, Chapman JH, Cooper JP. Centromeres are dismantled by foundational meiotic proteins Spo11 and Rec8. Nature 2021; 591:671-676. [PMID: 33658710 PMCID: PMC8843027 DOI: 10.1038/s41586-021-03279-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Meiotic processes are potentially dangerous to genome stability and could be disastrous if activated in proliferative cells. Here we show that two key meiosis-defining proteins, the topoisomerase Spo11 (which forms double-strand breaks) and the meiotic cohesin Rec8, can dismantle centromeres. This dismantlement is normally observable only in mutant cells that lack the telomere bouquet, which provides a nuclear microdomain conducive to centromere reassembly1; however, overexpression of Spo11 or Rec8 leads to levels of centromere dismantlement that cannot be countered by the bouquet. Specific nucleosome remodelling factors mediate centromere dismantlement by Spo11 and Rec8. Ectopic expression of either protein in proliferating cells leads to the loss of mitotic kinetochores in both fission yeast and human cells. Hence, while centromeric chromatin has been characterized as extraordinarily stable, Spo11 and Rec8 challenge this stability and may jeopardize kinetochores in cancers that express meiotic proteins.
Collapse
Affiliation(s)
- Haitong Hou
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO 80045, Phone 303-724-3203,Former address: Telomere Biology Laboratory, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892,Co-corresponding authors: ;
| | - Eftychia Kyriacou
- Former address: Telomere Biology Laboratory, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892,Current address: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rahul Thadani
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO 80045, Phone 303-724-3203,Former address: Telomere Biology Laboratory, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892
| | - Michael Klutstein
- Chromatin and Aging Research Laboratory, Institute of Dental Science, Hebrew University of Jerusalem PO 12272, Israel 91120
| | - Joseph H. Chapman
- Former address: Telomere Biology Laboratory, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892,Current address: Single Molecular Biophysics Laboratory, NHLBI, NIH
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, CO 80045, Phone 303-724-3203,Former address: Telomere Biology Laboratory, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892,Co-corresponding authors: ;
| |
Collapse
|
3
|
Abstract
Homologous recombination (HR) is a universally conserved mechanism used to maintain genomic integrity. In eukaryotes, HR is used to repair the spontaneous double strand breaks (DSBs) that arise during mitotic growth, and the programmed DSBs that form during meiosis. The mechanisms that govern mitotic and meiotic HR share many similarities, however, there are also several key differences, which reflect the unique attributes of each process. For instance, even though many of the proteins involved in mitotic and meiotic HR are the same, DNA target specificity is not: mitotic DSBs are repaired primarily using the sister chromatid as a template, whereas meiotic DBSs are repaired primarily through targeting of the homologous chromosome. These changes in template specificity are induced by expression of meiosis-specific HR proteins, down-regulation of mitotic HR proteins, and the formation of meiosis-specific chromosomal structures. Here, we compare and contrast the biochemical properties of key recombination intermediates formed during the pre-synapsis phase of mitotic and meiotic HR. Throughout, we try to highlight unanswered questions that will shape our understanding of how homologous recombination contributes to human cancer biology and sexual reproduction.
Collapse
|