1
|
Attia SM, Alshamrani AA, Ahmad SF, Albekairi NA, Nadeem A, Attia MSM, Ansari MA, Alqahtani F, Bakheet SA, Harisa GI. Dulaglutide rescues the elevated testicular dysfunction in a mouse model of high-fat diet-induced obesity. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503805. [PMID: 39147447 DOI: 10.1016/j.mrgentox.2024.503805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Obesity is a well-known risk factor for testicular function; however, dulaglutide's effect on the testis in obesity has received little attention. Currently, clinicians prescribe the antidiabetic drug dulaglutide only off-label for weight management in non-diabetics. Investigating the impact of this novel compound on obesity is critical for determining whether it has any disruptive effects on testicular cells. We used a well-known animal model of high-fat diet-induced obesity in this investigation, and testicular dysfunction was determined by sperm DNA damage, spermatocyte chromosomal abnormalities, and spermiogram analysis. Following a 12-week high-fat diet challenge, mice were randomly assigned to dulaglutide (0.6 mg/kg/day) or saline treatments for five weeks. Testes and sperm cells were collected 24 h after the last dulaglutide injection. Untreated obese mice had a lower testes/body weight ratio, more sperm DNA damage, diakinesis-metaphase I chromosomal abnormalities, a lower sperm count/motility, more cell morphological defects, and an altered testicular redox balance. In obese mice, dulaglutide injection efficiently restored all disturbed parameters to their control levels. Dulaglutide injection into healthy mice exhibited no significant harmful effects at the applied regimen. As a result, we infer that dulaglutide therapy might bring obese men additional benefits by recovering testicular dysfunction induced by obesity.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Argentato PP, Guerra JVDS, Luzia LA, Ramos ES, Maschietto M, Rondó PHDC. Integrative network analysis of differentially methylated regions to study the impact of gestational weight gain on maternal metabolism and fetal-neonatal growth. Genet Mol Biol 2024; 47:e20230203. [PMID: 38530405 PMCID: PMC10993311 DOI: 10.1590/1678-4685-gmb-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/10/2024] [Indexed: 03/28/2024] Open
Abstract
Integrative network analysis (INA) is important for identifying gene modules or epigenetically regulated molecular pathways in diseases. This study evaluated the effect of excessive gestational weight gain (EGWG) on INA of differentially methylated regions, maternal metabolism and offspring growth. Brazilian women from "The Araraquara Cohort Study" with adequate pre-pregnancy body mass index were divided into EGWG (n=30) versus adequate gestational weight gain (AGWG, n=45) groups. The methylome analysis was performed on maternal blood using the Illumina MethylationEPIC BeadChip. Fetal-neonatal growth was assessed by ultrasound and anthropometry, respectively. Maternal lipid and glycemic profiles were investigated. Maternal triglycerides-TG (p=0.030) and total cholesterol (p=0.014); fetus occipito-frontal diameter (p=0.005); neonate head circumference-HC (p=0.016) and thoracic perimeter (p=0.020) were greater in the EGWG compared to the AGWG group. Multiple linear regression analysis showed that maternal DNA methylation was associated with maternal TG and fasting insulin, fetal abdominal circumference, and fetal and neonate HC. The DMRs studied were enriched in 142 biological processes, 21 molecular functions,and 17 cellular components with terms directed for the fatty acids metabolism. Three DMGMs were identified:COL3A1, ITGA4 and KLRK1. INA targeted chronic diseases and maternal metabolism contributing to an epigenetic understanding of the involvement of GWG in maternal metabolism and fetal-neonatal growth.
Collapse
Affiliation(s)
- Perla Pizzi Argentato
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brazil
| | - João Victor da Silva Guerra
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Laboratório Nacional de Biociências (LNBio). Campinas, SP, Brazil
- Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas, Programa de Pós-Graduação em Ciências Farmacêuticas, Campinas, SP, Brazil
| | - Liania Alves Luzia
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brazil
| | - Ester Silveira Ramos
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Mariana Maschietto
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Campinas, SP, Brazil
- Centro Infantil Boldrini, Campinas, SP, Brazil
| | | |
Collapse
|
3
|
Tao P, Yan X, Yao Y, Wang Z, Li Y. Pre-pregnancy obesity is not associated with poor outcomes in fresh transfer in vitro fertilization cycles: a retrospective study. BMC Pregnancy Childbirth 2023; 23:633. [PMID: 37660016 PMCID: PMC10474631 DOI: 10.1186/s12884-023-05917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023] Open
Abstract
PURPOSE The impact of body mass index (BMI) on in vitro fertilization (IVF) has been well acknowledged; however, the reported conclusions are still incongruent. This study aimed to investigate the effect of BMI on IVF embryos and fresh transfer clinical outcomes. METHODS This retrospective cohort analysis included patients who underwent IVF/ICSI treatment and fresh embryo transfer from 2014 to March 2022. Patients were divided into the underweight group: BMI < 18.5 kg/m2; normal group: 18.5 ≤ BMI < 24 kg/m2; overweight group: 24 ≤ BMI < 28 kg/m2; and obesity group: BMI ≥ 28 kg/m2. A generalized linear model was used to analyze the impact of BMI on each IVF outcome used as a continuous variable. RESULTS A total of 3465 IVF/ICSI cycles in the embryo part; and 1698 fresh embryo transplanted cycles from the clinical part were included. Available embryos rate (61.59% vs. 57.32%, p = 0.007) and blastocyst development rates (77.98% vs. 66.27%, p < 0.001) were higher in the obesity group compared to the normal BMI group. Also, the fertilization rate of IVF cycles in the obesity group was significantly decreased vs. normal BMI group (normal: 62.95% vs. 66.63% p = 0.006; abnormal: 5.43% vs. 7.04%, p = 0.037), while there was no difference in ICSI cycles. The clinical outcomes of overweight and obesity groups were comparable to the normal group. The gestational age of the obesity group was lower compared to the normal group (38.08 ± 1.95 vs. 38.95 ± 1.55, p = 0.011). The adjusted OR (AOR) of BMI for the preterm birth rate of singletons was 1.134 [(95% CI 1.037-1.240), p = 0.006]. BMI was significantly associated with live birth rate after excluded the PCOS patients [AOR: 1.042 (95% CI 1.007-1.078), p = 0.018]. In young age (≤ 35 years), clinical pregnancy rate and live birth rate were positively correlated with BMI, AOR was 1.038 [95% CI (1.001-1.076), p = 0.045] and 1.037 [95% CI (1.002-1.074) p = 0.038] respectively. CONCLUSION Being overweight and obese was not associated with poor IVF outcomes but could affect blastocyst formation. ICSI could help to avoid low fertilization in obese patients. Also, obesity was associated with increased rates of premature singleton births.
Collapse
Affiliation(s)
- Ping Tao
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, Fujian, 361000, P.R. China
| | - Xiaohong Yan
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, Fujian, 361000, P.R. China
| | - Yan Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Jilin University, 1163# Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Zhanxiang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, Fujian, 361000, P.R. China.
| | - Youzhu Li
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, Fujian, 361000, P.R. China.
| |
Collapse
|
4
|
Liu C, Zuo W, Yan G, Wang S, Sun S, Li S, Tang X, Li Y, Cai C, Wang H, Liu W, Fang J, Zhang Y, Zhou J, Zhen X, Feng T, Hu Y, Wang Z, Li C, Bian Q, Sun H, Ding L. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy. NATURE AGING 2023:10.1038/s43587-023-00419-9. [PMID: 37188792 DOI: 10.1038/s43587-023-00419-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
With aging, abnormalities during oocyte meiosis become more prevalent. However, the mechanisms of aging-related oocyte aneuploidy are not fully understood. Here we performed Hi-C and SMART-seq of oocytes from young and old mice and reveal decreases in chromosome condensation and disrupted meiosis-associated gene expression in metaphase I oocytes from aged mice. Further transcriptomic analysis showed that meiotic maturation in young oocytes was correlated with robust increases in mevalonate (MVA) pathway gene expression in oocyte-surrounding granulosa cells (GCs), which was largely downregulated in aged GCs. Inhibition of MVA metabolism in GCs by statins resulted in marked meiotic defects and aneuploidy in young cumulus-oocyte complexes. Correspondingly, supplementation with the MVA isoprenoid geranylgeraniol ameliorated oocyte meiotic defects and aneuploidy in aged mice. Mechanically, we showed that geranylgeraniol activated LHR/EGF signaling in aged GCs and enhanced the meiosis-associated gene expression in oocytes. Collectively, we demonstrate that the MVA pathway in GCs is a critical regulator of meiotic maturation and euploidy in oocytes, and age-associated MVA pathway abnormalities contribute to oocyte meiotic defects and aneuploidy.
Collapse
Affiliation(s)
- Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wu Zuo
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Simin Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Shiyuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyi Tang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yifan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Changjun Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haiquan Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Tianxiang Feng
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, China.
- Clinical Center for Stem Cell Research, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
5
|
Catandi GD, Cheng MH, Chicco AJ, Chen T, Carnevale EM. L-carnitine enhances developmental potential of bovine oocytes matured under high lipid concentrations in vitro. Anim Reprod Sci 2023; 252:107249. [PMID: 37119563 DOI: 10.1016/j.anireprosci.2023.107249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Maternal obesity elevates non-esterified fatty acids (NEFA) follicular concentrations. Bovine cumulus-oocyte complexes (COCs) matured in vitro under high NEFA have altered metabolism and reduced quality. Systemically, obesity promotes altered mitochondrial metabolism linked to L-carnitine insufficiency. We hypothesized that L-carnitine supplementation during IVM of bovine COCs in the presence of high NEFA would lessen the negative effects of exposure to excessive lipids on embryonic development and oxidative stress. COCs were collected from abattoir ovaries and matured in four groups: CON (control), LC (3 mM L-carnitine), HN (high NEFA: 200uM oleic, 150uM palmitic and 75uM stearic acid), and HNLC (HN and LC). Mature oocytes were assayed for aerobic and anaerobic metabolism utilizing oxygen and pH microsensors or fertilized in vitro (D0). Cleavage (D3) and blastocyst (D7, D8) rates were assessed. D3 embryos with ≥ 4 cells were stained for cytosolic and mitochondrial ROS. D8 blastocysts were assayed for gene transcript abundance of metabolic enzymes. Oocyte metabolism was not affected by IVM treatment. D3 formation of embryos with ≥ 4 cells were lower in LC or HN than CON or HNLC; blastocyst rates were greater for CON and lower for HN than LC and HNLC. D3 embryo mitochondrial and cytosolic ROS were reduced in HNLC when compared to other groups. IVM in HN altered blastocyst gene transcript abundance when compared to CON, but not LC or HNLC. In conclusion, supplementation with L-carnitine protects oocytes exposed to high NEFA during IVM and improves their developmental competence, suggesting that high lipid exposure may lead to L-carnitine insufficiency in bovine oocytes.
Collapse
Affiliation(s)
- Giovana D Catandi
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO 80521, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ming-Hao Cheng
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tom Chen
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Elaine M Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO 80521, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
6
|
Ermisch AF, Bidne KL, Kurz SG, Bochantin KA, Wood JR. Ovarian inflammation mediated by Toll-like receptor 4 increased transcripts of maternal effect genes and decreased embryo development†. Biol Reprod 2023; 108:423-436. [PMID: 36461933 DOI: 10.1093/biolre/ioac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
Obese women are subfertile and have reduced assisted reproduction success, which may be due to reduced oocyte competence. We hypothesize that consumption of a high-fat/high-sugar diet induces ovarian inflammation, which is a primary contributor to decreased oocyte quality and pre-implantation embryo development. To test this hypothesis, C57BL/6 (B6) mice with a normal inflammatory response and C3H/HeJ (C3H) mice with a dampened inflammatory response due to dysfunctional Toll-like receptor 4 were fed either normal chow or high-fat/high-sugar diet. In both B6 and C3H females, high-fat/high-sugar diet induced excessive adiposity and hyperglycemia compared to normal chow-fed counterparts. Conversely, ovarian CD68 levels and oocyte expression of oxidative stress markers were increased when collected from B6 high-fat/high-sugar but not C3H high-fat/high-sugar mice. Following in vitro fertilization of in vivo matured oocytes, blastocyst development was decreased in B6-high-fat/high-sugar but not C3H high-fat/high-sugar mice. Expression of cumulus cell markers of oocyte quality were altered in both B6 high-fat/high-sugar and C3H high-fat/high-sugar. However, there were no diet-dependent differences in spindle abnormalities in either B6 or C3H mice, suggesting potential defects in cytoplasmic maturation. Indeed, there were significant increases in the abundance of maternal effect gene mRNAs in oocytes from only B6 high-fat/high-sugar mice. These differentially expressed genes encode proteins of the subcortical maternal complex and associated with mRNA metabolism and epigenetic modifications. These genes regulate maternal mRNA degradation at oocyte maturation, mRNA clearance at the zygotic genome activation, and methylation of imprinted genes suggesting a mechanism by which inflammation induced oxidative stress impairs embryo development.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Katie L Bidne
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Scott G Kurz
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kerri A Bochantin
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
7
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
8
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
9
|
Puca F, Fedele M, Rasio D, Battista S. Role of Diet in Stem and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23158108. [PMID: 35897685 PMCID: PMC9330301 DOI: 10.3390/ijms23158108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diet and lifestyle factors greatly affect health and susceptibility to diseases, including cancer. Stem cells’ functions, including their ability to divide asymmetrically, set the rules for tissue homeostasis, contribute to health maintenance, and represent the entry point of cancer occurrence. Stem cell properties result from the complex integration of intrinsic, extrinsic, and systemic factors. In this context, diet-induced metabolic changes can have a profound impact on stem cell fate determination, lineage specification and differentiation. The purpose of this review is to provide a comprehensive description of the multiple “non-metabolic” effects of diet on stem cell functions, including little-known effects such as those on liquid-liquid phase separation and on non-random chromosome segregation (asymmetric division). A deep understanding of the specific dietetic requirements of normal and cancer stem cells may pave the way for the development of nutrition-based targeted therapeutic approaches to improve regenerative and anticancer therapies.
Collapse
Affiliation(s)
- Francesca Puca
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 78705, USA;
- Department of Oncology, IRBM Science Park SpA, 00071 Pomezia, Italy
| | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, La Sapienza University, 00185 Rome, Italy;
| | - Sabrina Battista
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
10
|
Laursen ASD, Johannesen BR, Willis SK, Hatch EE, Wise LA, Wesselink AK, Rothman KJ, Sørensen HT, Mikkelsen EM. Adherence to Nordic dietary patterns and risk of first-trimester spontaneous abortion. Eur J Nutr 2022; 61:3255-3265. [DOI: 10.1007/s00394-022-02886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
11
|
Ravisankar S, Murphy MJ, Redmayne-Titley N, Davis B, Luo F, Takahashi D, Hennebold JD, Chavez SL. Long-term Hyperandrogenemia and/or Western-style Diet in Rhesus Macaque Females Impairs Preimplantation Embryogenesis. Endocrinology 2022; 163:bqac019. [PMID: 35192701 PMCID: PMC8962721 DOI: 10.1210/endocr/bqac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/19/2022]
Abstract
Hyperandrogenemia and obesity are common in women with polycystic ovary syndrome, but it is currently unclear how each alone or in combination contribute to reproductive dysfunction and female infertility. To distinguish the individual and combined effects of hyperandrogenemia and an obesogenic diet on ovarian function, prepubertal female rhesus macaques received a standard control (C) diet, testosterone (T) implants, an obesogenic Western-style diet (WSD), or both (T + WSD). After 5 to 6 years of treatment, the females underwent metabolic assessments and controlled ovarian stimulations. Follicular fluid (FF) was collected for steroid and cytokine analysis and the oocytes fertilized in vitro. Although the T + WSD females exhibited higher insulin resistance compared to the controls, there were no significant differences in metabolic parameters between treatments. Significantly higher concentrations of CXCL-10 were detected in the FF from the T group, but no significant differences in intrafollicular steroid levels were observed. Immunostaining of cleavage-stage embryos revealed multiple nuclear abnormalities in the T, WSD, and T + WSD groups. Single-cell DNA sequencing showed that while C embryos contained primarily euploid blastomeres, most cells in the other treatment groups were aneuploid. Despite yielding a higher number of mature oocytes, T + WSD treatment resulted in significantly reduced blastocyst formation rates compared to the T group. RNA sequencing analysis of individual blastocysts showed differential expression of genes involved in critical implantation processes between the C group and other treatments. Collectively, we show that long-term WSD consumption reduces the capacity of fertilized oocytes to develop into blastocysts and that the addition of T further impacts gene expression and embryogenesis.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental & Cancer Biology; Graduate Program in Molecular & Cellular Biosciences; Oregon Health & Science University School of Medicine; Portland, OR, USA
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Melinda J Murphy
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Nash Redmayne-Titley
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Brett Davis
- Knight Cardiovascular Institute; Oregon Health & Science University, Portland, OR, USA
| | - Fangzhou Luo
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
| | - Diana Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center; Beaverton, OR, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
- Department of Obstetrics & Gynecology; Oregon Health & Science University School of Medicine; Portland, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center; Beaverton, OR, USA
- Department of Obstetrics & Gynecology; Oregon Health & Science University School of Medicine; Portland, OR, USA
- Department of Molecular & Medical Genetics; Oregon Health & Science University School of Medicine; Portland, OR, USA
| |
Collapse
|
12
|
Liu T, Qu J, Tian M, Yang R, Song X, Li R, Yan J, Qiao J. Lipid Metabolic Process Involved in Oocyte Maturation During Folliculogenesis. Front Cell Dev Biol 2022; 10:806890. [PMID: 35433675 PMCID: PMC9009531 DOI: 10.3389/fcell.2022.806890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Oocyte maturation is a complex and dynamic process regulated by the coordination of ovarian cells and numerous extraovarian signals. From mammal studies, it is learnt that lipid metabolism provides sufficient energy for morphological and cellular events during folliculogenesis, and numerous lipid metabolites, including cholesterol, lipoproteins, and 14-demethyl-14-dehydrolanosterol, act as steroid hormone precursors and meiotic resumption regulators. Endogenous and exogenous signals, such as gonadotropins, insulin, and cortisol, are the upstream regulators in follicular lipid metabolic homeostasis, forming a complex and dynamic network in which the key factor or pathway that plays the central role is still a mystery. Though lipid metabolites are indispensable, long-term exposure to a high-fat environment will induce irreversible damage to follicular cells and oocyte meiosis. This review specifically describes the transcriptional expression patterns of several lipid metabolism–related genes in human oocytes and granulosa cells during folliculogenesis, illustrating the spatiotemporal lipid metabolic changes in follicles and the role of lipid metabolism in female reproductive capacity. This study aims to elaborate the impact of lipid metabolism on folliculogenesis, thus providing guidance for improving the fertility of obese women and the clinical outcome of assisted reproduction.
Collapse
Affiliation(s)
- Tao Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangxue Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueling Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jie Yan,
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Chatzidaki EE, Powell S, Dequeker BJH, Gassler J, Silva MCC, Tachibana K. Ovulation suppression protects against chromosomal abnormalities in mouse eggs at advanced maternal age. Curr Biol 2021; 31:4038-4051.e7. [PMID: 34314679 DOI: 10.1016/j.cub.2021.06.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023]
Abstract
The frequency of egg aneuploidy and trisomic pregnancies increases with maternal age. To what extent individual approaches can delay the "maternal age effect" is unclear because multiple causes contribute to chromosomal abnormalities in mammalian eggs. We propose that ovulation frequency determines the physiological aging of oocytes, a key aspect of which is the ability to accurately segregate chromosomes and produce euploid eggs. To test this hypothesis, ovulations were reduced using successive pregnancies, hormonal contraception, and a pre-pubertal knockout mouse model, and the effects on chromosome segregation and egg ploidy were examined. We show that each intervention reduces chromosomal abnormalities in eggs of aged mice, suggesting that ovulation reduction delays oocyte aging. The protective effect can be partly explained by retention of chromosomal Rec8-cohesin that maintains sister chromatid cohesion in meiosis. In addition, single-nucleus Hi-C (snHi-C) revealed deterioration in the 3D chromatin structure including an increase in extruded loop sizes in long-lived oocytes. Artificial cleavage of Rec8 is sufficient to increase extruded loop sizes, suggesting that cohesin complexes maintaining cohesion restrict loop extrusion. These findings suggest that ovulation suppression protects against Rec8 loss, thereby maintaining both sister chromatid cohesion and 3D chromatin structure and promoting production of euploid eggs. We conclude that the maternal age effect can be delayed in mice. An implication of this work is that long-term ovulation-suppressing conditions can potentially reduce the risk of aneuploid pregnancies at advanced maternal age.
Collapse
Affiliation(s)
- Emmanouella E Chatzidaki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bart J H Dequeker
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mariana C C Silva
- Research Institute of Molecular Pathology, Campus Vienna BioCenter 1, 1030 Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany.
| |
Collapse
|
14
|
Stovezky YR, Romanski PA, Bortoletto P, Spandorfer SD. Body mass index is not associated with embryo ploidy in patients undergoing in vitro fertilization with preimplantation genetic testing. Fertil Steril 2021; 116:388-395. [PMID: 33827765 DOI: 10.1016/j.fertnstert.2021.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To assess the association between body mass index (BMI) and embryo aneuploidy and mosaicism in a cohort of patients undergoing in vitro fertilization (IVF) with trophectoderm biopsy for preimplantation genetic testing for aneuploidy (PGT-A) using next-generation sequencing technology. DESIGN Retrospective cohort study. SETTING Academic center. PATIENTS Patients undergoing their first IVF cycle with trophectoderm biopsy and PGT-A at our center between January 1, 2017, and August 31, 2020. Patients classified as underweight on the basis of BMI (BMI <18.5 kg/m2) and patients who underwent fresh embryo transfers were excluded. INTERVENTION None. MAIN OUTCOME MEASURES Number and proportion of aneuploid, mosaic, and euploid embryos. RESULTS The patients were stratified according to the World Health Organization's BMI classification: normal weight (18.5-24.9 kg/m2, n = 1,254), overweight (25-29.9 kg/m2, n = 351), and obese (≥30 kg/m2, n = 145). Age-adjusted regression models showed no relationship between BMI classification and the number or proportion of aneuploid embryos. There were no statistically significant associations between BMI classifications and the number or proportion of mosaic or euploid embryos. A subgroup analysis of patients classified into age groups of <35, 35-40, and >40 years similarly showed no relationships between BMI and embryo ploidy outcomes. CONCLUSION Body mass index was not associated with the number or proportion of aneuploid, mosaic, or euploid embryos in this large cohort of patients undergoing IVF with PGT-A, suggesting that the negative effect of excess weight on reproductive outcomes was independent of the ploidy status of the embryo cohort.
Collapse
Affiliation(s)
- Yael R Stovezky
- Weill Medical College of Cornell University, New York, New York
| | - Phillip A Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York.
| | - Pietro Bortoletto
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| | - Steven D Spandorfer
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
15
|
Ma JY, Li S, Chen LN, Schatten H, Ou XH, Sun QY. Why is oocyte aneuploidy increased with maternal aging? J Genet Genomics 2020; 47:659-671. [PMID: 33184002 DOI: 10.1016/j.jgg.2020.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
One of the main causes of pregnancy failure and fetus abortion is oocyte aneuploidy, which is increased with maternal aging. Numerous possible causes of oocyte aneuploidy in aged women have been proposed, including cross-over formation defect, cohesin loss, spindle deformation, spindle assembly checkpoint malfunction, microtubule-kinetochore attachment failure, kinetochore mis-orientation, mitochondria dysfunction-induced increases in reactive oxygen species, protein over-acetylation, and DNA damage. However, it still needs to be answered if these aneuploidization factors have inherent relations, and how to prevent chromosome aneuploidy in aged oocytes. Epidemiologically, oocyte aneuploidy has been found to be weakly associated with higher homocysteine concentrations, obesity, ionizing radiation and even seasonality. In this review, we summarize the research progress and present an integrated view of oocyte aneuploidization.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Lei-Ning Chen
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Molecular basis of reproductive senescence: insights from model organisms. J Assist Reprod Genet 2020; 38:17-32. [PMID: 33006069 DOI: 10.1007/s10815-020-01959-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Reproductive decline due to parental age has become a major barrier to fertility as couples have delayed having offspring into their thirties and forties. Advanced parental age is also associated with increased incidence of neurological and cardiovascular disease in offspring. Thus, elucidating the etiology of reproductive decline is of clinical importance. METHODS Deciphering the underlying processes that drive reproductive decline is particularly challenging in women in whom a discrete oocyte pool is established during embryogenesis and may remain dormant for tens of years. Instead, our understanding of the processes that drive reproductive senescence has emerged from studies in model organisms, both vertebrate and invertebrate, that are the focus of this literature review. CONCLUSIONS Studies of reproductive aging in model organisms not only have revealed the detrimental cellular changes that occur with age but also are helping identify major regulator proteins controlling them. Here, we discuss what we have learned from model organisms with respect to the molecular mechanisms that maintain both genome integrity and oocyte quality.
Collapse
|
17
|
Special issue on "recent advances in meiosis from DNA replication to chromosome segregation". Chromosoma 2020; 128:177-180. [PMID: 31616989 DOI: 10.1007/s00412-019-00726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Meiosis is the special division that produces haploid gametes, such as sperm and eggs. It involves a complex series of events that integrate large structural changes at the chromosome scale with fine regulation of recombination events in localized regions. To evaluate the complexity of these processes, the meiosis field covers a variety of disciplines and model organisms, making it an exciting and rapidly changing area of research. The field as a whole highlights both the conserved aspects of meiosis, as well as the marked diversity of the means taken to ensure that, ultimately, gametes will contain a balanced number of chromosomes and genetic diversity will have been produced. Studying meiosis is also critically important for the improvement of our human condition as errors of meiosis are a leading cause of infertility, miscarriage, and developmental disabilities. Finally, the complex chromosome behavior of meiosis is a genetically tractable paradigm, the study of which improves our understanding of many fundamental cellular processes including DNA repair, genome stability, cancer etiology, chromatin structure, and chromosome dynamics.This special issue on meiosis contains twenty-two papers, of which five are in-depth reviews that complement and put in context the experimental data presented in the seventeen original research articles. The content of this issue illustrates the diversity of topics covered by researchers in the field, ranging from the effects of environment and external factors on the success of meiosis, the cell cycle actors that control the meiotic divisions, the mechanism of chromosome segregation, and the mechanisms that ensure proper homologous chromosome pairing, recombination, and synapsis. Multiple organisms are covered. Also evident is the fact that more and more studies use multicellular organisms as a model system, in large part due to the increased availability of tools that were previously restricted to studies in budding and fission yeasts.
Collapse
|