1
|
Li N, Wang H, Zou S, Yu X, Li J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod Sci 2025; 32:41-51. [PMID: 39333437 PMCID: PMC11729216 DOI: 10.1007/s43032-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract. DNA damage repair typically occurs during spermatogenesis, oocytes after fertilization, and early embryonic development stages. The known mechanisms of sperm DNA repair mainly include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). The most severe type of sperm DNA damage is double-strand break, and it will be repaired by DSBR, including homologous recombination (HR), classical non-homologous end joining (cNHEJ), alternative end joining (aEJ), and single-strand annealing (SSA). However, the precise mechanisms of DNA repair in spermatozoa remain incompletely understood. DNA repair-associated proteins are of great value in the repair of sperm DNA. Several repair-related proteins have been identified as playing critical roles in condensing chromatin, regulating transcription, repairing DNA damage, and regulating the cell cycle. It is noteworthy that XRCC4-like factor (XLF) and paralog of XRCC4 and XLF (PAXX) -mediated dimerization promote the processing of populated ends for cNHEJ repair, which suggests that XLF and PAXX have potential value in the mechanism of sperm DNA repair. This review summarizes the classic and potential repair mechanisms of sperm DNA damage, aiming to provide a perspective for further research on DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Nihong Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hong Wang
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Siying Zou
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xujun Yu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
2
|
Guo C, Ye J, Liu J, Li Z, Deng M, Guo Y, Liu G, Sun B, Li Y, Liu D. Whole-genome sequencing identified candidate genes associated with high and low litter size in Chuanzhong black goats. Front Vet Sci 2024; 11:1420164. [PMID: 39372899 PMCID: PMC11449896 DOI: 10.3389/fvets.2024.1420164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The reproductive performance of goats significantly influences breeding efficiency and economic returns, with litter size serving as a comprehensive indicator. Despite this, research on the genetic control of litter size remains limited. Therefore, we aimed to explore the candidate genes affecting fecundity and compared the whole-genome sequences (WGS) of 15 high-litter (HL) and 15 low-litter (LL) size in Chuanzhong black goats. Then genetic diversity and genomic variation patterns were analyzed by phylogenetic, principal component and population genetic structure analysis, it was found that HL and LL subpopulations diverged. Population evolutionary selection elimination analysis was performed by Fst and θπ resulted in 506 genes were annotated in HL and 528 genes in LL. These genes were mainly related to Hippo signaling pathway, G protein-coupled signaling pathway, G protein-coupled receptor activity, cell surface receptor signaling pathway, gonadal and reproductive structure development. According to the significantly selected genomic regions and important pathways, we found that the g.89172108T > G variant locus in the exon of the AMH gene was significantly associated with litter size (P < 0.05), which could be used as an auxiliary selection gene for the high fertility of Chuanzhong black Goat.
Collapse
Affiliation(s)
- Conghui Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Junning Ye
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhihan Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Gene Bank of Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Liu SW, Luo JQ, Zhao LY, Ou NJ, Chao-Yang, Zhang YX, Bai HW, Sun HF, Zhang JX, Yao CC, Li P, Tian RH, Li Z, Zhu ZJ. scRNA-seq reveals that origin recognition complex subunit 6 regulates mouse spermatogonial cell proliferation and apoptosis via activation of Wnt/β-catenin signaling. Asian J Androl 2024; 26:46-56. [PMID: 37788012 PMCID: PMC10846824 DOI: 10.4103/aja202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 10/04/2023] Open
Abstract
The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis. The single-cell RNA sequencing (scRNA-seq) analysis of the testis was performed to identify genes upregulated in spermatogonia. Using scRNA-seq analysis, we identified the spermatogonia upregulated gene origin recognition complex subunit 6 ( Orc6 ), which is involved in DNA replication and cell cycle regulation; its protein expression in the human and mouse testis was detected by western blot and immunofluorescence. To explore the potential function of Orc6 in spermatogonia, the C18-4 cell line was transfected with control or Orc6 siRNA. Subsequently, 5-ethynyl-2-deoxyuridine (EdU) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, flow cytometry, and western blot were used to evaluate its effects on proliferation and apoptosis. It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells. Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated (Wnt)/β-catenin signaling. Western blot revealed that the expression of β-catenin protein and its phosphorylation (Ser675) were significantly decreased when silencing the expression of ORC6. Our findings indicated that Orc6 was upregulated in spermatogonia, whereby it regulated proliferation and apoptosis by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jia-Qiang Luo
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Liang-Yu Zhao
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ning-Jing Ou
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao-Yang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu-Xiang Zhang
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hao-Wei Bai
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong-Fang Sun
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jian-Xiong Zhang
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen-Cheng Yao
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ru-Hui Tian
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng Li
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zi-Jue Zhu
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
4
|
Sahota JS, Sharma B, Guleria K, Sambyal V. Candidate genes for infertility: an in-silico study based on cytogenetic analysis. BMC Med Genomics 2022; 15:170. [PMID: 35918717 PMCID: PMC9347124 DOI: 10.1186/s12920-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background The cause of infertility remains unclear in a significant proportion of reproductive-age couples who fail to conceive naturally. Chromosomal aberrations have been identified as one of the main genetic causes of male and female infertility. Structural chromosomal aberrations may disrupt the functioning of various genes, some of which may be important for fertility. The present study aims to identify candidate genes and putative functional interaction networks involved in male and female infertility using cytogenetic data from cultured peripheral blood lymphocytes of infertile patients. Methods Karyotypic analyses was done in 201 infertile patients (100 males and 101 females) and 201 age and gender matched healthy controls (100 males and 101 females) after 72 h peripheral lymphocyte culturing and GTG banding, followed by bioinformatic analysis using Cytoscape v3.8.2 and Metascape. Results Several chromosomal regions with a significantly higher frequency of structural aberrations were identified in the infertile males (5q2, 10q2, and 17q2) and females (6q2, 16q2, and Xq2). Segregation of the patients based on type of infertility (primary v/s secondary infertility) led to the identification of chromosomal regions with a significantly higher frequency of structural aberrations exclusively within the infertile males (5q2, 17q2) and females (16q2) with primary infertility. Cytoscape identified two networks specific to these regions: a male specific network with 99 genes and a female specific network with 109 genes. The top enriched GO terms within the male and female infertility networks were “skeletal system morphogenesis” and “mRNA transport” respectively. PSME3, PSMD3, and CDC27 were the top 3 hub genes identified within the male infertility network. Similarly, UPF3B, IRF8, and PSMB1 were the top 3 hub genes identified with the female infertility network. Among the hub genes identified in the male- and female-specific networks, PSMB1, PSMD3, and PSME3 are functional components of the proteasome complex. These hub genes have a limited number of reports related to their respective roles in maintenance of fertility in mice model and humans and require validation in further studies. Conclusion The candidate genes predicted in the present study can serve as targets for future research on infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01320-x.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Bhavna Sharma
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Department of Human Genetics, Cytogenetics Laboratory, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
5
|
Chukrallah LG, Badrinath A, Vittor GG, Snyder EM. ADAD2 regulates heterochromatin in meiotic and post-meiotic male germ cells via translation of MDC1. J Cell Sci 2022; 135:jcs259196. [PMID: 35191498 PMCID: PMC8919335 DOI: 10.1242/jcs.259196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Male germ cells establish a unique heterochromatin domain, the XY-body, early in meiosis. How this domain is maintained through the end of meiosis and into post-meiotic germ cell differentiation is poorly understood. ADAD2 is a late meiotic male germ cell-specific RNA-binding protein, loss of which leads to post-meiotic germ cell defects. Analysis of ribosome association in Adad2 mouse mutants revealed defective translation of Mdc1, a key regulator of XY-body formation, late in meiosis. As a result, Adad2 mutants show normal establishment but failed maintenance of the XY-body. Observed XY-body defects are concurrent with abnormal autosomal heterochromatin and ultimately lead to severely perturbed post-meiotic germ cell heterochromatin and cell death. These findings highlight the requirement of ADAD2 for Mdc1 translation, the role of MDC1 in maintaining meiotic male germ cell heterochromatin and the importance of late meiotic heterochromatin for normal post-meiotic germ cell differentiation.
Collapse
Affiliation(s)
| | - Aditi Badrinath
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gabrielle G. Vittor
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Wootton J, Soutoglou E. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Front Genet 2022; 12:773426. [PMID: 34970302 PMCID: PMC8712883 DOI: 10.3389/fgene.2021.773426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.
Collapse
Affiliation(s)
- Jack Wootton
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
7
|
Banday S, Pandita RK, Mushtaq A, Bacolla A, Mir US, Singh DK, Jan S, Bhat KP, Hunt CR, Rao G, Charaka VK, Tainer JA, Pandita TK, Altaf M. Autism-Associated Vigilin Depletion Impairs DNA Damage Repair. Mol Cell Biol 2021; 41:e0008221. [PMID: 33941620 PMCID: PMC8224237 DOI: 10.1128/mcb.00082-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Raj K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | | - Sadaf Jan
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Krishna P. Bhat
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Ganesh Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|