1
|
Gu C, Huo W, Huang X, Chen L, Tian S, Ran Q, Ren Z, Wang Q, Yang M, Ji J, Liu Y, Zhong M, Wang K, Song D, Huang J, Zhang H, Jin X. Developmental and validation of a novel small and high-efficient panel of microhaplotypes for forensic genetics by the next generation sequencing. BMC Genomics 2024; 25:958. [PMID: 39402483 PMCID: PMC11475632 DOI: 10.1186/s12864-024-10880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND In the domain of forensic science, the application of kinship identification and mixture deconvolution techniques are of critical importance, providing robust scientific evidence for the resolution of complex cases. Microhaplotypes, as the emerging class of genetic markers, have been widely studied in forensics due to their high polymorphisms and excellent stability. RESULTS AND DISCUSSION In this research, a novel and high-efficient panel integrating 33 microhaplotype loci along with a sex-determining locus was developed by the next generation sequencing technology. In addition, we also assessed its forensic utility and delved into its capacity for kinship analysis and mixture deconvolution. The average effective number of alleles (Ae) of the 33 microhaplotype loci in the Guizhou Han population was 6.06, and the Ae values of 30 loci were greater than 5. The cumulative power of discrimination and cumulative power of exclusion values of the novel panel in the Guizhou Han population were 1-5.6 × 10- 43 and 1-1.6 × 10- 15, respectively. In the simulated kinship analysis, the panel could effectively distinguish between parent-child, full-sibling, half-sibling, grandfather-grandson, aunt-nephew and unrelated individuals, but uncertainty rates clearly increased when distinguishing between first cousins and unrelated individuals. For the mixtures, the novel panel had demonstrated excellent performance in estimating the number of contributors of mixtures with 1 to 5 contributors in combination with the machine learning methods. CONCLUSIONS In summary, we have developed a small and high-efficient panel for forensic genetics, which could provide novel insights into forensic complex kinships testing and mixture deconvolution.
Collapse
Affiliation(s)
- Changyun Gu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Weipeng Huo
- Ningbo HEALTH Gene Technology Co., Ltd, Ningbo, 315042, China
| | - Xiaolan Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Shunyi Tian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Qianchong Ran
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Min Zhong
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Kang Wang
- Ningbo HEALTH Gene Technology Co., Ltd, Ningbo, 315042, China
| | - Danlu Song
- Ningbo HEALTH Gene Technology Co., Ltd, Ningbo, 315042, China
| | - Jiang Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Chen A, Li L, Zhou J, Li T, Yuan C, Peng H, Li C, Zhang S. Human complex mixture analysis by "FD Multi-SNP Mixture Kit". Front Genet 2024; 15:1432378. [PMID: 39399220 PMCID: PMC11466842 DOI: 10.3389/fgene.2024.1432378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Multiple linked single nucleotide polymorphisms (SNPs) have shown potential in personal identification and mixture detection. However, the limited number of marker and sequencing errors have obstructed accurate DNA typing. Methods To develop more candidate loci, the diversity value (D-value) was introduced as a new parameter for screening the novel polymorphic multiple linked-SNP markers, referred to as multi-SNP. In this study, a "FD Multi-SNP Mixture Kit" comprising 567 multi-SNPs was developed for mixture detection. Additionally, a new computational error correction method was applied as a quality control approach for sequencing data. Results The results demonstrated higher typing success rates than the conventional CE typing method. For single-source DNA, approximately 70-80 loci were detected with a DNA input of 0.009765625 ng. More than 65% of the minor alleles were distinguishable at 1 ng DNA with a frequency of 0.5% in 2- to 4-person mixtures. Conclusion This study offers a polymorphic and high-resolution detection method for DNA genotyping and complex mixture detection, providing an alternative strategy for addressing challenging mixed DNA traces.
Collapse
Affiliation(s)
- Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Lun Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
- School of Life Sciences, Jianghan University, Wuhan, Hubei, China
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
- School of Life Sciences, Jianghan University, Wuhan, Hubei, China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
- School of Life Sciences, Jianghan University, Wuhan, Hubei, China
| | - Chunyan Yuan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Science, Shanghai, China
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, China
- School of Life Sciences, Jianghan University, Wuhan, Hubei, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Science, Shanghai, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
3
|
Tang X, Wen D, Jin X, Wang C, Xu W, Qu W, Xu R, Jia H, Liu Y, Li X, Chen S, Fu X, Liang B, Li J, Liu Y, Zha L. A preliminary study on identification of the blood donor in a body fluid mixture using a novel compound genetic marker blood-specific methylation-microhaplotype. Forensic Sci Int Genet 2024; 70:103031. [PMID: 38493735 DOI: 10.1016/j.fsigen.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Blood-containing mixtures are frequently encountered at crime scenes involving violence and murder. However, the presence of blood, and the association of blood with a specific donor within these mixtures present significant challenges in forensic analysis. In light of these challenges, this study sought to address these issues by leveraging blood-specific methylation sites and closely linked microhaplotype sites, proposing a novel composite genetic marker known as "blood-specific methylation-microhaplotype". This marker was designed to the detection of blood and the determination of blood donor within blood-containing mixtures. According to the selection criteria mentioned in the Materials and Methods section, we selected 10 blood-specific methylation-microhaplotype loci for inclusion in this study. Among these loci, eight exhibited blood-specific hypomethylation, while the remaining two displayed blood-specific hypermethylation. Based on data obtained from 124 individual samples in our study, the combined discrimination power (CPD) of these 10 successfully sequenced loci was 0.999999298. The sample allele methylation rate (Ram) was obtained from massive parallel sequencing (MPS), which was defined as the proportion of methylated reads to the total clustered reads that were genotyped to a specific allele. To develop an allele type classification model capable of identifying the presence of blood and the blood donor, we used the Random Forest algorithm. This model was trained and evaluated using the Ram distribution of individual samples and the Ram distribution of simulated shared alleles. Subsequently, we applied the developed allele type classification model to predict alleles within actual mixtures, trying to exclude non-blood-specific alleles, ultimately allowing us to identify the presence of blood and the blood donor in the blood-containing mixtures. Our findings demonstrate that these blood-specific methylation-microhaplotype loci have the capability to not only detect the presence of blood but also accurately associate blood with the true donor in blood-containing mixtures with the mixing ratios of 1:29, 1:19, 1:9, 1:4, 1:2, 2:1, 7:1, 8:1, 31:1 and 36:1 (blood:non-blood) by DNA mixture interpretation methods. In addition, the presence of blood and the true blood donor could be identified in a mixture containing four body fluids (blood:vaginal fluid:semen:saliva = 1:1:1:1). It is important to note that while these loci exhibit great potential, the impact of allele dropouts and alleles misidentification must be considered when interpreting the results. This is a preliminary study utilising blood-specific methylation-microhaplotype as a complementary tool to other well-established genetic markers (STR, SNP, microhaplotype, etc.) for the analysis in blood-containing mixtures.
Collapse
Affiliation(s)
- Xuan Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Dan Wen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xin Jin
- Department of Public Security of Hainan Province, Haikou, Hainan Province, PR China
| | - Chudong Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Wei Xu
- Central Laboratory, Hunan Provincal People's Hospital (The First Affiliated Hospitak of Hunan Normal University), Changsha, Hunan Province 410000, PR China
| | - Weifeng Qu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Ruyi Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Hongtao Jia
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yi Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xue Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, PR China
| | - Siqi Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Xiaoyi Fu
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Bin Liang
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Jienan Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Ying Liu
- Xiangya Stomatological Collage, Central South University, No72. Xiangya Road, Changsha, Hunan 410013, PR China.
| | - Lagabaiyila Zha
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, PR China; Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|
4
|
Tan M, Xue J, Wu Q, Zheng Y, Liu G, Zhang R, Wu M, Song J, Xiao Y, Chen D, Lv M, Liao M, Qu S, Liang W. Improving DNA mixtures analysis using compound markers composed of InDels and SNPs screened from the whole genome with next-generation sequencing. Electrophoresis 2024; 45:463-473. [PMID: 37946554 DOI: 10.1002/elps.202300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Next-generation sequencing (NGS) allows for better identification of insertion and deletion polymorphisms (InDels) and their combination with adjacent single nucleotide polymorphisms (SNPs) to form compound markers. These markers can improve the polymorphism of microhaplotypes (MHs) within the same length range, and thus, boost the efficiency of DNA mixture analysis. In this study, we screened InDels and SNPs across the whole genome and selected highly polymorphic markers composed of InDels and/or SNPs within 300 bp. Further, we successfully developed and evaluated an NGS-based panel comprising 55 loci, of which 24 were composed of both SNPs and InDels. Analysis of 124 unrelated Southern Han Chinese revealed an average effective number of alleles (Ae ) of 7.52 for this panel. The cumulative power of discrimination and cumulative probability of exclusion values of the 55 loci were 1-2.37 × 10-73 and 1-1.19 × 10-28 , respectively. Additionally, this panel exhibited high allele detection rates of over 97% in each of the 21 artificial mixtures involving from two to six contributors at different mixing ratios. We used EuroForMix to calculate the likelihood ratio (LR) and evaluate the evidence strength provided by this panel, and it could assess evidence strength with LR, distinguishing real and noncontributors. In conclusion, our panel holds great potential for detecting and analyzing DNA mixtures in forensic applications, with the capability to enhance routine mixture analysis.
Collapse
Affiliation(s)
- Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jiaming Xue
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qiushuo Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yazi Zheng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Guihong Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ranran Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Mengna Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jinlong Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Dezhi Chen
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
5
|
Wang H, Zhu Q, Huang Y, Cao Y, Hu Y, Wei Y, Wang Y, Hou T, Shan T, Dai X, Zhang X, Wang Y, Zhang J. Using simulated microhaplotype genotyping data to evaluate the value of machine learning algorithms for inferring DNA mixture contributor numbers. Forensic Sci Int Genet 2024; 69:103008. [PMID: 38244524 DOI: 10.1016/j.fsigen.2024.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Inferring the number of contributors (NoC) is a crucial step in interpreting DNA mixtures, as it directly affects the accuracy of the likelihood ratio calculation and the assessment of evidence strength. However, obtaining the correct NoC in complex DNA mixtures remains challenging due to the high degree of allele sharing and dropout. This study aimed to analyze the impact of allele sharing and dropout on NoC inference in complex DNA mixtures when using microhaplotypes (MH). The effectiveness and value of highly polymorphic MH for NoC inference in complex DNA mixtures were evaluated through comparing the performance of three NoC inference methods, including maximum allele count (MAC) method, maximum likelihood estimation (MLE) method, and random forest classification (RFC) algorithm. In this study, we selected the top 100 most polymorphic MH from the Southern Han Chinese (CHS) population, and simulated over 40 million complex DNA mixture profiles with the NoC ranging from 2 to 8. These profiles involve unrelated individuals (RM type) and related pairs of individuals, including parent-offspring pairs (PO type), full-sibling pairs (FS type), and second-degree kinship pairs (SE type). Our results indicated that how the number of detected alleles in DNA mixture profiles varied with the markers' polymorphism, kinship's involvement, NoC, and dropout settings. Across different types of DNA mixtures, the MAC and MLE methods performed best in the RM type, followed by SE, FS, and PO types, while RFC models showed the best performance in the PO type, followed by RM, SE, and FS types. The recall of all three methods for NoC inference were decreased as the NoC and dropout levels increased. Furthermore, the MLE method performed better at low NoC, whereas RFC models excelled at high NoC and/or high dropout levels, regardless of the availability of a priori information about related pairs of individuals in DNA mixtures. However, the RFC models which considered the aforementioned priori information and were trained specifically on each type of DNA mixture profiles, outperformed RFC_ALL model that did not consider such information. Finally, we provided recommendations for model building when applying machine learning algorithms to NoC inference.
Collapse
Affiliation(s)
- Haoyu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Qiang Zhu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yuguo Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yueyan Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yuhan Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yifan Wei
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yuting Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Tingyun Hou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Tiantian Shan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Xuan Dai
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Xiaokang Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yufang Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China.
| | - Ji Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China.
| |
Collapse
|
6
|
Tomas C, Rodrigues P, Jønck CG, Barekzay Z, Simayijiang H, Pereira V, Børsting C. Performance of a 74-Microhaplotype Assay in Kinship Analyses. Genes (Basel) 2024; 15:224. [PMID: 38397213 PMCID: PMC10888013 DOI: 10.3390/genes15020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Microhaplotypes (MHs) consisting of multiple SNPs and indels on short stretches of DNA are new and interesting loci for forensic genetic investigations. In this study, we analysed 74 previously defined MHs in two of the populations that our laboratory provides with forensic genetic services, Danes and Greenlanders. In addition to the 229 SNPs that originally made up the 74 MHs, 66 SNPs and 3 indels were identified in the two populations, and 45 of these variants were included in new definitions of the MHs, whereas 24 SNPs were considered rare and of little value for case work. The average effective number of alleles (Ae) was 3.2, 3.0, and 2.6 in Danes, West Greenlanders, and East Greenlanders, respectively. High levels of linkage disequilibrium were observed in East Greenlanders, which reflects the characteristics of this population that has a small size, and signs of admixture and substructure. Pairwise kinship simulations of full siblings, half-siblings, first cousins, and unrelated individuals were performed using allele frequencies from MHs, STRs and SNPs from Danish and Greenlandic populations. The MH panel outperformed the currently used STR and SNP marker sets and was able to differentiate siblings from unrelated individuals with a 0% false positive rate and a 1.1% false negative rate using an LR threshold of 10,000 in the Danish population. However, the panel was not able to differentiate half-siblings or first cousins from unrelated individuals. The results generated in this study will be used to implement MHs as investigative markers for relationship testing in our laboratory.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s Vej 11, DK-2100 Copenhagen, Denmark; (C.T.); (P.R.); (C.G.J.); (Z.B.); (V.P.)
| |
Collapse
|
7
|
Wang H, Kang B, Gao Y, Zhang M, Jiang J, Su J, Zhang B, Zhu B, Liao S. Construction and evaluation of a novel set of 90 microhaplotypes for forensic applications using NGS technology. Forensic Sci Int 2023; 353:111848. [PMID: 37890263 DOI: 10.1016/j.forsciint.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/27/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023]
Abstract
Microhaplotypes (MHs), small sets of linked single nucleotide polymorphisms (SNPs), are becoming a valuable tool for paternity testing, personal identification and other different forensic purposes due to their advantages of both short tandem repeats (STRs) and SNPs. However, only a small part of MHs with small segments have been developed and reported so far. And the current population genetic data of MHs are still insufficient. MHs with small segments possess unique advantages in mixture deconvolution, degradation material identification, noninvasive prenatal paternity testing and even medical tumor diagnostic applications. In the present study, a set of 90 autosomal MHs whose PCR amplicon lengths are from 90-150 bp, of which 58 MHs are less than or equal to 100 bp are selected, and assembled into an amplification multiplex system optimized for Ion S5™ System for forensic application. Genetic diversity study of 90 MHs in the populations from different intercontinental regions shows that the polymorphism information content (PIC) values of 83 MHs are greater than 0.4 in populations from East Asia (EAS), and the average PIC value of 90 MHs is greater than 0.5. A total of EAS populations shows the highest cumulative match probability (CMP) and cumulative probability of exclusion (CPE) values in five intercontinental populations. The CMP and CPE values of 90 MHs in EAS are 1.1688 × 10-54 and 0.999999999998954. The informativeness for assignment (In) values of the 90 MHs are calculated based on data from five intercontinental populations, and the In values of 20 MHs have greater than 0.1, indicating that the 20 MHs are high effectiveness in distinguishing different intercontinental populations, which can be used as candidate ancestry informative markers. Further, we have studied the polymorphisms of the 90 MHs based on 224 unrelated individuals of Henan Han population, China, and obtained the frequency data of the 90 MHs. In the Henan Han population, the effective number of alleles (Ae) of the 90 MHs ranges from 1.7649 (MH45) to 3.9792 (MH50), and the Ae values of 10 MHs reach to 3.0; the Ae values of 80 MHs are greater than 2, and the average Ae value for these MHs is 2.422. The average expected heterozygosity, observed heterozygosity, PIC, matching probability, discrimination power and probability of exclusion values of 90 MHs in the Henan Han population are 0.5788, 0.5851, 0.5039, 0.2608, 0.7392 and 0.2806, respectively. The CMP value of 90 MHs in the study population is less than 10-54, and their CPE value reaches 0.999999999999999923. Moreover, the results of the depth of coverage, allele coverage ratio and noise level indicate that the 90 MH amplification system has well sequencing performance, and the sequencing results are reliable. The results indicate the 90 MHs show higher polymorphisms in the study population. The present panel can be well used in paternity testing and individual identification in the study population and even the populations from EAS.
Collapse
Affiliation(s)
- Hongdan Wang
- College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Bing Kang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yue Gao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Mengting Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Jincheng Jiang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Junxiang Su
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bo Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Bofeng Zhu
- College of Forensic Science, Xi'an Jiaotong University Health Science Center, Xi'an, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
8
|
Zhu Q, Wang H, Cao Y, Huang Y, Wei Y, Hu Y, Dai X, Shan T, Wang Y, Zhang J. Evaluation of large-scale highly polymorphic microhaplotypes in complex DNA mixtures analysis using RMNE method. Forensic Sci Int Genet 2023; 65:102874. [PMID: 37075688 DOI: 10.1016/j.fsigen.2023.102874] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/19/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
DNA mixture interpretation is one of the most challenging problems in forensics. Complex DNA mixtures are more difficult to analyze when there are more than two contributors or related contributors. Microhaplotypes (MHs) are polymorphic genetic markers recently discovered and employed in DNA mixture analysis. However, the evidentiary interpretation of the MH genotyping data needs more debate. The Random Man Not Excluded (RMNE) method analyzes DNA mixtures without using allelic peak height data or the number of contributors (NoC) assumptions. This study aimed to assess how well RMNE interpreted mixed MH genotyping data. We classified the MH loci from the 1000 Genomes Project database into groups based on their Ae values. Then we performed simulations of DNA mixtures with 2-10 unrelated contributors and DNA mixtures with a pair of sibling contributors. For each simulated DNA mixture, incorrectly included ratios were estimated for three types of non-contributors: random men, parents of contributors, and siblings of contributors. Meanwhile, RMNE probability was calculated for contributors and three types of non-contributors, allowing loci mismatch. The results showed that the MH number, the MH Ae values, and the NoC affected the RMNE probability of the mixture and the incorrectly included ratio of non-contributors. When there were more MHs, MHs with higher Ae values, and a mixture with less NoC, the RMNE probability, and the incorrectly included ratio decreased. The existence of kinship in mixtures complicated the mixture interpretation. Contributors' relatives as non-contributors and related contributors in the mixture increased the demands on the genetic markers to identify the contributors correctly. When 500 highly polymorphic MHs with Ae values higher than 5 were used, the four individual types could be distinguished according to the RMNE probabilities. This study reveals the promising potential of MH as a genetic marker for mixed DNA interpretation and the broadening of RMNE as a parameter indicating the relationship of a specific individual with a DNA mixture in the DNA database search.
Collapse
Affiliation(s)
- Qiang Zhu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Haoyu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Yueyan Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Yuguo Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Yifan Wei
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Yuhan Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Xuan Dai
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Tiantian Shan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China
| | - Yunfeng Wang
- College of Computer Science, Sichuan University, PR China.
| | - Ji Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, PR China.
| |
Collapse
|
9
|
Du Q, Ma G, Lu C, Wang Q, Fu L, Cong B, Li S. Development and evaluation of a novel panel containing 188 microhaplotypes for 2nd-degree kinship testing in the Hebei Han population. Forensic Sci Int Genet 2023; 65:102855. [PMID: 36947934 DOI: 10.1016/j.fsigen.2023.102855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Distant kinship identification is one of the critical problems in forensic genetics. As a new type of genetic marker defined and discussed in the last decade, the microhaplotype (MH) has drawn much attention in such identification owing to its specific advantages to traditional short tandem repeat (STR) or single nucleotide polymorphism (SNP) markers. In this study, MH markers were screened step by step from the 1000 Genomes Project database, and a novel multiplex panel containing 188 MHs (in which 181 are reported the first time, while 1 was reported in a previous study and the other 6 have partial overlaps with known markers) was constructed for application in 2nd- and 3rd-degree kinship identification. Along with the construction, a novel MH nomenclature was proposed, in which the SNP position information they contained was taken into account to eliminate the possibility that the same locus was named differently interlaboratory. After a series of evaluations, the panel was shown to have good sequencing accuracy, high sensitivity, species specificity, and resistance to anti-PCR inhibitors or degradation. Population data of the 188 MHs were calculated based on the genetic information of 221 unrelated Hebei Han individuals, and the effective number of alleles (Ae) ranged from 2.0925 to 8.2634 (with an average of 2.9267). For the whole system, the cumulative matching probability (CMP), the cumulative power of exclusion in paternity testing of duos (CPEduo) and that of trios (CPEtrio) reached 2.8422 × 10-137, 1-1.3109 × 10-21, and 1-2.8975 × 10-39, respectively, indicating that this panel was satisfactory for individual identification and paternity testing. Then, the efficiency of the 188 MHs in 2nd- and 3rd-degree kinship testing was studied based on 30 extended families consisting of 179 2nd-degree and 121 3rd-degree relatives, as well as simulations of 0.5 million pairs of those two kinships. The results showed that clear opinions would be given in 83.36% of 2nd-degree identifications with a false rate less than 10-5, when the confirming and excluding thresholds of cumulative likelihood ratio (CLR) were set as 104 and 10-4, respectively. This panel is still not sufficient to solve the problem of 3rd-degree kinship identification alone, and approximately 300 or 870 MH loci would be needed in 2nd- or 3rd-degree kinship identification, respectively, to achieve a system efficiency not less than 0.99 with such a threshold set; such necessary numbers would be used only as a reference in further research.
Collapse
Affiliation(s)
- Qingqing Du
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, No. 361 Zhong Shan Road, Shijiazhuang, Hebei, China
| | - Guanju Ma
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, No. 361 Zhong Shan Road, Shijiazhuang, Hebei, China
| | - Chaolong Lu
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, No. 361 Zhong Shan Road, Shijiazhuang, Hebei, China
| | - Qian Wang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, No. 361 Zhong Shan Road, Shijiazhuang, Hebei, China
| | - Lihong Fu
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, No. 361 Zhong Shan Road, Shijiazhuang, Hebei, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, No. 361 Zhong Shan Road, Shijiazhuang, Hebei, China
| | - Shujin Li
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, No. 361 Zhong Shan Road, Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
11
|
Kidd KK, Pakstis AJ, Gandotra N, Scharfe C, Podini D. A multipurpose panel of microhaplotypes for use with STR markers in casework. Forensic Sci Int Genet 2022; 60:102729. [PMID: 35696960 PMCID: PMC11071123 DOI: 10.1016/j.fsigen.2022.102729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
A small panel of highly informative loci that can be genotyped on the same equipment as the standard CODIS short tandem repeat (STR) markers has strong potential for application in forensic casework. Single nucleotide polymorphisms (SNPs) can be typed by a couple of methods on capillary electrophoresis (CE) machines and on sequencers, but the amount of information relative to the laboratory effort has hindered use of SNPs in actual casework. Insertion-deletion markers (InDels) suffer from similar problems. Microhaplotypes (MHs) are much more informative per locus but have similar technical difficulties unless they are typed by massively parallel sequencing (MPS). As forensic labs are acquiring sequencing machines, MHs become more likely to be used in casework, especially if multiplexed with STRs. Here we present the details of a multipurpose panel of 24 MHs with the highest effective number of alleles (Ae) from previous work. An augmented STR panel of 24 loci (20 CODIS markers plus four commonly typed STRs) is also considered. The Ae and ancestry informativeness (In) distributions of these two datasets are compared. The MH panel is shown to have better individualization and population distinction than the augmented CODIS STRs. We note that the 24 MHs should be better for mixture analyses than the STRs. Finally, we suggest that a commercial kit including both the standard CODIS markers and this set of 24 MH would greatly improve the discrimination power over that of current commercial assays.
Collapse
Affiliation(s)
- Kenneth K Kidd
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, CT 06520, United States.
| | - Andrew J Pakstis
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, CT 06520, United States
| | - Neeru Gandotra
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, CT 06520, United States
| | - Curt Scharfe
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, CT 06520, United States
| | - Daniele Podini
- The George Washington University, Department of Forensic Science, 2100 Foxhall Road, NW, Washington, DC 20007, United States
| |
Collapse
|
12
|
State of the Art for Microhaplotypes. Genes (Basel) 2022; 13:genes13081322. [PMID: 35893059 PMCID: PMC9329722 DOI: 10.3390/genes13081322] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, the number of publications on microhaplotypes has averaged more than a dozen papers annually. Many have contributed to a significant increase in the number of highly polymorphic microhaplotype loci. This increase allows microhaplotypes to be very informative in four main areas of forensic uses of DNA: individualization, ancestry inference, kinship analysis, and mixture deconvolution. The random match Probability (RMP) can be as small as 10−100 for a large panel of microhaplotypes. It is possible to measure the heterozygosity of an MH as the effective number of alleles (Ae). Ae > 7.5 exists for African populations and >4.5 exists for Native American populations for a smaller panel of two dozen selected microhaplotypes. Using STRUCTURE, at least 10 different ancestral clusters can be defined by microhaplotypes. The Ae for a locus is also identical to the Paternity Index (PI), the measure of how informative a locus will be in parentage testing. High Ae loci can also be useful in missing persons cases. Finally, high Ae microhaplotypes allow the near certainty of seeing multiple additional alleles in a mixture of two or more individuals in a DNA sample. In summary, a panel of higher Ae microhaplotypes can outperform the standard CODIS markers.
Collapse
|
13
|
Microhaplotype and Y-SNP/STR (MY): A novel MPS-based system for genotype pattern recognition in two-person DNA mixtures. Forensic Sci Int Genet 2022; 59:102705. [DOI: 10.1016/j.fsigen.2022.102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
|
14
|
Development and validation of a novel 133-plex forensic STR panel (52 STRs and 81 Y-STRs) using single-end 400 bp massive parallel sequencing. Int J Legal Med 2021; 136:447-464. [PMID: 34741666 DOI: 10.1007/s00414-021-02738-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Short tandem repeats (STRs) are the preferred genetic markers in forensic DNA analysis, routinely measured by capillary electrophoresis (CE) method based on the fragment length features. While, the massive parallel sequencing (MPS) technology could simultaneously target a large number of intriguing forensic STRs, bypassing the intrinsic limitations of amplicon size separation and accessible fluorophores in CE, which is efficient and promising for enabling the identification of forensic biological evidence. Here, we developed a novel MPS-based Forensic Analysis System Multiplecues SetB Kit of 133-plex forensic STR markers (52 STRs and 81 Y-STRs) and one Y-InDel (M175) based on multiplex PCR and single-end 400 bp sequencing strategy. This panel was subjected to developmental validation studies according to the SWGDAM Validation Guidelines. Approximately 2185 MPS-based reactions using 6 human DNA standards and 8 male donors were conducted for substrate studies (filter paper, gauze, cotton swab, four different types of FTA cards, peripheral venous blood, saliva, and exfoliated cells), sensitivity studies (from 2 ng down to 0.0625 ng), mixture studies (two-person DNA mixtures), PCR inhibitor studies (seven commonly encountered PCR inhibitors), species specificity studies (11 non-human species), and repeatability studies. Results of concordance studies (413 Han males and 6 human DNA standards) generated by STRait Razor and in-house Python scripts indicated 99.98% concordance rate in STR calling relative to CE for STRs between 41,900 genotypes at 100 STR markers. Moreover, the limitations of present studies, the nomenclature rules and forensic MPS applications were also described. In conclusion, the validation studies based on ~ 2200 MPS-based and ~ 2500 CE-based DNA profiles demonstrated that the novel MPS-based panel meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities, and the STR nomenclature rules should be further regulated to integrate the inconformity between MPS-based and CE-based methods.
Collapse
|
15
|
Pakstis AJ, Gandotra N, Speed WC, Murtha M, Scharfe C, Kidd KK. The population genetics characteristics of a 90 locus panel of microhaplotypes. Hum Genet 2021; 140:1753-1773. [PMID: 34643790 PMCID: PMC8553733 DOI: 10.1007/s00439-021-02382-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) and small genomic regions with multiple SNPs (microhaplotypes, MHs) are rapidly emerging as novel forensic investigative tools to assist in individual identification, kinship analyses, ancestry inference, and deconvolution of DNA mixtures. Here, we analyzed information for 90 microhaplotype loci in 4009 individuals from 79 world populations in 6 major biogeographic regions. The study included multiplex microhaplotype sequencing (mMHseq) data analyzed for 524 individuals from 16 populations and genotype data for 3485 individuals from 63 populations curated from public repositories. Analyses of the 79 populations revealed excellent characteristics for this 90-plex MH panel for various forensic applications achieving an overall average effective number of allele values (Ae) of 4.55 (range 1.04–19.27) for individualization and mixture deconvolution. Population-specific random match probabilities ranged from a low of 10–115 to a maximum of 10–66. Mean informativeness (In) for ancestry inference was 0.355 (range 0.117–0.883). 65 novel SNPs were detected in 39 of the MHs using mMHseq. Of the 3018 different microhaplotype alleles identified, 1337 occurred at frequencies > 5% in at least one of the populations studied. The 90-plex MH panel enables effective differentiation of population groupings for major biogeographic regions as well as delineation of distinct subgroupings within regions. Open-source, web-based software is available to support validation of this technology for forensic case work analysis and to tailor MH analysis for specific geographical regions.
Collapse
Affiliation(s)
- Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Neeru Gandotra
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - William C Speed
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Michael Murtha
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Curt Scharfe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
16
|
Wu R, Chen H, Li R, Zang Y, Shen X, Hao B, Wang Q, Sun H. Pairwise kinship testing with microhaplotypes: Can advancements be made in kinship inference with these markers? Forensic Sci Int 2021; 325:110875. [PMID: 34166816 DOI: 10.1016/j.forsciint.2021.110875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Kinship testing based on genetic relatedness is one of the major tasks in forensic genetics. Although short tandem repeats (STRs) are the "gold standard" biomarkers for relationship testing, microhaplotypes (MHs) have also emerged as viable options for kinship elucidation. In this work, the kinship testing efficiency of 54 highly polymorphic MHs was studied in two extended families consisting of parent-offspring, full siblings, grandparent-grandchildren, uncle/aunt-nephew/nieces, and first cousins. In addition, ten-thousand pairs of different degrees of relationships were simulated using various datasets including 54 MHs, 27 STRs plus 94 single nucleotide polymorphisms (SNPs) that were included in the ForenSeq DNA Signature Prep Kit (ForenSeq), 54 MHs plus loci in ForenSeq, and different subsets of 417-published MHs. The panels' system effectiveness in the kinship analysis were accessed by likelihood ratio distributions. The results showed that 54 MHs could be used in first-degree relationship testing with high reliability. The effectiveness of 54 MHs was slightly lower than ForenSeq but only by a narrow margin. Both 54 MHs and ForenSeq were not sufficient for distant relationship testing, and approximately 200 microhaplotypes with an average expected heterozygosity (He) = 0.79 were enough to determine second-degree relationships, but a panel of 417 MHs with an average He = 0.72 was not sufficient to first cousins testing according to the simulation analysis. In conclusion, 54 MHs could be used to serve as supplement markers for kinship testing; and well-established STR markers plus well-performing microhaplotype markers may become collective tools in forensic applications, though an enlarged pool of forensic markers is needed for distant relationship testing.
Collapse
Affiliation(s)
- Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hui Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ran Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yu Zang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xuefeng Shen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Bo Hao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|