1
|
Neis M, Groß T, Schneider H, Schneider PM, Courts C. Comprehensive body fluid identification and contributor assignment by combining targeted sequencing of mRNA and coding region SNPs. Forensic Sci Int Genet 2024; 73:103125. [PMID: 39182373 DOI: 10.1016/j.fsigen.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Forensic genetic analyses aim to retrieve as much information as possible from biological trace material recovered from crime scenes. While standard short tandem repeat (STR) profiling is essential to individualize biological traces, its significance is diminished in crime scenarios where the presence of a suspect's DNA is acknowledged by all parties. In such cases, forensic (m)RNA analysis can provide crucial contextualizing information on the source level about a trace's composition, i.e., body fluids/tissues, and has therefore emerged as a powerful tool for modern forensic investigations. However, the question which of several suspects contributed a specific component (body fluid) to a mixed trace cannot be answered by RNA analysis using conventional methods. This individualizing information is stored within the sequence of the mRNA transcripts. Massively parallel sequencing (MPS) represents a promising alternative, offering not only higher multiplex capacity, but also the typing of individual coding region SNPs (cSNPs) to enable the assignment of contributors to mixture components, thereby reducing the risk of association fallacies. Herein, we describe the development of an extensive mRNA/cSNP panel for targeted sequencing on the IonTorrent S5 platform. Our panel comprises 30 markers for the detection of six body fluids/tissues (blood, saliva, semen, skin, vaginal and menstrual secretion), along with 70 linkage-controlled cSNPs for contributor assignment. It exhibited high reliable detection sensitivity with RNA inputs down to 0.75 ng and a conservatively calculated probability of identity of 0.03 - 6 % for individual body fluid-specific cSNP profiles. Limitations and areas for future work include RNA-related allele imbalances, inclusion of markers to correctly identify rectal mucosa and the optimization of specific markers. In summary, our new panel is intended to be a major step forward to interpret biological evidence at sub-source and source level based on cSNP attribution of a body fluid component to a suspect and victim, respectively.
Collapse
Affiliation(s)
- Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - Theresa Groß
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Harald Schneider
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Cornelius Courts
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Vyas B, Halámková L, Lednev IK. Phenotypic profiling based on body fluid traces discovered at the scene of crime: Raman spectroscopy of urine stains for race differentiation. Analyst 2024; 149:5081-5090. [PMID: 39221568 DOI: 10.1039/d4an00938j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modern criminal investigations heavily rely on trace bodily fluid evidence as a rich source of DNA. DNA profiling of such evidence can result in the identification of an individual if a matching DNA profile is available. Alternatively, phenotypic profiling based on the analysis of body fluid traces can significantly narrow down the pool of suspects in a criminal investigation. Urine stain is a frequently encountered specimen at the scene of crime. Raman spectroscopy offers great potential as a universal confirmatory method for the identification of all main body fluids, including urine. In this proof-of-concept study, Raman spectroscopy combined with advanced statistics was used for race differentiation based on the analysis of urine stains. Specifically, a Random Forest (RF) model was built, which allowed for differentiating Caucasian (CA) and African American (AA) descent donors with 90% accuracy based on Raman spectra of dried urine samples. Raman spectra were collected from samples of 28 donors varying in age and sex. This novel technology offers great potential as a universal forensic tool for phenotypic profiling of a potential suspect immediately at the scene of a crime, providing invaluable information for a criminal investigation.
Collapse
Affiliation(s)
- Bhavik Vyas
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Lenka Halámková
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
3
|
Jepsen AH, Kampmann ML, Jacobsen SB, Børsting C, Andersen JD. Identification of individuals from low template blood samples using whole transcriptome shotgun sequencing. Forensic Sci Int Genet 2024; 72:103089. [PMID: 38905753 DOI: 10.1016/j.fsigen.2024.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Biological trace samples consisting of very few cells pose a challenge to conventional forensic genetic DNA analysis. RNA may be an alternative to DNA when handling low template samples. Whereas each cell only contains two copies of an autosomal DNA segment, the transcriptome retains much of the genomic variation replicated in abundant RNA fragments. In this study, we describe the development of a prototype RNA-based SNP selection set for forensic human identification from low template samples (50 pg gDNA). Whole blood from a subset of the Danish population (41 individuals) and blood stains subjected to degradation at room temperature for up to two weeks were analysed by whole transcriptome shotgun sequencing. Concordance was determined by DNA genotyping with the Infinium Omni5-4 SNP chip. In the 100 protein-coding genes with the most reads, 5214 bi-allelic SNPs with gnomAD minor allele frequencies > 0.1 in the African/African American, East Asian, and (non-Finnish) European populations were identified. Of these, 24 SNPs in 21 genes passed screening in whole blood and degraded blood stains, with a resulting mean match probability of 4.5 ∙ 10-9. Additionally, ancestry informative SNPs and SNPs in genes useful for body fluid identification were identified in the transcriptome. Consequently, shotgun sequencing of RNA from low template samples may be used for a vast host of forensic genetics purposes, including simultaneous human and body fluid identification, leading to direct donor identification in the identified body fluid.
Collapse
Affiliation(s)
- Alberte Honoré Jepsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, Copenhagen DK-2100, Denmark.
| | - Marie-Louise Kampmann
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, Copenhagen DK-2100, Denmark
| | - Stine Bøttcher Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, Copenhagen DK-2100, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, Copenhagen DK-2100, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, Copenhagen DK-2100, Denmark
| |
Collapse
|
4
|
Liu Z, Wang J, Li L, Yang H, Yu H, Fan J, Zhang M, Zhang Y, Liu J, Li Z, Zhang G. Identification of the body fluid donor in mixtures through target mRNA cSNP sequencing. Forensic Sci Int Genet 2024; 71:103066. [PMID: 38833776 DOI: 10.1016/j.fsigen.2024.103066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
In forensic practice, mixture stains containing various body fluids are common, presenting challenges for interpretation, particularly in multi-contributor mixtures. Traditional STR profiles face difficulties in such scenarios. Over recent years, RNA has emerged as a promising biomarker for body fluid identification, and mRNA polymorphism has shown excellent performance in identifying body fluid donors in previous studies. In this study, a massively parallel sequencing assay was developed, encompassing 202 coding region SNPs (cSNPs) from 45 body fluid/tissue-specific genes to identify both body fluid/tissue origin and the respective donors, including blood, saliva, semen, vaginal secretion, menstrual blood, and skin. The specificity was evaluated by examining the single-source body fluids/tissue and revealed that the same body fluid exhibited similar expression profiles and the tissue origin could be identified. For laboratory-generated mixtures containing 2-6 different components and mock case mixtures, the donor of each component could be successfully identified, except for the skin donor. The discriminatory power for all body fluids ranged from 0.997176329 (menstrual blood) to 0.99999999827 (blood). The concordance of DNA typing and mRNA typing for the cSNPs in this system was also validated. This cSNP typing system exhibits excellent performance in mixture deconvolution.
Collapse
Affiliation(s)
- Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Lishan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Hailing Yang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Huan Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Jiajia Fan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Mingming Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Yuxin Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030619, China.
| |
Collapse
|
5
|
Liu Z, Yang J, Wang N, Liu J, Geng J, Zhu J, Cong B, Sun H, Wu R. Integrative lncRNA, circRNA, and mRNA analysis reveals expression profiles of six forensic body fluids/tissue. Int J Legal Med 2024; 138:731-742. [PMID: 37994925 DOI: 10.1007/s00414-023-03131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
RNAs have attracted much attention in forensic body fluid/tissue identification (BFID) due to their tissue-specific expression characteristics. Among RNAs, long RNAs (e.g., mRNA) have a higher probability of containing more polymorphic sites that can be used to assign the specific donor of the body fluid/tissue. However, few studies have characterized their overall profiles in forensic science. In this study, we sequenced the transcriptomes of 30 samples from venous blood, menstrual blood, semen, saliva, vaginal secretion, and skin tissue, obtaining a comprehensive picture of mRNA, lncRNA, and circRNA profiles. A total of 90,305 mRNAs, 102,906 lncRNAs (including 19,549 novel lncRNAs), and 40,204 circRNAs were detected. RNA type distribution, length distribution, and expression distribution were presented according to their annotation and expression level, and many novel body fluid/tissue-specific RNA markers were identified. Furthermore, the cognate relations among the three RNAs were analyzed according to gene annotations. Finally, SNPs and InDels from RNA transcripts were genotyped, and 21,611 multi-SNP and 4,471 multi-InDel transcriptomic microhaplotypes (tMHs) were identified. These results provide a comprehensive understanding of transcriptome profiles, which could provide new avenues for tracing the origin of the body fluid/tissue and identifying an individual.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Wang S, Jiang T, Yuan C, Wu L, Zhen X, Lei Y, Xie B, Tao R, Li C. An mRNA profiling assay incorporating coding region InDels for body fluid identification and the inference of the donor in mixed samples. Forensic Sci Int Genet 2024; 69:102979. [PMID: 38043150 DOI: 10.1016/j.fsigen.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tingting Jiang
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Yuan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Liming Wu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Xiaoyuan Zhen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Yinlei Lei
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Baoyan Xie
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China; Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Johannessen H, Hanson E, Gill P, Haas C, Bergseth EF, Ballantyne J, Fonneløp AE. Body Fluid Identification in Samples Collected after Intimate and Social Contact: A Comparison of Two mRNA Profiling Methods and the Additional Information Gained by cSNP Genotypes. Genes (Basel) 2023; 14:genes14030636. [PMID: 36980908 PMCID: PMC10048544 DOI: 10.3390/genes14030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The ability to associate a contributor with a specific body fluid in a crime stain can aid casework investigation. The detection of body fluids combined with DNA analyses may supply essential information, but as the two tests are independent, they may not be associated. Recently, the analysis of coding region SNPs (cSNPs) within the RNA transcript has been proven to be a promising method to face this challenge. In this study, we performed targeted RNA sequencing of 158 samples (boxershorts, fingernail swabs and penile swabs) collected from 12 couples at different time points post-intimate contact and after non-intimate contact, using the Ion S5™ System and BFID-cSNP-6F assay. The aim of the study was to compare the performance of the MPS and CE methods in the detection of mRNA markers, and to associate body fluids with contributors by their cSNP genotypes. The results of the study show a lower success rate in the detection of vaginal mucosa by the MPS compared to the CE method. However, the additional information obtained with the cSNP genotypes could successfully associate body fluids with contributors in most cases.
Collapse
Affiliation(s)
- Helen Johannessen
- Department of Forensic Medicine, University of Oslo, 0315 Oslo, Norway
- Correspondence: or
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Peter Gill
- Department of Forensic Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Forensic Sciences, Oslo University Hospital, 0372 Oslo, Norway
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland
| | | | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Ane Elida Fonneløp
- Department of Forensic Sciences, Oslo University Hospital, 0372 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|