1
|
Wang Y, Liu S, Hao H, Yang C, Tu T, Fan Y, Song Z, Yang K, Zhang H, Li HF, Ma Y. Laboratory parameters as diagnostic indicators in venous hypertensive myelopathy. Spine J 2025; 25:956-965. [PMID: 39667644 DOI: 10.1016/j.spinee.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND CONTEXT Venous hypertension is a rare cause of myelopathy that can be misdiagnosed as myelitis and be worsened by glucocorticosteroids. PURPOSE This study is aims to identify a fluid biomarker with diagnostic value in Venous Hypertensive Myelopathy (VHM). STUDY DESIGN a retrospective diagnostic study. PATIENT SAMPLE The patients diagnosed as having myelopathy between December 2020 and June 2022 were divided into a VHM group (n=71) and an inflammatory myelopathy (IM) group (n=123). A noninflammatory neurological disorders (NIND) group (n=53) was also acquired as baseline control. OUTCOME MEASURES The primary outcome was the diagnostic accuracy of the fluid biomarkers in the VHM and IM groups. METHODS The albumin, immunoglobulins, oligoclonal bands, neuron-specific enolase, myelin basic protein, and S100β were measured in their cerebrospinal fluid (CSF) and paired serum samples. Potential diagnostic biomarkers were screened through univariate and collinearity analyses. The diagnostic performance of these biomarkers was assessed by plotting the receiver-operating characteristic curves. Additionally, the predictive value of clinical factors and biomarkers for diagnosis was evaluated using multivariable logistic regression analysis. RESULTS The quantitative and normalized CSF-S100β values were significantly lower in the VHM group (p<.05). Analysis of receiver-operating characteristic curves adjusted for age and sex showed that the normalized CSF-S100β discriminated between VHM and IM (area under the curve (AUC) 0.884, 95% confidence interval [CI] 0.817-0.938). Particularly, it performed well in the AUC for normalized CSF-S100β (AUC 0.9400, 95% CI 0.8621-1.000) when oligoclonal bands and flow-void sign were negative. CONCLUSIONS The normalized CSF-S100β can differentiate between VHM and IM.
Collapse
Affiliation(s)
- Yinqing Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuangshuang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongjun Hao
- Laboratory of Neuroimmunology, Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chengbin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxiang Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zihao Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Evidence-based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai-Feng Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Mravinacová S, Bergström S, Olofsson J, de San José NG, Anderl-Straub S, Diehl-Schmid J, Fassbender K, Fliessbach K, Jahn H, Kornhuber J, Landwehrmeyer GB, Lauer M, Levin J, Ludolph AC, Prudlo J, Schneider A, Schroeter ML, Wiltfang J, Steinacker P, Otto M, Nilsson P, Månberg A. Addressing inter individual variability in CSF levels of brain derived proteins across neurodegenerative diseases. Sci Rep 2025; 15:668. [PMID: 39753643 PMCID: PMC11698900 DOI: 10.1038/s41598-024-83281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Accurate diagnosis and monitoring of neurodegenerative diseases require reliable biomarkers. Cerebrospinal fluid (CSF) proteins are promising candidates for reflecting brain pathology; however, their diagnostic utility may be compromised by natural variability between individuals, weakening their association with disease. Here, we measured the levels of 69 pre-selected proteins in cerebrospinal fluid using antibody-based suspension bead array technology in a multi-disease cohort of 499 individuals with neurodegenerative disorders including Alzheimer's disease (AD), behavioral variant frontotemporal dementia, primary progressive aphasias, amyotrophic lateral sclerosis (ALS), corticobasal syndrome, primary supranuclear palsy, along with healthy controls. We identify significant inter-individual variability in overall CSF levels of brain-derived proteins, which could not be attributed to specific disease associations. Using linear modelling, we show that adjusting for median CSF levels of brain-derived proteins increases the diagnostic accuracy of proteins previously identified as altered in CSF in the context of neurodegenerative disorders. We further demonstrate a simplified approach for the adjustment using pairs of correlated proteins with opposite alteration in the diseases. With this approach, the proteins adjust for each other and further increase the biomarker performance through additive effect. When comparing the diseases, two proteins-neurofilament medium and myelin basic protein-showed increased levels in ALS compared to other diseases, and neurogranin showed a specific increase in AD. Several other proteins showed similar trends across the studied diseases, indicating that these proteins likely reflect shared processes related to neurodegeneration. Overall, our findings suggest that accounting for inter-individual variability is crucial in future studies to improve the identification and performance of relevant biomarkers. Importantly, we highlight the need for multi-disease studies to identify disease-specific biomarkers.
Collapse
Affiliation(s)
- Sára Mravinacová
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sofia Bergström
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jennie Olofsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Janine Diehl-Schmid
- Department of Psychiatry, Technical University of Munich, Munich, Germany
- Kbo-Inn-Salzach-Klinikum Gemeinnützige GmbH, Wasserburg Am Inn, Germany
| | | | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Holger Jahn
- Department of Psychiatry, University Hospital, Hamburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Martin Lauer
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Albert C Ludolph
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | - Johannes Prudlo
- Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig, and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, and DZNE, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
3
|
Klose V, Jesse S, Lewerenz J, Kassubek J, Dorst J, Rosenbohm A, Nagel G, Wernecke D, Roselli F, Tumani H, Ludolph AC. Blood-CSF barrier integrity in amyotrophic lateral sclerosis. Brain 2024; 147:4254-4264. [PMID: 38743595 DOI: 10.1093/brain/awae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
The integrity of the blood-CSF barrier plays a major role in inflammation, but also in shielding the CNS from external and systemic-potentially toxic-factors. Here we report results of measurements of the albumin quotient-which is thought to mirror the integrity of the blood-CSF barrier-in 1059 patients with amyotrophic lateral sclerosis. The results were compared with groups of patients suffering from Alzheimer's disease, facial palsy and tension headache. The albumin quotient, an accepted measure of the blood-CSF barrier integrity, was not significantly different from control populations. In addition, we found that the albumin quotient correlated with survival of the patients; this effect was mainly driven by male patients and influenced by age, body mass index and diabetes mellitus. We conclude that the blood-CSF barrier is intact in this large cohort of patients with amyotrophic lateral sclerosis and that the albumin quotient correlates with survival. Whether this is important for the pathogenesis of the disease, requires mechanistic studies.
Collapse
Affiliation(s)
- Veronika Klose
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, 89081 Ulm, Germany
| | - Sarah Jesse
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, 89081 Ulm, Germany
| | - Jan Lewerenz
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, 89081 Ulm, Germany
| | - Johannes Dorst
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | | | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, 89081 Ulm, Germany
| | - Deborah Wernecke
- Institute of Epidemiology and Medical Biometry, Ulm University, 89081 Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, 89081 Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, 89081 Ulm, Germany
| |
Collapse
|
4
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Wiesenfarth M, Dorst J, Brenner D, Elmas Z, Parlak Ö, Uzelac Z, Kandler K, Mayer K, Weiland U, Herrmann C, Schuster J, Freischmidt A, Müller K, Siebert R, Bachhuber F, Simak T, Günther K, Fröhlich E, Knehr A, Regensburger M, German A, Petri S, Grosskreutz J, Klopstock T, Reilich P, Schöberl F, Hagenacker T, Weyen U, Günther R, Vidovic M, Jentsch M, Haarmeier T, Weydt P, Valkadinov I, Hesebeck-Brinckmann J, Conrad J, Weishaupt JH, Schumann P, Körtvélyessy P, Meyer T, Ruf WP, Witzel S, Senel M, Tumani H, Ludolph AC. Effects of tofersen treatment in patients with SOD1-ALS in a "real-world" setting - a 12-month multicenter cohort study from the German early access program. EClinicalMedicine 2024; 69:102495. [PMID: 38384337 PMCID: PMC10878861 DOI: 10.1016/j.eclinm.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Background In April 2023, the antisense oligonucleotide tofersen was approved by the U.S. Food and Drug Administration (FDA) for treatment of SOD1-amyotrophic lateral sclerosis (ALS), after a decrease of neurofilament light chain (NfL) levels had been demonstrated. Methods Between 03/2022 and 04/2023, 24 patients with SOD1-ALS from ten German ALS reference centers were followed-up until the cut-off date for ALS functional rating scale revised (ALSFRS-R), progression rate (loss of ALSFRS-R/month), NfL, phosphorylated neurofilament heavy chain (pNfH) in cerebrospinal fluid (CSF), and adverse events. Findings During the observation period, median ALSFRS-R decreased from 38.0 (IQR 32.0-42.0) to 35.0 (IQR 29.0-42.0), corresponding to a median progression rate of 0.11 (IQR -0.09 to 0.32) points of ALSFRS-R lost per month. Median serum NfL declined from 78.0 pg/ml (IQR 37.0-147.0 pg/ml; n = 23) to 36.0 pg/ml (IQR 22.0-65.0 pg/ml; n = 23; p = 0.02), median pNfH in CSF from 2226 pg/ml (IQR 1061-6138 pg/ml; n = 18) to 1151 pg/ml (IQR 521-2360 pg/ml; n = 18; p = 0.02). In the CSF, we detected a pleocytosis in 73% of patients (11 of 15) and an intrathecal immunoglobulin synthesis (IgG, IgM, or IgA) in 9 out of 10 patients. Two drug-related serious adverse events were reported. Interpretation Consistent with the VALOR study and its Open Label Extension (OLE), our results confirm a reduction of NfL serum levels, and moreover show a reduction of pNfH in CSF. The therapy was safe, as no persistent symptoms were observed. Pleocytosis and Ig synthesis in CSF with clinical symptoms related to myeloradiculitis in two patients, indicate the potential of an autoimmune reaction. Funding No funding was received towards this study.
Collapse
Affiliation(s)
| | - Johannes Dorst
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Zeynep Elmas
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Özlem Parlak
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Zeljko Uzelac
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | | | - Kristina Mayer
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Ulrike Weiland
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | | | - Joachim Schuster
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| | | | - Kathrin Müller
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Tatiana Simak
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | | | - Elke Fröhlich
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Martin Regensburger
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, 91054, Erlangen, Germany
| | - Alexander German
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Julian Grosskreutz
- Precision Neurology of Neuromuscular and Motoneuron Diseases, University of Lübeck, 23538, Lübeck, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, LMU University Hospital, LMU Munich, 80336, München, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Peter Reilich
- Department of Neurology with Friedrich-Baur-Institute, LMU University Hospital, LMU Munich, 80336, München, Germany
| | - Florian Schöberl
- Department of Neurology with Friedrich-Baur-Institute, LMU University Hospital, LMU Munich, 80336, München, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45127, Essen, Germany
| | - Ute Weyen
- Department of Neurology, Ruhr-University Bochum, BG-Kliniken Bergmannsheil, 44789, Bochum, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Dresden, 01307, Dresden, Germany
| | - Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Martin Jentsch
- Department of Neurology, Helios Klinikum Krefeld, 47805, Krefeld, Germany
| | - Thomas Haarmeier
- Department of Neurology, Helios Klinikum Krefeld, 47805, Krefeld, Germany
| | - Patrick Weydt
- Department for Neurodegenerative Disorders and Gerontopsychiatry, Bonn University, 53127, Bonn, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Bonn, 53127, Bonn, Germany
| | - Ivan Valkadinov
- Division for Neurodegenerative Diseases, Neurology Department, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Jasper Hesebeck-Brinckmann
- Division for Neurodegenerative Diseases, Neurology Department, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Julian Conrad
- Division for Neurodegenerative Diseases, Neurology Department, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Jochen Hans Weishaupt
- Division for Neurodegenerative Diseases, Neurology Department, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Peggy Schumann
- Ambulanzpartner Soziotechnologie GmbH, 13353, Berlin, Germany
| | - Peter Körtvélyessy
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Magdeburg, 39120, Magdeburg, Germany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | | | - Simon Witzel
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Makbule Senel
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| | - Albert Christian Ludolph
- Department of Neurology, Ulm University, 89081, Ulm, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, 89081, Ulm, Germany
| |
Collapse
|
6
|
Campana M, Löhrs L, Strauß J, Münz S, Oviedo-Salcedo T, Fernando P, Maurus I, Raabe F, Moussiopoulou J, Eichhorn P, Falkai P, Hasan A, Wagner E. Blood-brain barrier dysfunction and folate and vitamin B12 levels in first-episode schizophrenia-spectrum psychosis: a retrospective chart review. Eur Arch Psychiatry Clin Neurosci 2023; 273:1693-1701. [PMID: 36869234 PMCID: PMC10713685 DOI: 10.1007/s00406-023-01572-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Abstract
Vitamin deficiency syndromes and blood-brain barrier (BBB) dysfunction are frequent phenomena in psychiatric conditions. We analysed the largest available first-episode schizophrenia-spectrum psychosis (FEP) cohort to date regarding routine cerebrospinal fluid (CSF) and blood parameters to investigate the association between vitamin deficiencies (vitamin B12 and folate) and BBB impairments in FEP. We report a retrospective analysis of clinical data from all inpatients that were admitted to our tertiary care hospital with an ICD-10 diagnosis of a first-episode F2x (schizophrenia-spectrum) between January 1, 2008 and August 1, 2018 and underwent a lumbar puncture, blood-based vitamin status diagnostics and neuroimaging within the clinical routine. 222 FEP patients were included in our analyses. We report an increased CSF/serum albumin quotient (Qalb) as a sign of BBB dysfunction in 17.1% (38/222) of patients. White matter lesions (WML) were present in 29.3% of patients (62/212). 17.6% of patients (39/222) showed either decreased vitamin B12 levels or decreased folate levels. No statistically significant association was found between vitamin deficiencies and altered Qalb. This retrospective analysis contributes to the discussion on the impact of vitamin deficiency syndromes in FEP. Although decreased vitamin B12 or folate levels were found in approximately 17% of our cohort, we found no evidence for significant associations between BBB dysfunction and vitamin deficiencies. To strengthen the evidence regarding the clinical implications of vitamin deficiencies in FEP, prospective studies with standardized measurements of vitamin levels together with follow-up measurements and assessment of symptom severity in addition to CSF diagnostics are needed.
Collapse
Affiliation(s)
- Mattia Campana
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany.
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Johanna Strauß
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Susanne Münz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Tatiana Oviedo-Salcedo
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Piyumi Fernando
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Florian Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Peter Eichhorn
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstraße 7, 80336, Munich, Germany
| |
Collapse
|
7
|
Toniolo S, Di Lorenzo F, Bernardini S, Mercuri NB, Sancesario GM. Blood-Brain Barrier Dysfunction and Aβ42/40 Ratio Dose-Dependent Modulation with the ApoE Genotype within the ATN Framework. Int J Mol Sci 2023; 24:12151. [PMID: 37569528 PMCID: PMC10418506 DOI: 10.3390/ijms241512151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023] Open
Abstract
The definition of Alzheimer's disease (AD) now considers the presence of the markers of amyloid (A), tau deposition (T), and neurodegeneration (N) essential for diagnosis. AD patients have been reported to have increased blood-brain barrier (BBB) dysfunction, but that has not been tested within the ATN framework so far. As the field is moving towards the use of blood-based biomarkers, the relationship between BBB disruption and AD-specific biomarkers requires considerable attention. Moreover, other factors have been previously implicated in modulating BBB permeability, including age, gender, and ApoE status. A total of 172 cognitively impaired individuals underwent cerebrospinal fluid (CSF) analysis for AD biomarkers, and data on BBB dysfunction, demographics, and ApoE status were collected. Our data showed that there was no difference in BBB dysfunction across different ATN subtypes, and that BBB damage was not correlated with cognitive impairment. However, patients with BBB disruption, if measured with a high Qalb, had low Aβ40 levels. ApoE status did not affect BBB function but had a dose-dependent effect on the Aβ42/40 ratio. These results might highlight the importance of understanding dynamic changes across the BBB in future studies in patients with AD.
Collapse
Affiliation(s)
- Sofia Toniolo
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3AZ, UK
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Francesco Di Lorenzo
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
- Non-Invasive Brain Simulation Unit, IRCSS Santa Lucia Foundation, 00179 Rome, Italy
| | - Sergio Bernardini
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Giulia Maria Sancesario
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
- Biobank Unit, IRCSS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
8
|
Loveland PM, Yu JJ, Churilov L, Yassi N, Watson R. Investigation of Inflammation in Lewy Body Dementia: A Systematic Scoping Review. Int J Mol Sci 2023; 24:12116. [PMID: 37569491 PMCID: PMC10418754 DOI: 10.3390/ijms241512116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory mechanisms are increasingly recognized as important contributors to the pathogenesis of neurodegenerative diseases, including Lewy body dementia (LBD). Our objectives were to, firstly, review inflammation investigation methods in LBD (dementia with Lewy bodies and Parkinson's disease dementia) and, secondly, identify alterations in inflammatory signals in LBD compared to people without neurodegenerative disease and other neurodegenerative diseases. A systematic scoping review was performed by searching major electronic databases (MEDLINE, Embase, Web of Science, and PSYCHInfo) to identify relevant human studies. Of the 2509 results screened, 80 studies were included. Thirty-six studies analyzed postmortem brain tissue, and 44 investigated living subjects with cerebrospinal fluid, blood, and/or brain imaging assessments. Largely cross-sectional data were available, although two longitudinal clinical studies investigated prodromal Lewy body disease. Investigations were focused on inflammatory immune cell activity (microglia, astrocytes, and lymphocytes) and inflammatory molecules (cytokines, etc.). Results of the included studies identified innate and adaptive immune system contributions to inflammation associated with Lewy body pathology and clinical disease features. Different signals in early and late-stage disease, with possible late immune senescence and dystrophic glial cell populations, were identified. The strength of these associations is limited by the varying methodologies, small study sizes, and cross-sectional nature of the data. Longitudinal studies investigating associations with clinical and other biomarker outcomes are needed to improve understanding of inflammatory activity over the course of LBD. This could identify markers of disease activity and support therapeutic development.
Collapse
Affiliation(s)
- Paula M. Loveland
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Jenny J. Yu
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Leonid Churilov
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Melbourne Medical School, University of Melbourne, Parkville 3000, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
- Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3000, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3000, Australia
| |
Collapse
|
9
|
Düchs M, Blazevic D, Rechtsteiner P, Kenny C, Lamla T, Low S, Savistchenko J, Neumann M, Melki R, Schönberger T, Stierstorfer B, Wyatt D, Igney F, Ciossek T. AAV-mediated expression of a new conformational anti-aggregated α-synuclein antibody prolongs survival in a genetic model of α-synucleinopathies. NPJ Parkinsons Dis 2023; 9:91. [PMID: 37322068 DOI: 10.1038/s41531-023-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Prion-like transmission of pathology in α-synucleinopathies like Parkinson's disease or multiple system atrophy is increasingly recognized as one potential mechanism to address disease progression. Active and passive immunotherapies targeting insoluble, aggregated α-synuclein are already being actively explored in the clinic with mixed outcomes so far. Here, we report the identification of 306C7B3, a highly selective, aggregate-specific α-synuclein antibody with picomolar affinity devoid of binding to the monomeric, physiologic protein. 306C7B3 binding is Ser129-phosphorylation independent and shows high affinity to several different aggregated α-synuclein polymorphs, increasing the likelihood that it can also bind to the pathological seeds assumed to drive disease progression in patients. In support of this, highly selective binding to pathological aggregates in postmortem brains of MSA patients was demonstrated, with no staining in samples from other human neurodegenerative diseases. To achieve CNS exposure of 306C7B3, an adeno-associated virus (AAV) based approach driving expression of the secreted antibody within the brain of (Thy-1)-[A30P]-hα-synuclein mice was used. Widespread central transduction after intrastriatal inoculation was ensured by using the AAV2HBKO serotype, with transduction being spread to areas far away from the inoculation site. Treatment of (Thy-1)-[A30P]-hα-synuclein mice at the age of 12 months demonstrated significantly increased survival, with 306C7B3 concentration reaching 3.9 nM in the cerebrospinal fluid. These results suggest that AAV-mediated expression of 306C7B3, targeting extracellular, presumably disease-propagating aggregates of α-synuclein, has great potential as a disease-modifying therapy for α-synucleinopathies as it ensures CNS exposure of the antibody, thereby mitigating the selective permeability of the blood-brain barrier.
Collapse
Affiliation(s)
- Matthias Düchs
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Dragica Blazevic
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | | | | | - Thorsten Lamla
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Sarah Low
- Boehringer Ingelheim USA, Ridgefield, CT, USA
| | | | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Tanja Schönberger
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | | | - David Wyatt
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Frederik Igney
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Thomas Ciossek
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.
| |
Collapse
|
10
|
Relationship between cerebrospinal fluid/serum albumin quotient and phenotype in amyotrophic lateral sclerosis: a retrospective study on 328 patients. Neurol Sci 2023; 44:1679-1685. [PMID: 36646859 DOI: 10.1007/s10072-023-06604-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND We analysed the relationship between cerebrospinal fluid (CSF)/serum albumin quotient (Q-Alb) and phenotype in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS Three hundred twenty-eight single-centre consecutive patients with ALS were evaluated for Q-Alb, basic epidemiological and clinical data, motor phenotype, cognitive/behavioural impairment, clinical staging, clinical and neurophysiological indexes of upper (UMN) and lower motor neuron (LMN) dysfunction, and presence of ALS gene mutations. RESULTS Q-Alb did not correlate with age but was independently associated with sex, with male patients having higher levels than female ones; the site of onset was not independently associated with Q-Alb. Q-Alb was not associated with motor phenotype, cognitive/behavioural impairment, disease stage, progression rate, survival, or genetic mutations. Among measures of UMN and LMN dysfunction, Q-Alb only had a weak positive correlation with an electromyography-based index of active limb denervation. CONCLUSION Previous work has documented increased Q-Alb in ALS compared to unaffected individuals. This, together with the absence of associations with nearly all ALS phenotypic features in our cohort, suggests dysfunction of the blood-CSF barrier as a shared, phenotype-independent element in ALS pathophysiology. However, correlation with the active denervation index could point to barrier dysfunction as a local driver of LMN degeneration.
Collapse
|
11
|
Klose V, Jesse S, Lewerenz J, Kassubek J, Dorst J, Tumani H, Ludolph AC, Roselli F. CSF oligoclonal IgG bands are not associated with ALS progression and prognosis. Front Neurol 2023; 14:1170360. [PMID: 37213901 PMCID: PMC10196068 DOI: 10.3389/fneur.2023.1170360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Amyotrophic Lateral Sclerosis (ALS) is characterized by progressive motoneuron degeneration through cell autonomous and non-cell autonomous mechanisms; and the involvement of the innate and adaptive immune system has been hypothesized based on human and murine model data. We have explored if B-cell activation and IgG responses, as detected by IgG Oligoclonal bands (OCB) in serum and cerebrospinal fluid, were associated with ALS or with a subgroup of patients with distinct clinical features. Methods IgG OCB were determined in patients affected by ALS (n=457), Alzheimer Disease (n=516), Mild Cognitive Impairment (n=91), Tension-type Headache (n=152) and idiopathic Facial Palsy (n=94). For ALS patients, clinico-demographic and survival data were prospectively collected in the Register Schabia. Results The prevalence of IgG OCB is comparable in ALS and the four neurological cohorts. When the OCB pattern was considered (highlighting either intrathecal or systemic B-cells activation), no effect of OCB pattern on clinic-demographic parameters and overall. ALS patients with intrathecal IgG synthesis (type 2 and 3) were more likely to display infectious, inflammatory or systemic autoimmune conditions. Discussion These data suggest that OCB are not related to ALS pathophysiology but rather are a finding possibly indicative a coincidental infectious or inflammatory comorbidity that merits further investigation.
Collapse
Affiliation(s)
- Veronika Klose
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Sarah Jesse
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Johannes Dorst
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Albert C. Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
- *Correspondence: Albert C. Ludolph,
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
- Francesco Roselli,
| |
Collapse
|
12
|
Caron NS, Haqqani AS, Sandhu A, Aly AE, Findlay Black H, Bone JN, McBride JL, Abulrob A, Stanimirovic D, Leavitt BR, Hayden MR. Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity. Brain Commun 2022; 4:fcac309. [PMID: 36523269 PMCID: PMC9746690 DOI: 10.1093/braincomms/fcac309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 08/27/2023] Open
Abstract
The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease. We conducted a hypothesis-driven analysis of 26 pre-specified protein analytes in CSF from 16 manifest Huntington disease subjects, eight premanifest Huntington disease mutation carriers and eight healthy control individuals using parallel-reaction monitoring mass spectrometry. In addition to reproducing reported changes in previously investigated CSF biomarkers (NEFL, PDYN, and PENK), we also identified novel exploratory CSF proteins (C1QB, CNR1, GNAL, IDO1, IGF2, and PPP1R1B) whose levels were altered in Huntington disease mutation carriers and/or across stages of disease. Moreover, we report strong associations of select CSF proteins with clinical measures of disease severity in manifest Huntington disease subjects (C1QB, CNR1, NEFL, PDYN, PPP1R1B, and TTR) and with years to predicted disease onset in premanifest Huntington disease mutation carriers (ALB, C4B, CTSD, IGHG1, and TTR). Using receiver operating characteristic curve analysis, we identified PENK as being the most discriminant CSF protein for stratifying Huntington disease mutation carriers from controls. We also identified exploratory multi-marker CSF protein panels that improved discrimination of premanifest Huntington disease mutation carriers from controls (PENK, ALB and NEFL), early/mid-stage Huntington disease from premanifest mutation carriers (PPP1R1B, TTR, CHI3L1, and CTSD), and late-stage from early/mid-stage Huntington disease (CNR1, PPP1R1B, BDNF, APOE, and IGHG1) compared with individual CSF proteins. In this study, we demonstrate that combinations of CSF proteins can outperform individual markers for stratifying individuals based on Huntington disease mutation status and disease severity. Moreover, we define exploratory multi-marker CSF protein panels that, if validated, may be used to improve the accuracy of disease-onset predictions, complement existing clinical and imaging biomarkers for monitoring the severity of Huntington disease, and potentially for assessing therapeutic response in clinical trials. Additional studies with CSF collected from larger cohorts of Huntington disease mutation carriers are needed to replicate these exploratory findings.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Akshdeep Sandhu
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amirah E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jeffrey N Bone
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
13
|
Giacopuzzi Grigoli E, Cinnante C, Doneddu PE, Calcagno N, Lenti S, Ciammola A, Maderna L, Ticozzi N, Castellani M, Beretta S, Rovaris M, Silani V, Verde F. Progressive motor neuron syndromes with single CNS lesions and CSF oligoclonal bands: never forget solitary sclerosis! Neurol Sci 2022; 43:6951-6954. [DOI: 10.1007/s10072-022-06407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
|
14
|
Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B Lymphocytes in Alzheimer's Disease-A Comprehensive Review. J Alzheimers Dis 2022; 88:1241-1262. [PMID: 35754274 DOI: 10.3233/jad-220261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-β (Aβ) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aβ in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aβ and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Wong YY, Wu CY, Yu D, Kim E, Wong M, Elez R, Zebarth J, Ouk M, Tan J, Liao J, Haydarian E, Li S, Fang Y, Li P, Pakosh M, Tartaglia MC, Masellis M, Swardfager W. Biofluid markers of blood-brain barrier disruption and neurodegeneration in Lewy body spectrum diseases: A systematic review and meta-analysis. Parkinsonism Relat Disord 2022; 101:119-128. [PMID: 35760718 DOI: 10.1016/j.parkreldis.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mixed evidence supports blood-brain barrier (BBB) dysfunction in Lewy body spectrum diseases. METHODS We compare biofluid markers in people with idiopathic Parkinson's disease (PD) and people with PD dementia (PDD) and/or dementia with Lewy bodies (DLB), compared with healthy controls (HC). Seven databases were searched up to May 10, 2021. Outcomes included cerebrospinal fluid to blood albumin ratio (Qalb), and concentrations of 7 blood protein markers that also reflect BBB disruption and/or neurodegenerative co-pathology. We further explore differences between PD patients with and without evidence of dementia. Random-effects models were used to obtain standardized mean differences (SMD) with 95% confidence interval. RESULTS Of 13,949 unique records, 51 studies were meta-analyzed. Compared to HC, Qalb was higher in PD (NPD/NHC = 224/563; SMD = 0.960 [0.227-1.694], p = 0.010; I2 = 92.2%) and in PDD/DLB (NPDD/DLB/NHC = 265/670; SMD = 1.126 [0.358-1.893], p < 0.001; I2 = 78.2%). Blood neurofilament light chain (NfL) was higher in PD (NPD/NHC = 1848/1130; SMD = 0.747 [0.442-1.052], p < 0.001; I2 = 91.9%) and PDD/DLB (NPDD/DLB/NHC = 183/469; SMD = 1.051 [0.678-1.423], p = 0.004; I2 = 92.7%) than in HC. p-tau 181 (NPD/NHC = 276/164; SMD = 0.698 [0.149-1.247], p = 0.013; I2 = 82.7%) was also higher in PD compared to HC. In exploratory analyses, blood NfL was higher in PD without dementia (NPDND/NHC = 1005/740; SMD = 0.252 [0.042-0.462], p = 0.018; I2 = 71.8%) and higher in PDD (NPDD/NHC = 100/111; SMD = 0.780 [0.347-1.214], p < 0.001; I2 = 46.7%) compared to HC. Qalb (NPDD/NPDND = 63/191; SMD = 0.482 [0.189-0.774], p = 0.010; I2<0.001%) and NfL (NPDD/NPDND = 100/223; SMD = 0.595 [0.346-0.844], p < 0.001; I2 = 3.4%) were higher in PDD than in PD without dementia. CONCLUSIONS Biofluid markers suggest BBB disruption and neurodegenerative co-pathology involvement in common Lewy body diseases. Greater evidence of BBB breakdown was seen in Lewy body disease with cognitive impairment.
Collapse
Affiliation(s)
- Yuen Yan Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Che-Yuan Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Di Yu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Esther Kim
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Renata Elez
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Zebarth
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ouk
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jocelyn Tan
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jiamin Liao
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Eileen Haydarian
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Siming Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yaolu Fang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Peihao Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maureen Pakosh
- Library & Information Services, UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Neilson LE, Hollen C, Hiller A, Wooliscroft L. Oligoclonal Bands in Multiple System Atrophy: Case Report and Proposed Mechanisms of Immunogenicity. Front Neurosci 2022; 16:852939. [PMID: 35295090 PMCID: PMC8919426 DOI: 10.3389/fnins.2022.852939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple System Atrophy (MSA) is a neurodegenerative disease with heterogeneous manifestations and is therefore difficult to diagnose definitively. Because of this, oftentimes an extensive workup for mimickers is undertaken. We herein report a case where the history and cerebrospinal fluid (CSF) findings of oligoclonal bands suggested an inflammatory disorder. Immunomodulatory therapy failed to ameliorate symptoms or alter the trajectory of continued physical decline, prompting re-visitation of the diagnosis. Oligoclonal bands, while generally viewed as specific to multiple sclerosis or other inflammatory conditions, may be seen in other disease processes. Therefore, this finding should not exclude consideration of neurodegenerative disease.
Collapse
Affiliation(s)
- Lee E Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Amie Hiller
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lindsey Wooliscroft
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States.,Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
17
|
Carta S, Ferraro D, Ferrari S, Briani C, Mariotto S. Oligoclonal bands: clinical utility and interpretation cues. Crit Rev Clin Lab Sci 2022; 59:391-404. [DOI: 10.1080/10408363.2022.2039591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sara Carta
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Diana Ferraro
- Department of Biomedicine, Metabolic, and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Liguori C, Stefani A, Fernandes M, Cerroni R, Mercuri NB, Pierantozzi M. Biomarkers of Cerebral Glucose Metabolism and Neurodegeneration in Parkinson's Disease: A Cerebrospinal Fluid-Based Study. JOURNAL OF PARKINSON'S DISEASE 2021; 12:537-544. [PMID: 34864690 DOI: 10.3233/jpd-212936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Several biomarkers have been evaluated in Parkinson's disease (PD); cerebrospinal fluid (CSF) levels of lactate may reflect cerebral metabolism function and CSF amyloid-β42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau) concentrations may detect an underlying neurodegenerative process. OBJECTIVE CSF levels of lactate, Aβ42, t-tau, and p-tau were measured in patients with mild to moderate PD. CSF levels of dopamine (DA) and its metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) were also assessed, exploring their relations with the other CSF biomarkers. METHODS 101 drug-naive PD patients and 60 controls were included. Participants underwent clinical assessments and CSF biomarker analysis. Patients were divided into subgroups according to their Hoehn & Yahr stage (PD-1, PD-2, PD-3). RESULTS PD patients showed higher lactate levels (M = 1.91; p = 0.03) and lower Aβ42 (M = 595; p < 0.001) and DA levels (M = 0.32; p = 0.04) than controls (Mlactate = 1.72; MAβ42 = 837; MDA = 0.50), while no significant differences were found in t-tau, p-tau and DOPAC concentrations. Considering the subgroup analysis, PD-3 group had higher lactate (M = 2.12) and t-tau levels (M = 333) than both PD-1 (Mlactate = 1.75, p = 0.006; Mt - tau = 176, p = 0.008) and PD-2 groups (Mlactate = 1.91, p = 0.01; Mt - tau = 176, p = 0.03), as well as the controls (Mlactate = 1.72, p = 0.04; Mt - tau = 205, p = 0.04). PD-2 group showed higher lactate levels than PD-1 group (p = 0.04) and controls (p = 0.03). Finally, CSF lactate levels negatively correlated with DA (r = -0.42) and positively with t-tau CSF levels (r = 0.33). CONCLUSION This CSF-based study shows that lactate levels in PD correlated with both clinical disease progression and neurodegeneration biomarkers, such as tau proteins and DA. Further studies should explore the clinical potential of measuring CSF biomarkers for better understanding the role of brain energy metabolism in PD, for research and therapeutic options.
Collapse
Affiliation(s)
- Claudio Liguori
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Alessandro Stefani
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Mariana Fernandes
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Rocco Cerroni
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| |
Collapse
|
19
|
Steinacker P, Al Shweiki MR, Oeckl P, Graf H, Ludolph AC, Schönfeldt-Lecuona C, Otto M. Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder. J Psychiatr Res 2021; 144:54-58. [PMID: 34600287 DOI: 10.1016/j.jpsychires.2021.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022]
Abstract
Neuroinflammation has been connected to the pathophysiology of major depressive disorder (MDD) and neurochemical biomarkers of glial pathology could aid the diagnosis and might support patient stratification and monitoring in clinical trials. Our study aimed to determine the utility of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, for the differential diagnosis and monitoring of MDD. Employing Simoa technology we measured levels of GFAP in prospectively collected serum samples from 81 age-matched patients with MDD, schizophrenia (SZ), bipolar disorder (BP), and healthy controls (HC). Highest GFAP levels were determined for MDD. At a cut-off of 130 pg/ml, MDD could be discriminated with 87% sensitivity from SZ and BP (specificity 70%) and from HC (specificity 56%). GFAP levels increased with age (r = 0.5236, p = 0.0002) and with MDD severity quantified based on the Montgomery-Åsberg Depression Rating Scale (r = 0.4308, p = 0.0221). Neurofilament light chain serum levels were not different in the diagnostic groups and not associated with GFAP levels (r = 0.0911, p = 0.576) pointing to an independence of astrocyte activation on neurodegeneration. Our study provides first evidence that serum GFAP levels could improve the differential diagnosis of MDD and that depression severity could be objectively quantified using serum GFAP levels. Furthermore, serum GFAP might represent a marker to monitor astroglial pathology in the course of MDD.
Collapse
Affiliation(s)
- Petra Steinacker
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany
| | | | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, Ulm University Hospital, 89075, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany; Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
20
|
Cerebrospinal Fluid Biomarkers in Multiple System Atrophy Relative to Parkinson's Disease: A Meta-Analysis. Behav Neurol 2021; 2021:5559383. [PMID: 34158872 PMCID: PMC8188602 DOI: 10.1155/2021/5559383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/21/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Objective To investigate the differences of candidate cerebrospinal fluid (CSF) biomarkers associated with multiple system atrophy (MSA) and Parkinson's disease (PD). Method Here, a systematic review and meta-analysis were conducted on studies related to CSF biomarkers associated with MSA and PD obtained from PubMed, Web of Science, Embase, and Cochrane databases. Data were pooled where appropriate and used to calculate standardized mean differences (SMDs) with 95% confidence intervals (CI). Heterogeneity was assessed using the I2 statistic while Egger's test was used to test for existing publication bias. Results MSA patients had higher CSF t-tau (SMD = 0.41, 95% CI: 0.10 to 0.72) and YKL-40 (SMD = 0.63, 95% CI 0.12 to1.15) as well as DJ-1 (SMD = 1.05, 95% CI 0.67 to 1.42) levels than PD patients, while CSF p-tau (SMD = −0.17, 95% CI, -0.31 to -0.02) and Aβ-42 (SMD = −0.33, 95% CI, -0.55 to -0.12) levels in MSA patients were lower than those in PD patients. There were no differences in CSF's GFAP and Flt3 ligand levels in both MSA and PD patients. Conclusion The study revealed the differences in CSF biomarker levels between MSA and PD cohorts that can be further explored to clinically distinguish MSA from PD.
Collapse
|
21
|
Banks SA, Sechi E, Flanagan EP. Autoimmune encephalopathies presenting as dementia of subacute onset and rapid progression. Ther Adv Neurol Disord 2021; 14:1756286421998906. [PMID: 33796145 PMCID: PMC7983436 DOI: 10.1177/1756286421998906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The terms autoimmune dementia and autoimmune encephalopathy may be used interchangeably; autoimmune dementia is used here to emphasize its consideration in young-onset dementia, dementia with a subacute onset, and rapidly progressive dementia. Given their potential for reversibility, it is important to distinguish the rare autoimmune dementias from the much more common neurodegenerative dementias. The presence of certain clinical features [e.g. facio-brachial dystonic seizures that accompany anti-leucine-rich-glioma-inactivated-1 (LGI1) encephalitis that can mimic myoclonus] can be a major clue to the diagnosis. When possible, objective assessment of cognition with bedside testing or neuropsychological testing is useful to determine the degree of abnormality and serve as a baseline from which immunotherapy response can be judged. Magnetic resonance imaging (MRI) head and cerebrospinal fluid (CSF) analysis are useful to assess for inflammation that can support an autoimmune etiology. Assessing for neural autoantibody diagnostic biomarkers in serum and CSF in those with suggestive features can help confirm the diagnosis and guide cancer search in paraneoplastic autoimmune dementia. However, broad screening for neural antibodies in elderly patients with an insidious dementia is not recommended. Moreover, there are pitfalls to antibody testing that should be recognized and the high frequency of some antibodies in the general population limit their diagnostic utility [e.g., anti-thyroid peroxidase (TPO) antibodies]. Once the diagnosis is confirmed, both acute and maintenance immunotherapy can be utilized and treatment choice varies depending on the accompanying neural antibody present and the presence or absence of cancer. The target of the neural antibody biomarker may help predict treatment response and prognosis, with antibodies to cell-surface or synaptic antigens more responsive to immunotherapy and yielding a better overall prognosis than those with antibodies to intracellular targets. Neurologists should be aware that autoimmune dementias and encephalopathies are increasingly recognized in novel settings, including post herpes virus encephalitis and following immune-checkpoint inhibitor use.
Collapse
Affiliation(s)
| | - Elia Sechi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Departments of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases. Diagnostics (Basel) 2020; 11:diagnostics11010037. [PMID: 33379245 PMCID: PMC7824674 DOI: 10.3390/diagnostics11010037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebrospinal fluid analysis is an essential part of the diagnostic workup in various neurological disorders. Evidence of an intrathecal immunoglobulin synthesis, as demonstrated by Reiber’s diagram or the more sensitive oligoclonal bands (OCB), are typical for neuroinflammatory diseases, and normally not expected in non-inflammatory neurological diseases. Therefore, patients with non-inflammatory neurological diseases are often used in control groups in studies investigating autoimmune diseases of the central nervous system. However, data about the frequency of intrathecal immunoglobulin synthesis in non-inflammatory neurological disease are scarce. The cerebrospinal fluid (CSF) records of a total of 3622 patients were screened and 2114 patients included with presumably non-inflammatory neurological diseases like dementia, idiopathic peripheral neuropathy, motoneuron disease, stroke, and epileptic seizures. Evidence of an intrathecal immunoglobulin synthesis can be found with low frequency also in non-inflammatory neurological diseases. A much higher rate of patients showed intrathecal immunoglobulin synthesis as demonstrated by OCB than by Reiber’s diagram. In patients with disorders of the peripheral nervous system the frequency of OCB was much lower than in patients presenting with central nervous system manifestations. Evidence of an intrathecal immunoglobulin synthesis should not automatically lead to exclusion of non-inflammatory neurological diseases but should rather prompt the way to investigate for the origin of the intrathecal immunoglobulin synthesis.
Collapse
|
23
|
Manoufali M, Mobashsher AT, Mohammed B, Bialkowski K, Mills PC, Abbosh A. Implantable Sensor for Detecting Changes in the Loss Tangent of Cerebrospinal Fluid. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:452-462. [PMID: 32070996 DOI: 10.1109/tbcas.2020.2973387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increasing utilization of cerebrospinal fluid (CSF) in early detection of Alzheimer's disease (AD) is attributed to the change of Amyloid- β proteins. Since, the brain is suspended in CSF, changes of Amyloid- β proteins in CSF reflect a pathophysiological variation of the brain due to AD. However, the correlation between Amyloid- β proteins and the dielectric properties (DPs) of CSF is still an open question. This paper reports the characterized DPs of CSF collected from canines using lumbar punctures. The CSF samples from canines show a strong correlation with respect to human in terms of the loss tangent, which indicates suitability of using canines as translational primates. Amyloid- β [ Aβ(1-40) and Aβ(1-42)] proteins associated with AD were added to CSF samples in order to emulate AD condition. The results of emulated AD condition suggest a decrease in the relative permittivity and increase in the loss tangent. To detect changes in the loss tangent of CSF, which combines both relative permittivity and conductivity, a developed sensor is proposed. The designed sensor consists of a voltage controlled oscillator (VCO) and implantable antenna, which exhibits a wideband and low quality factor to be stable with respect to changes in the loss tangent of CSF. The measurements of the received power levels from the sensor in different liquid-based phantoms having different loss tangent values were used to correlate changes in the loss tangent. The developed correlation model is able to predict the loss tangent based on the received power level, which can be used to detect changes in the loss tangent of CSF due to AD. Consequently, this approach could be used as an early diagnosis of AD.
Collapse
|
24
|
Kessler T, Latzer P, Schmid D, Warnken U, Saffari A, Ziegler A, Kollmer J, Möhlenbruch M, Ulfert C, Herweh C, Wildemann B, Wick W, Weiler M. Cerebrospinal fluid proteomic profiling in nusinersen-treated patients with spinal muscular atrophy. J Neurochem 2020; 153:650-661. [PMID: 31903607 DOI: 10.1111/jnc.14953] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Promising results from recent clinical trials on the approved antisense oligonucleotide nusinersen in pediatric patients with 5q-linked spinal muscular atrophy (SMA) still have to be confirmed in adult patients but are hindered by a lack of sensitive biomarkers that indicate an early therapeutic response. Changes in the overall neurochemical composition of cerebrospinal fluid (CSF) under therapy may yield additive diagnostic and predictive information. With this prospective proof-of-concept and feasibility study, we evaluated non-targeted CSF proteomic profiles by mass spectrometry along with basic CSF parameters of 10 adult patients with SMA types 2 or 3 before and after 10 months of nusinersen therapy, in comparison with 10 age- and gender-matched controls. These data were analyzed by bioinformatics and correlated with clinical outcomes assessed by the Hammersmith Functional Rating Scale Expanded (HFMSE). CSF proteomic profiles of SMA patients differed from controls. Two groups of SMA patients were identified based on unsupervised clustering. These groups differed in age and expression of proteins related to neurodegeneration and neuroregeneration. Intraindividual CSF differences in response to nusinersen treatment varied between patients who clinically improved and those who did not. Data are available via ProteomeXchange with identifier PXD016757. Comparative CSF proteomic analysis in adult SMA patients before and after treatment with nusinersen-identified subgroups and treatment-related changes and may therefore be suitable for diagnostic and predictive analyses.
Collapse
Affiliation(s)
- Tobias Kessler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pauline Latzer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Schmid
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteomic Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Afshin Saffari
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Ulfert
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Herweh
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
25
|
B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019; 20:728-745. [PMID: 31712781 DOI: 10.1038/s41583-019-0233-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
|
26
|
Wurster CD, Koch JC, Cordts I, Dreyhaupt J, Otto M, Uzelac Z, Witzel S, Winter B, Kocak T, Schocke M, Weydt P, Wollinsky K, Ludolph AC, Deschauer M, Lingor P, Tumani H, Hermann A, Günther R. Routine Cerebrospinal Fluid (CSF) Parameters in Patients With Spinal Muscular Atrophy (SMA) Treated With Nusinersen. Front Neurol 2019; 10:1179. [PMID: 31787927 PMCID: PMC6854024 DOI: 10.3389/fneur.2019.01179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/22/2019] [Indexed: 01/30/2023] Open
Abstract
Background: Nusinersen is an antisense-oligonucleotide (ASO) approved for treatment of 5q-spinal muscular atrophy (SMA). Since the drug cannot cross the blood-brain barrier (BBB), it must be administered into the cerebrospinal fluid (CSF) space repeatedly by lumbar puncture. However, little is known whether ASOs have an impact on CSF routine parameters that may yield information on CSF flow and/or intrathecal inflammation. The objective of this study was to examine CSF routine parameters in SMA patients treated with nusinersen. Methods: Routine CSF parameters [white cell count, total protein, CSF/serum quotients of albumin (Qalb), lactate, and oligoclonal IgG bands (OCB)] of 60 SMA patients (type 1, 2, and 3, aged 7-60 years) were retrospectively analyzed. Results: White cells ranged from 0 to 4/μL in CSF; a singular case of pleocytosis (8/μL) was observed in a patient in parallel with a systemic infection. Total protein and Qalb showed a mild increase from baseline to the following lumbar punctures (except for total protein in CSF at the fourth injection of nusinersen). Lactate levels revealed a stable course. In one patient, positive OCB in CSF were transiently observed. The slight change in total CSF protein and Qalb may be caused by repeated lumbar puncture and/or intrathecal administration of the drug. Conclusion: Our data suggest that a regular examination of routine CSF parameters in patients in which intrathecal ASOs are administered is important to obtain information on possible side effects and to gain further insights into intrathecal processes.
Collapse
Affiliation(s)
| | - Jan C. Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Isabell Cordts
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | - Zeljko Uzelac
- Department of Neurology, Ulm University, Ulm, Germany
| | - Simon Witzel
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Tugrul Kocak
- Department of Orthopedic Surgery, RKU - University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Michael Schocke
- Department of Neuroradiology, RKU - University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Patrick Weydt
- Department for Neurodegenerative Disorders and Gerontopsychiatry, Bonn University, Bonn, Germany
| | - Kurt Wollinsky
- Department of Anesthesiology, RKU - University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | - Albert C. Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany
- Specialty Hospital of Neurology Dietenbronn, Schwendi, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| |
Collapse
|
27
|
Wurster CD, Steinacker P, Günther R, Koch JC, Lingor P, Uzelac Z, Witzel S, Wollinsky K, Winter B, Osmanovic A, Schreiber-Katz O, Al Shweiki R, Ludolph AC, Petri S, Hermann A, Otto M. Neurofilament light chain in serum of adolescent and adult SMA patients under treatment with nusinersen. J Neurol 2019; 267:36-44. [PMID: 31552549 DOI: 10.1007/s00415-019-09547-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the diagnostic and monitoring value of serum neurofilament light chain (NfL) in spinal muscular atrophy (SMA). METHODS We measured serum NfL in 46 SMA patients at baseline and over 14 months of treatment with the antisense-oligonucleotide (ASO) nusinersen using the ultrasensitive single molecule array (Simoa) technology. Serum NfL levels of SMA patients were compared to controls and related to cerebrospinal fluid (CSF) NfL, blood-CSF barrier function quantified by the albumin blood/CSF ratio (Qalb) and motor scores (Hammersmith Functional Motor Scale Expanded, HFMSE; Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised, ALSFRS-R). RESULTS Serum NfL levels of SMA patients were in the range of controls (p = 0.316) and did not correlate with CSF NfL (ρ = 0.302, p = 0.142) or Qalb (ρ = - 0.160, p = 0.293). During therapy, serum NfL levels were relatively stable with notable concentration changes in single SMA patients, however, within the control range. Higher NfL levels were associated with worse motor performance in SMA (baseline: HFMSE ρ = - 0.330, p = 0.025, ALSFRS-R ρ = - 0.403, p = 0.005; after 10 months: HFMSE ρ = - 0.525, p = 0.008, ALSFRS-R ρ = - 0.537, p = 0.007), but changes in motor scores did not correlate with changes in serum NfL. CONCLUSION Diagnostic and monitoring performance of serum NfL measurement seems to differ between SMA subtypes. Unlike to SMA type 1, in adolescent and adult SMA type 2 and 3 patients, neurodegeneration is not reflected by increased NfL levels and short-term therapeutic effects cannot be observed. Long-term follow-up has to be performed to see if even low levels of NfL might be good prognostic markers.
Collapse
Affiliation(s)
- Claudia D Wurster
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Jan C Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts Der Isar der Technischen Universität München, Munich, Germany
| | - Zeljko Uzelac
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Simon Witzel
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Kurt Wollinsky
- Department of Anesthesiology, RKU, University and Rehabilitation Clinics, Ulm University, Ulm, Germany
| | | | - Alma Osmanovic
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Rami Al Shweiki
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
| |
Collapse
|
28
|
D'Amico E, Zanghì A, Chisari CG, Zappia M, Patti F. Are oligoclonal bands associated to lower retinal layer thickness at the time of relapsing remitting multiple sclerosis diagnosis? Evidence from an exploratory study. Autoimmun Rev 2019; 18:102365. [PMID: 31404700 DOI: 10.1016/j.autrev.2019.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/27/2022]
Affiliation(s)
| | - Aurora Zanghì
- Department G. F. Ingrassia, University of Catania, Italy
| | | | - Mario Zappia
- Department G. F. Ingrassia, University of Catania, Italy
| | | |
Collapse
|
29
|
Blinder T, Lewerenz J. Cerebrospinal Fluid Findings in Patients With Autoimmune Encephalitis-A Systematic Analysis. Front Neurol 2019; 10:804. [PMID: 31404257 PMCID: PMC6670288 DOI: 10.3389/fneur.2019.00804] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/11/2019] [Indexed: 01/15/2023] Open
Abstract
Autoimmune encephalitides (AIE) comprise a group of inflammatory diseases of the central nervous system (CNS), which can be further characterized by the presence of different antineuronal antibodies. Recently, a clinical approach for diagnostic criteria for the suspected diagnosis of AIE as well as definitive AIE were proposed. These are intended to guide physicians when to order the antineuronal antibody testing and/or facilitate early diagnosis even prior to the availability of the specific disease-confirming test results to facilitate prompt treatment. These diagnostic criteria also include the results of basic cerebrospinal fluid (CSF) analysis. However, the different antibody-defined AIE subtypes might be highly distinct with regard to their immune pathophysiology, e.g., the pre-dominance of specific IgG subclasses, IgG1, or IgG4, or frequency of paraneoplastic compared to idiopathic origin. Thus, it is conceivable that the results of basic CSF analysis might also be very different. However, this has not been explored systematically. Here, we systematically reviewed the literature about the 10 most important AIE subtypes, AIE with antibodies against NMDA, AMPA, glycine, GABAA, and GABAB receptors as well as DPPX, CASPR2, LGI1, IgLON5, or glutamate decarboxylase (GAD), with respect to the reported basic CSF findings comprising CSF leukocyte count, total protein, and the presence of oligoclonal bands (OCB) restricted to the CSF as a sensitive measure for intrathecal IgG synthesis. Our results indicate that these basic CSF findings are profoundly different among the 10 different AIE subtypes. Whereas, AIEs with antibodies against NMDA, GABAB, and AMPA receptors as well as DPPX show rather frequent inflammatory CSF changes, in AIEs with either CASPR2, LGI1, GABAA, or glycine receptor antibodies CSF findings were mostly normal. Two subtypes, AIEs defined by either GAD, or IgLON5 antibodies, did not fit into this general pattern. In AIE with GAD antibodies, positive OCBs in the absence of other changes were typical, while the CSF in IgLON5 antibody-positive AIE was characterized by elevated protein.
Collapse
Affiliation(s)
| | - Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
Wurster CD, Günther R, Steinacker P, Dreyhaupt J, Wollinsky K, Uzelac Z, Witzel S, Kocak T, Winter B, Koch JC, Lingor P, Petri S, Ludolph AC, Hermann A, Otto M. Neurochemical markers in CSF of adolescent and adult SMA patients undergoing nusinersen treatment. Ther Adv Neurol Disord 2019; 12:1756286419846058. [PMID: 31205491 PMCID: PMC6535708 DOI: 10.1177/1756286419846058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: There is limited information on neurochemical markers being used to support and monitor the affection of motoneurons in patients with spinal muscular atrophy (SMA). The objective of this study was to examine neurochemical markers in cerebrospinal fluid (CSF) under treatment with the antisense-oligonucleotide (ASO), nusinersen. Methods: We measured markers of axonal degeneration [neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)] along with basic CSF parameters in 25 adolescent and adult SMA type 2 and 3 patients at baseline and after four intrathecal injections of nusinersen. Neurochemical markers were compared with controls. In addition, neurochemical markers in SMA patients were related to the Hammersmith Functional Rating Scale Expanded (HFMSE). Results: No significant difference in neurofilament (Nf) values was observed between SMA and control group, neither at baseline nor after four injections of nusinersen. NfL, protein and quotients of albumin (Qalb) increased slightly in SMA patients after the fourth injection. The slight increase of NfL could be related to the development of mild CSF flow change. No relations were observed between changes in Nf and HFMSE. Conclusion: We assume that Nf levels in CSF in these patients may result from slow disease progression in this stage of disease, pre-existing loss of motoneurons due to long disease duration besides affection of the LMN only. Therefore, we conclude that Nf levels in CSF do not seem useful as diagnostic and monitoring markers in adolescent and adult SMA type 2 and 3 patients.
Collapse
Affiliation(s)
- Claudia D Wurster
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kurt Wollinsky
- Department of Anesthesiology, Ulm University, Ulm, Germany
| | - Zeljko Uzelac
- Department of Neurology, Ulm University, Ulm, Germany
| | - Simon Witzel
- Department of Neurology, Ulm University, Ulm, Germany
| | - Tugrul Kocak
- Department of Orthopedic Surgery, Ulm University, Ulm, Germany
| | | | - Jan C Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To describe the clinical, laboratory, and MRI features that characterize cognitive decline in the setting of central nervous system (CNS) autoimmunity, and provide an overview of current treatment modalities. RECENT FINDINGS The field of autoimmune neurology is rapidly expanding due to the increasing number of newly discovered autoantibodies directed against specific CNS targets. The clinical syndromes associated with these autoantibodies are heterogeneous but frequently share common, recognizable clinical, and MRI characteristics. While the detection of certain autoantibodies strongly suggest the presence of an underlying malignancy (onconeural autoantibodies), a large proportion of cases remain idiopathic. Cognitive decline and encephalopathy are common manifestations of CNS autoimmunity, and can mimic neurodegenerative disorders. Recent findings suggest that the frequency of autoimmune encephalitis in the population is higher than previously thought, and potentially rivals that of infectious encephalitis. Moreover, emerging clinical scenarios that may predispose to CNS autoimmunity are increasingly been recognized. These include autoimmune dementia/encephalitis post-herpes simplex virus encephalitis, post-transplant and in association with immune checkpoint inhibitor treatment of cancer. Early recognition of autoimmune cognitive impairment is important given the potential for reversibility and disability prevention with appropriate treatment. Autoimmune cognitive impairment is treatable and may arise in a number of different clinical settings, with important treatment implications. Several clinical and para-clinical clues may help to differentiate these disorders from dementia of other etiologies.
Collapse
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Department Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Mohamadi MR, Verpillot R, Taverna M, Otto M, Viovy JL. "Microchip Electrophoresis," with Respect to "Profiling of Aβ Peptides in the Cerebrospinal Fluid of Patients with Alzheimer's Disease". Methods Mol Biol 2019; 1855:327-340. [PMID: 30426429 DOI: 10.1007/978-1-4939-8793-1_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aggregation of beta-amyloid peptides especially Aβ1-42 in amyloid plaques is one of the major neuropathological events in Alzheimer's disease. This event is normally accompanied by a relative reduction of the concentration of Aβ1-42 in the cerebrospinal fluid (CSF) of patient developing the signs of Alzheimer's disease. Here, we describe methods for isolation and for microchip gel electrophoresis of Aβ peptides in polydimethylsiloxane (PDMS) microfluidic chip. The method was applied to compare the relative concentration of Aβ1-42 with other Aβ peptides, for example, Aβ 1-40 in CSF. In order to increase the sensitivity of detection, Aβ peptides in the CSF samples were first captured and concentrated using magnetic beads coated with specific anti-Aβ antibodies.
Collapse
Affiliation(s)
- Mohamad Reza Mohamadi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris cedex 05, France
| | - Romain Verpillot
- PNAS, Institut Galien de Paris-Sud, Faculté de Pharmacie, Université Paris-Sud, CNRS UMR8612, 5 rue JB Clément, Chatenay Malabry, France
| | - Myriam Taverna
- PNAS, Institut Galien de Paris-Sud, Faculté de Pharmacie, Université Paris-Sud, CNRS UMR8612, 5 rue JB Clément, Chatenay Malabry, France
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jean-Louis Viovy
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris cedex 05, France.
| |
Collapse
|
33
|
Denk J, Oberhauser F, Kornhuber J, Wiltfang J, Fassbender K, Schroeter ML, Volk AE, Diehl-Schmid J, Prudlo J, Danek A, Landwehrmeyer B, Lauer M, Otto M, Jahn H. Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls. PLoS One 2018; 13:e0197329. [PMID: 29746584 PMCID: PMC5945001 DOI: 10.1371/journal.pone.0197329] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
Information on circulating miRNAs in frontotemporal lobar degeneration is very limited and conflicting results have complicated an interpretation in Alzheimer's disease thus far. In the present study we I) collected samples from multiple clinical centers across Germany, II) defined 3 homogenous patient groups with high sample sizes (bvFTD n = 48, AD n = 48 and cognitively healthy controls n = 44), III) compared expression levels in both CSF and serum samples and IV) detected a limited set of miRNAs by using a MIQE compliant protocol based on SYBR-green miRCURY assays that have proven reliable to generate reproducible results. We included several quality controls that identified and reduced technical variation to increase the reliability of our data. We showed that the expression levels of circulating miRNAs measured in CSF did not correlate with levels in serum. Using cluster analysis we found expression pattern in serum that, in part, reflects the genomic organization and affiliation to a specific miRNA family and that were specifically altered in bvFTD, AD, and control groups. Applying factor analysis we identified a 3-factor model characterized by a miRNA signature that explained 80% of the variance classifying healthy controls with 97%, bvFTD with 77% and AD with 72% accuracy. MANOVA confirmed signals like miR-320a and miR-26b-5p at BH corrected significance that contributed most to discriminate bvFTD cases with 96% sensitivity and 90% specificity and AD cases with 89% sensitivity and specificity compared to healthy controls, respectively. Correlation analysis revealed that miRNAs from the 3-factor model also correlated with levels of protein biomarker amyloid-beta1-42 and phosphorylated neurofilament heavy chain, indicating their potential role in the monitoring of progressive neuronal degeneration. Our data show that miRNAs can be reproducibly measured in serum and CSF without pre-amplification and that serum includes higher expressed signals that demonstrate an overall better ability to classify bvFTD, AD and healthy controls compared to signals detected in CSF.
Collapse
Affiliation(s)
- Johannes Denk
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Oberhauser
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
| | | | - Matthias L. Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alexander E. Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johannes Prudlo
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Martin Lauer
- Department of Psychiatry and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Holger Jahn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- AMEOS Klinikum, Heiligenhafen, Heiligenhafen, Germany
| | | |
Collapse
|
34
|
Muszyński P, Kulczyńska-Przybik A, Borawska R, Litman-Zawadzka A, Słowik A, Klimkowicz-Mrowiec A, Pera J, Dziedzic T, Mroczko B. The Relationship between Markers of Inflammation and Degeneration in the Central Nervous System and the Blood-Brain Barrier Impairment in Alzheimer's Disease. J Alzheimers Dis 2018; 59:903-912. [PMID: 28697565 DOI: 10.3233/jad-170220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is known that YKL-40- a marker of glial inflammation, and VILIP-1- a marker of neuronal injury, reflect functional and structural changes in AD brains, although there is limited data concerning their potential influence on blood-brain barrier (BBB) homeostasis. OBJECTIVE Therefore, the aim of our study was to investigate the relationship between markers of inflammation and degeneration in the central nervous system (CNS) of patients with AD and mild cognitive impairment (MCI) as well as immunological response in CNS and BBB function. METHODS Cerebrospinal fluid (CSF) concentrations of proteins tested were determined in 45 AD patients, 18 MCI subjects, and 23 non-demented controls using ELISA method. RESULTS CSF concentrations of YKL-40 were significantly higher in MCI and AD patients, whereas CSF levels of VILIP-1 were statistically higher in the AD group as compared to the subjects without cognitive deficits. Elevated concentrations of YKL-40 correlated significantly with increased albumin quotient and decreased Aβ42/40 ratio in AD patients and with IgG quotient in the total study group. We did not find a relationship between VILIP-1 and immunological parameters reflecting BBB dysfunction and humoral immune response. CONCLUSION Our findings indicate that YKL-40 may contribute to decreased stability and increased permeability of BBB in AD patients. It is assumed that YKL-40 is implicated in the development of brain barriers, although its precise mechanism of action in the BBB disruption remains unrevealed. Further studies on larger groups of patients are required to confirm our hypothesis.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | | | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | | | - Joanna Pera
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| |
Collapse
|
35
|
Biomarkers in cerebrospinal fluid for synucleinopathies, tauopathies, and other neurodegenerative disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:99-113. [DOI: 10.1016/b978-0-12-804279-3.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Henriques A, Huebecker M, Blasco H, Keime C, Andres CR, Corcia P, Priestman DA, Platt FM, Spedding M, Loeffler JP. Inhibition of β-Glucocerebrosidase Activity Preserves Motor Unit Integrity in a Mouse Model of Amyotrophic Lateral Sclerosis. Sci Rep 2017; 7:5235. [PMID: 28701774 PMCID: PMC5507914 DOI: 10.1038/s41598-017-05313-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
- Spedding Research Solutions SAS, Le Vesinet, France
| | | | - Hélène Blasco
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Céline Keime
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 67404, Illkirch, France
| | - Christian R Andres
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- INSERM, Université François-Rabelais, U930, Neurogénétique et Neurométabolomique, Tours, France
- CHRU de Tours, Centre SLA, Tours, France
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.
| |
Collapse
|
37
|
Nakano F, Sakushima K, Umeki R, Yabe I, Endoh A, Sasaki H. Effects of age and glucose levels on lactate levels in cerebrospinal fluid examination of neurodegenerative diseases. J Neurol Sci 2017; 378:45-48. [DOI: 10.1016/j.jns.2017.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
|
38
|
Cerebrospinal fluid and serum levels of interleukin-8 in patients with multiple sclerosis and its correlation with Q-albumin. Mult Scler Relat Disord 2017; 14:12-15. [DOI: 10.1016/j.msard.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
|
39
|
D'Arco C, Dattwyler RJ, Arnaboldi PM. Borrelia burgdorferi-specific IgA in Lyme Disease. EBioMedicine 2017; 19:91-97. [PMID: 28457619 PMCID: PMC5440658 DOI: 10.1016/j.ebiom.2017.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
The laboratory diagnosis of Lyme disease is currently dependent on the detection of IgM and IgG antibodies against Borrelia burgdorferi, the causative agent of the disease. The significance of serum IgA against B. burgdorferi remains unclear. The production of intrathecal IgA has been noted in patients with the late Lyme disease manifestation, neuroborreliosis, but production of antigen-specific IgA during early disease has not been evaluated. In the current study, we assessed serum IgA binding to the B. burgdorferi peptide antigens, C6, the target of the FDA-cleared C6 EIA, and FlaB(211-223)-modVlsE(275-291), a peptide containing a Borrelia flagellin epitope linked to a modified VlsE sequence, in patients with early and late Lyme disease. Specific IgA was detected in 59 of 152 serum samples (38.8%) from early Lyme disease patients. Approximately 50% of early Lyme disease patients who were seropositive for peptide-specific IgM and/or IgG were also seropositive for peptide-specific IgA. In a subpopulation of patients, high peptide-specific IgA could be correlated with disseminated disease, defined as multiple erythema migrans lesions, and neurological disease complications. These results suggest that there may be an association between elevated levels of antigen-specific IgA and particular disease manifestations in some patients with early Lyme disease. Approximately one-third of all patients diagnosed with early Lyme disease have significant levels of antigen-specific IgA Approximately one-half of patients seropositive for IgM and/or IgG are also seropositive for IgA Antigen-specific IgA correlated with disseminated disease and neurological symptoms in patients with early Lyme disease
The significance of serum IgA production in patients with early Lyme disease has not been previously evaluated. In the present study, we demonstrated that IgA antibodies against Borrelia burgdorferi, the causative agent of Lyme disease, were present in ~ 33% of patients diagnosed with early disease. Anti-B. burgdorferi IgA production correlated with disseminated disease as well as neurological manifestations in a subset of these patients. Though further study is necessary, these results suggest that monitoring serum IgA could have potential diagnostic and/or prognostic value in early Lyme disease.
Collapse
Affiliation(s)
- Christina D'Arco
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595, United States
| | - Raymond J Dattwyler
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595, United States; Biopeptides, Corp., East Setauket, NY 11733, United States
| | - Paul M Arnaboldi
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595, United States; Biopeptides, Corp., East Setauket, NY 11733, United States.
| |
Collapse
|
40
|
Schjønning Nielsen M, Simonsen AH, Siersma V, Hasselbalch SG, Høgh P. Are CSF Biomarkers Useful as Prognostic Indicators in Diagnostically Unresolved Cognitively Impaired Patients in a Normal Clinical Setting. Dement Geriatr Cogn Dis Extra 2016; 6:465-476. [PMID: 27843444 PMCID: PMC5091222 DOI: 10.1159/000449410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite an extensive evaluation program, patients may remain diagnostically unresolved with regard to the etiology of their cognitive dysfunction. Cerebrospinal fluid neuroinflammation and Alzheimer disease (AD) biomarkers may act as indicators of neurodegenerative disorders in diagnostically unresolved patients. METHODS Data on 348 patients were retrospectively evaluated. All participants had a standardized diagnostic workup and follow-up in a memory clinic. RESULTS Aβ42 levels and Aβ42/p-tau ratios were reduced and levels of t-tau and p-tau as well as the t-tau × p-tau/Aβ42 ratio were elevated in diagnostically unresolved patients who clinically progressed, compared to a stable group. No differences in neuroinflammatory parameters were found. CONCLUSION AD biomarkers - in particular the Aβ42/p-tau ratio, but not neuroinflammatory parameters - predicted clinical progression, regardless of etiology.
Collapse
Affiliation(s)
- Malene Schjønning Nielsen
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Volkert Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Høgh
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
41
|
Oeckl P, Metzger F, Nagl M, von Arnim CAF, Halbgebauer S, Steinacker P, Ludolph AC, Otto M. Alpha-, Beta-, and Gamma-synuclein Quantification in Cerebrospinal Fluid by Multiple Reaction Monitoring Reveals Increased Concentrations in Alzheimer's and Creutzfeldt-Jakob Disease but No Alteration in Synucleinopathies. Mol Cell Proteomics 2016; 15:3126-3138. [PMID: 27507836 DOI: 10.1074/mcp.m116.059915] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/09/2023] Open
Abstract
α-Synuclein (αSyn) is a major constituent of proteinaceous aggregates in neurodegenerative diseases such as Parkinson's disease (PD) and a potential biomarker candidate for diagnosis and treatment effects. However, studies about αSyn in cerebrospinal fluid (CSF) in diseases are inconsistent and mainly based on immunological assays. Quantitative information about β-synuclein (βSyn) and γ-synuclein (γSyn) in CSF is not available.Here, we present an alternative method for the simultaneous quantification of αSyn, βSyn and γSyn in CSF by multiple reaction monitoring (MRM) with a high sequence coverage (70%) of αSyn to validate previous, ELISA-based results and characterize synucleins in CSF in more detail.The MRM has high sensitivity in the low pg/ml range (3-30pg/ml full-length αSyn) using 200 μl CSF. A high portion of CSF αSyn is present in the N-terminally acetylated form and the concentration of unmodified peptides in the nonamyloid component region is about 40% lower than in the N-terminal region. Synuclein concentrations show a high correlation with each other in CSF (r>0.80) and in contrast to αSyn and γSyn, βSyn is not affected by blood contamination. CSF αSyn, βSyn and γSyn concentrations were increased in Alzheimer's and Creutzfeldt-Jakob disease but not altered in PD, PD dementia (PDD), Lewy body dementia and atypical parkinsonian syndromes. The ratio βSyn/αSyn was increased in PDD (1.49 ± 0.38, p < 0.05) compared with PD (1.11 ± 0.26) and controls (1.15 ± 0.28). βSyn shows a high correlation with CSF tau concentrations (r = 0.86, p < 0.0001, n = 125).In conclusion, we could not confirm previous observations of reduced αSyn in PD and our results indicate that CSF synuclein concentrations are rather general markers of synaptic degeneration than specific for synucleinopathies. βsyn is an attractive biomarker candidate that might be used as an alternative to or in combination with tau in AD and CJD diagnosis and in combination with αSyn it is a biomarker candidate for PDD.
Collapse
Affiliation(s)
- Patrick Oeckl
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Fabian Metzger
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Magdalena Nagl
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Christine A F von Arnim
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Steffen Halbgebauer
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Petra Steinacker
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Albert C Ludolph
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Markus Otto
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
42
|
Detection of intrathecal immunoglobulin G synthesis by capillary isoelectric focusing immunoassay in oligoclonal band negative multiple sclerosis. J Neurol 2016; 263:954-960. [DOI: 10.1007/s00415-016-8094-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/24/2023]
|
43
|
Mollenhauer B, Parnetti L, Rektorova I, Kramberger MG, Pikkarainen M, Schulz-Schaeffer WJ, Aarsland D, Svenningsson P, Farotti L, Verbeek MM, Schlossmacher MG. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson's disease and related disorders. J Neurochem 2016; 139 Suppl 1:290-317. [DOI: 10.1111/jnc.13390] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik; Kassel Germany
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Lucilla Parnetti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Irena Rektorova
- Applied Neuroscience Group; CEITEC MU; Masaryk University; Brno Czech Republic
| | - Milica G. Kramberger
- Department of Neurology; University Medical Center Ljubljana; Ljubljana Slovenia
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Maria Pikkarainen
- Institute of Clinical Medicine / Neurology; University of Eastern Finland; Kuopio Finland
| | - Walter J. Schulz-Schaeffer
- University Medical Center (Department of Neuropathology); Georg-August University Goettingen; Goettingen Germany
| | - Dag Aarsland
- Division for Neurogeriatrics; Department of NVS; Karolinska Institutet; Center for Alzheimer Research; Stockholm Sweden
- Centre for Age-Related Medicine; Stavanger University Hospital; Stavanger Norway
| | - Per Svenningsson
- Department for Clinical Neuroscience; Karolinska Institute; Stockholm Sweden
| | - Lucia Farotti
- Centro Disturbi della Memoria- Unità Valutativa Alzheimer; Clinica Neurologica; Università di Perugia; Perugia Italy
| | - Marcel M. Verbeek
- Department of Neurology; Department of Laboratory Medicine; Donders Institute for Brain, Cognition and Behaviour; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Michael G. Schlossmacher
- Program in Neuroscience and Division of Neurology; The Ottawa Hospital; University of Ottawa Brain & Mind Research Institute; Ottawa Ontario Canada
| |
Collapse
|
44
|
Abstract
Autoimmune dementia and encephalopathies (ADE) are complex disorders that can cause immune-mediated cognitive deficits and have confusing nomenclature. Presentation varies from acute limbic encephalitis to subacute or chronic disorders of cognition mimicking neurodegenerative dementia. It may occur as a paraneoplastic phenomenon or an idiopathic autoimmune phenomenon. The presence of a personal/family history of autoimmunity, inflammatory spinal fluid, serologic evidence of autoimmunity (neural or nonorgan-specific), or mesial temporal magnetic resonance imaging abnormalities are clues to diagnosis. Bedside cognitive assessment and/or detailed neuropsychologic testing are useful. Neural-specific autoantibodies, mostly discovered in the past two decades, may bind antigens on the cell surface (e.g., N-methyl-d-aspartate receptor autoantibodies) and are likely to be pathogenic, with treatment aimed at antibody-depleting agents often with success, while antibodies binding intracellular antigens (e.g., antineuronal nuclear autoantibody type 1 (ANNA1 or anti-Hu)) are a marker of a T-cell-mediated process and treated with T-cell-depleting immunotherapies, with variable responses. Detection and treatment of cancer (when present) are essential. High-dose corticosteroids are the initial treatment in most patients and may serve as a diagnostic test when the diagnosis is uncertain. Repeat cognitive testing after immunotherapy helps document objective improvements. Maintenance immunotherapy is recommended in those at risk for relapse. Prognosis is variable, but paraneoplastic ADE with antibodies to intracellular antigens have a worse prognosis. The field is still developing and future studies should provide guidelines for diagnosis and treatments.
Collapse
|
45
|
Feneberg E, Steinacker P, Volk AE, Weishaupt JH, Wollmer MA, Boxer A, Tumani H, Ludolph AC, Otto M. Progranulin as a candidate biomarker for therapeutic trial in patients with ALS and FTLD. J Neural Transm (Vienna) 2015; 123:289-96. [PMID: 26659729 DOI: 10.1007/s00702-015-1486-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
The loss-of-function mechanism in progranulin (PGRN) mutation carriers makes PGRN an interesting target for upregulation as a therapeutic approach in neurodegenerative diseases like frontotemporal lobar degeneration. This gives rise to several questions: (1) how stable are PGRN levels in blood and cerebrospinal fluid (CSF) in follow-up? (2) Is it necessary to measure PGRN levels in CSF to monitor a therapeutic effect? Therefore, concentrations of PGRN were measured in paired CSF and serum samples of 22 patients with behavioural variant frontotemporal dementia, including one GRN mutation carrier (c.349+1G>C), 16 patients with amyotrophic lateral sclerosis and 17 non-neurodegenerative patients, which included 22 follow-up levels. PGRN levels of 14 patients with isolated dysfunction of the blood-CSF barrier were measured and PGRN was correlated with albumin quotients as a marker for blood-CSF barrier function. The intrathecal fraction of PGRN was calculated on the basis of CSF-to-serum ratios and hydrodynamic properties. Follow-up measurements of CSF and serum PGRN levels did not show any significant change in diagnostic groups. Mean PGRN levels are 35 times higher in blood than in CSF. However, the CSF-to-serum PGRN ratio does not correlate with the albumin quotient even in patients with severe impairment of the blood-CSF barrier. The calculated intrathecal fraction of CSF PGRN levels ranged between 80 and 90 %. Assuming that CSF PGRN is either brain-derived or transported from the vascular compartment via receptor mediated mechanisms, we propose that monitoring CNS specific effects of PGRN modulating drugs should be done in CSF.
Collapse
Affiliation(s)
- Emily Feneberg
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | - Jochen Hans Weishaupt
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Marc Axel Wollmer
- Department of Gerontopsychiatry, Asklepios Klinik Nord, Hamburg, Germany
| | - Adam Boxer
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, USA
| | - Hayrettin Tumani
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.
| |
Collapse
|
46
|
Benninger F, Glat MJ, Offen D, Steiner I. Glial fibrillary acidic protein as a marker of astrocytic activation in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Clin Neurosci 2015; 26:75-8. [PMID: 26602604 DOI: 10.1016/j.jocn.2015.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/11/2015] [Indexed: 12/14/2022]
Abstract
Glial fibrillary acidic protein (GFAP) has been shown to be increased in the cerebrospinal fluid (CSF) of patients suffering from neurological diseases involving the activation of astrocytes, but has not been studied in amyotrophic lateral sclerosis (ALS) patients to our knowledge. CSF samples of patients with definite ALS and of those with other neurological diseases were evaluated for their GFAP concentrations. CSF-GFAP concentrations of patients with ALS were significantly elevated by 53% compared to patients with other neurologic diseases. GFAP might serve as a biomarker in ALS. Our findings support the concept that astrocytes play a role in ALS pathogenesis.
Collapse
Affiliation(s)
- Felix Benninger
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 49100, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Institut, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Micaela J Glat
- Felsenstein Medical Research Institut, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Felsenstein Medical Research Institut, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 49100, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Llorens F, Schmitz M, Gloeckner SF, Kaerst L, Hermann P, Schmidt C, Varges D, Zerr I. Increased albumin CSF/serum ratio in dementia with Lewy bodies. J Neurol Sci 2015; 358:398-403. [PMID: 26476775 DOI: 10.1016/j.jns.2015.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alterations in the CSF/serum albumin ratio (Qalb) is currently recognized as one of the most reliable markers of blood-brain barrier impairment and blood-CSF barrier permeability, but its potential role as a biomarker in the differential diagnosis of neurological diseases has been poorly analysed. METHODS We evaluated Qalb and core CSF biomarkers (Tau, p-Tau and Aβ42) in a large patient population of neurological and neurodegenerative cases. Diagnostic test evaluation was assessed by ROC-AUC analysis. RESULTS In the differential diagnostic analysis, increased Qalb was found in dementia with Lewy bodies (DLB) patients compared to other diseases, either individually or stratified in non-dementia and dementia groups. When clinical groups were analysed individually and compared to controls, Qalb was also increased in stroke and Parkinson's disease dementia (PDD) cases, but not in Parkinson's disease (PD). Qalb in DLB cases correlate with CSF Aβ42 levels but not with Tau and p-Tau levels. Due to the lower CSF Aβ42 levels in DLB compared to PD and PDD, the potential clinical applicability of Qalb with respect to the DLB diagnosis is increased in combination with CSF Aβ42 analysis. CONCLUSIONS The present study demonstrates increased Qalb in synucleinopathies associated with dementia revealing a potential new clinical approach for the differential diagnosis of DLB.
Collapse
Affiliation(s)
- Franc Llorens
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| | - Matthias Schmitz
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Lisa Kaerst
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Germany
| | - Peter Hermann
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Germany
| | - Christian Schmidt
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Germany
| | - Daniela Varges
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
48
|
Laurens B, Constantinescu R, Freeman R, Gerhard A, Jellinger K, Jeromin A, Krismer F, Mollenhauer B, Schlossmacher MG, Shaw LM, Verbeek MM, Wenning GK, Winge K, Zhang J, Meissner WG. Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative. Neurobiol Dis 2015; 80:29-41. [PMID: 25982836 DOI: 10.1016/j.nbd.2015.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 01/10/2023] Open
Abstract
Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results suggest that combining several CSF fluid biomarkers may be more successful than using single markers, at least for the diagnosis. Currently, the clinically most useful markers may comprise a combination of the light chain of neurofilament (which is consistently elevated in MSA compared to controls and Parkinson's disease), metabolites of the catecholamine pathway and proteins such as α-synuclein, DJ-1 and total-tau. Beyond future efforts in biomarker discovery, the harmonization of standard operating procedures will be crucial for future success.
Collapse
Affiliation(s)
- Brice Laurens
- Service de Neurologie, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Radu Constantinescu
- Department of Neurology, Sahlgrenska University Hospital, 413 45 Göteborg, Sweden
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - Alexander Gerhard
- Institute of Brain Behaviour and Mental Heath, University of Manchester, UK
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, A-1070 Vienna, Austria
| | | | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany and Department of Neuropathology, University Medical Center Goettingen, Germany
| | - Michael G Schlossmacher
- Program in Neuroscience, The Ottawa Hospital, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Leslie M Shaw
- Perelman School of Medicine, University of Pennsylvania
| | - Marcel M Verbeek
- Department of Neurology, Parkinson Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Laboratory Medicine, Parkinson Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristian Winge
- Department of Neurology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jing Zhang
- Department of Pathology, University of WA, Seattle, USA
| | - Wassilios G Meissner
- Service de Neurologie, CHU de Bordeaux, F-33076 Bordeaux, France; Centre de référence atrophie multisystématisée, CHU de Bordeaux, F-33076 Bordeaux, France; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33076 Bordeaux, France.
| |
Collapse
|
49
|
Oeckl P, Steinacker P, von Arnim CAF, Straub S, Nagl M, Feneberg E, Weishaupt JH, Ludolph AC, Otto M. Intact protein analysis of ubiquitin in cerebrospinal fluid by multiple reaction monitoring reveals differences in Alzheimer's disease and frontotemporal lobar degeneration. J Proteome Res 2014; 13:4518-25. [PMID: 25091646 DOI: 10.1021/pr5006058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The impairment of the ubiquitin-proteasome system (UPS) is thought to be an early event in neurodegeneration, and monitoring UPS alterations might serve as a disease biomarker. Our aim was to establish an alternate method to antibody-based assays for the selective measurement of free monoubiquitin in cerebrospinal fluid (CSF). Free monoubiquitin was measured with liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MS/MS) in CSF of patients with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), behavioral variant of frontotemporal dementia (bvFTD), Creutzfeldt-Jakob disease (CJD), Parkinson's disease (PD), primary progressive aphasia (PPA), and progressive supranuclear palsy (PSP). The LC-MS/MS method showed excellent intra- and interassay precision (4.4-7.4% and 4.9-10.3%) and accuracy (100-107% and 100-106%). CSF ubiquitin concentration was increased compared with that of controls (33.0 ± 9.7 ng/mL) in AD (47.5 ± 13.1 ng/mL, p < 0.05) and CJD patients (171.5 ± 103.5 ng/mL, p < 0.001) but not in other neurodegenerative diseases. Receiver operating characteristic curve (ROC) analysis of AD vs control patients revealed an area under the curve (AUC) of 0.832, and the specificity and sensitivity were 75 and 75%, respectively. ROC analysis of AD and FTLD patients yielded an AUC of 0.776, and the specificity and sensitivity were 53 and 100%, respectively. In conclusion, our LC-MS/MS method may facilitate ubiquitin determination to a broader community and might help to discriminate AD, CJD, and FTLD patients.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital , Oberer Eselsberg 45, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pietiläinen-Nicklén J, Virtanen JO, Uotila L, Salonen O, Färkkilä M, Koskiniemi M. HHV-6-positivity in diseases with demyelination. J Clin Virol 2014; 61:216-9. [PMID: 25088617 DOI: 10.1016/j.jcv.2014.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND The triggering agent of multiple sclerosis is still unknown and many viruses, including human herpesvirus-6 (HHV-6), are under suspicion. In earlier study we found patients who had HHV-6 reactive OCBs in their CSF. We wanted to investigate whether HHV-6 has an active role in diseases with demyelination. OBJECTIVE To analyze the HHV-6-reactive cases in detail and investigate the possible independent role of HHV-6 in the development of central nervous system involvements with demyelination. STUDY DESIGN We studied serum and CSF samples that were collected over a period of one year, from all patients who had oligoclonal bands (OCB) in cerebrospinal fluid (CSF) and were examined in the Department of Neurology, University Central Hospital of Helsinki, Finland. Clinical evaluation was accomplished blinded of HHV-6 analysis and follow-up time was two years. All patients underwent MRI of the head and clinically indicated CSF analysis. RESULTS The 17 patients with HHV-6-reactive OCBs were significantly younger and had significantly more IgG-OCBs in comparison to patients without HHV-6-reactive OCBs. Initial diagnoses in patients with HHV-6-reactive OCBs remained the same during the follow-up time. CONCLUSION Patients with HHV-6-positive OCBs appear to form a separable group. In progressive neurological diseases HHV-6 may have a role in long-term infection with demyelination.
Collapse
Affiliation(s)
- Jenna Pietiläinen-Nicklén
- Department of Virology, Haartman Institute, University of Helsinki, Finland; Department of Neurology, University of Helsinki, Finland.
| | - Jussi O Virtanen
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - Lasse Uotila
- Department of Clinical Chemistry, HUSLAB Laboratory Services, Helsinki, Finland
| | | | | | | |
Collapse
|