1
|
Shapiro EG, Eisengart JB. The natural history of neurocognition in MPS disorders: A review. Mol Genet Metab 2021; 133:8-34. [PMID: 33741271 DOI: 10.1016/j.ymgme.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023]
Abstract
MPS disorders are associated with a wide spectrum of neurocognitive effects, from mild problems with attention and executive functions to progressive and degenerative neuronopathic disease. Studies of the natural history of neurocognition are necessary to determine the profile of abnormality and the rates of change, which are crucial to select endpoints for clinical trials of brain treatments and to make clinical recommendations for interventions to improve patients' quality of life. The goal of this paper is to review neurocognitive natural history studies to determine the current state of knowledge and assist in directing future research in all MPS disorders. There are seven different types of MPS diseases, each resulting from a specific enzyme deficiency and each having a separate natural history. MPS IX, will not be discussed as there are only 4 cases reported in the literature without cognitive abnormality. For MPS IH, hematopoietic cell transplant (HCT) is standard of care and many studies have documented the relationship between age at treatment and neurocognitive outcome, and to a lesser extent, neurocognitive status at baseline. However, the mortality and morbidity associated with the transplant process and residual long-term problems after transplant, have led to renewed efforts to find better treatments. Rather than natural history, new trials will likely need to use the developmental trajectories of the patients with HCT as a comparators. The literature has extensive data regarding developmental trajectories post-HCT. For attenuated MPS I, significant neurocognitive deficits have been documented, but more longitudinal data are needed in order to support a treatment directed at their attention and executive function abnormalities. The neuronopathic form of MPS II has been a challenge due to the variability of the trajectory of the disease with differences in timing of slowing of development and decline. Finding predictors of the course of the disease has only been partially successful, using mutation type and family history. Because of lack of systematic data and clinical trials that precede a thorough understanding of the disease, there is need for a major effort to gather natural history data on the entire spectrum of MPS II. Even in the attenuated disease, attention and executive function abnormalities need documentation. Lengthy detailed longitudinal studies are needed to encompass the wide variability in MPS II. In MPS IIIA, the existence of three good natural history studies allowed a quasi-meta-analysis. In patients with a rapid form of the disease, neurocognitive development slowed up until 42 to 47 months, halted up to about 54 months, then declined rapidly thereafter, with a leveling off at an extremely low age equivalent score below 22 months starting at about chronological age of 6. Those with slower or attenuated forms have been more variable and difficult to characterize. Because of the plethora of studies in IIIA, it has been recommended that data be combined from natural history studies to minimize the burden on parents and patients. Sufficient data exists to understand the natural history of cognition in MPS IIIA. MPS IIIB is quite similar to IIIA, but more attenuated patients in that phenotype have been reported. MPS IIIC and D, because they are so rare, have little documentation of natural history despite the prospects of treatments. MPS IV and VI are the least well documented of the MPS disorders with respect to their neurocognitive natural history. Because, like attenuated MPS I and II, they do not show progression of neurocognitive abnormality and most patients function in the range of normality, their behavioral, attentional, and executive function abnormalities have been ignored to the detriment of their quality of life. A peripheral treatment for MPS VII, extremely rare even among MPS types, has recently been approved with a post-approval monitoring system to provide neurocognitive natural history data in the future. More natural history studies in the MPS forms with milder cognitive deficits (MPS I, II, IV, and VI) are recommended with the goal of improving these patients' quality of life with and without new brain treatments, beyond the benefits of available peripheral enzyme replacement therapy. Recommendations are offered at-a-glance with respect to what areas most urgently need attention to clarify neurocognitive function in all MPS types.
Collapse
Affiliation(s)
- Elsa G Shapiro
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Shapiro Neuropsychology Consulting LLC, Portland, OR, USA.
| | - Julie B Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Martins C, de Medeiros PFV, Leistner-Segal S, Dridi L, Elcioglu N, Wood J, Behnam M, Noyan B, Lacerda L, Geraghty MT, Labuda D, Giugliani R, Pshezhetsky AV. Molecular characterization of a large group of Mucopolysaccharidosis type IIIC patients reveals the evolutionary history of the disease. Hum Mutat 2019; 40:1084-1100. [PMID: 31228227 DOI: 10.1002/humu.23752] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/27/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe, rare autosomal recessive disorder caused by variants in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene which result in lysosomal accumulation of heparan sulfate. We analyzed clinical presentation, molecular defects and their haplotype context in 78 (27 novel) MPSIIIC cases from 22 countries, the largest group studied so far. We describe for the first time disease-causing variants in the patients from Brazil, Algeria, Azerbaijan, and Iran, and extend their spectrum within Canada, Colombia, Turkey, and the USA. Six variants are novel: two missense, c.773A>T/p.N258I and c.1267G>T/p.G423W, a nonsense c.164T>A/p.L55*, a splice-site mutation c.494-1G>A/p.[P165_L187delinsQSCYVTQAGVRWHHLGSLQALPPGFTPFSYLSLLSSWNC,P165fs], a deletion c.1348delG/p.(D450fs) and an insertion c.1479dupA/p.(Leu494fs). The missense HGSNAT variants lacked lysosomal targeting, enzymatic activity, and likely the correct folding. The haplotype analysis identified founder mutations, p.N258I, c.525dupT, and p.L55* in the Brazilian state of Paraiba, c.493+1G>A in Eastern Canada/Quebec, p.A489E in the USA, p.R384* in Poland, p.R344C and p.S518F in the Netherlands and suggested that variants c.525dupT, c.372-2G>A, and c.234+1G>A present in cis with c.564-98T>C and c.710C>A rare single-nucleotide polymorphisms, have been introduced by Portuguese settlers in Brazil. Altogether, our results provide insights into the origin, migration roots and founder effects of HGSNAT disease-causing variants, and reveal the evolutionary history of MPSIIIC.
Collapse
Affiliation(s)
- Carla Martins
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.,Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Sandra Leistner-Segal
- Department of Genetics, UFRGS, Medical Genetics Service, Hospital de Clínicas de Porto Alegre-HCPA, and Brazilian National Institute of Population Medical Genetics-INAGEMP, Porto Alegre, Brazil
| | - Larbi Dridi
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Nursel Elcioglu
- Department of Pediatric Genetics, Marmara University Hospital, Istanbul, Turkey
| | - Jill Wood
- Jonah's Just Begun-Foundation to Cure Sanfilippo Inc, Brooklyn, New York, USA
| | - Mahdiyeh Behnam
- Medical Genetics Center of Genome, Isfahan, Islamic Republic of Iran
| | - Bilge Noyan
- Department of Pediatric Genetics, Marmara University Hospital, Istanbul, Turkey
| | - Lucia Lacerda
- Biochemical Genetics Unit, Institute of Medical Genetics Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal
| | - Michael T Geraghty
- Department of Pathology and Laboratry Medicine, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Damian Labuda
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Roberto Giugliani
- Department of Genetics, UFRGS, Medical Genetics Service, Hospital de Clínicas de Porto Alegre-HCPA, and Brazilian National Institute of Population Medical Genetics-INAGEMP, Porto Alegre, Brazil
| | - Alexey V Pshezhetsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.,Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Pop A, Struys EA, Jansen EEW, Fernandez MR, Kanhai WA, van Dooren SJM, Ozturk S, van Oostendorp J, Lennertz P, Kranendijk M, van der Knaap MS, Gibson KM, van Schaftingen E, Salomons GS. D-2-hydroxyglutaric aciduria Type I: Functional analysis of D2HGDH missense variants. Hum Mutat 2019; 40:975-982. [PMID: 30908763 PMCID: PMC6619364 DOI: 10.1002/humu.23751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 11/25/2022]
Abstract
D‐2‐hydroxyglutaric aciduria Type I (D‐2‐HGA Type I), a neurometabolic disorder with a broad clinical spectrum, is caused by recessive variants in the D2HGDH gene encoding D‐2‐hydroxyglutarate dehydrogenase (D‐2‐HGDH). We and others detected 42 potentially pathogenic variants in D2HGDH of which 31 were missense. We developed functional studies to investigate the effect of missense variants on D‐2‐HGDH catalytic activity. Site‐directed mutagenesis was used to introduce 31 missense variants in the pCMV5‐D2HGDH expression vector. The wild type and missense variants were overexpressed in HEK293 cells. D‐2‐HGDH enzyme activity was evaluated based on the conversion of [2H4]D‐2‐HG to [2H4]2‐ketoglutarate, which was subsequently converted into [2H4]L‐glutamate and the latter quantified by LC‐MS/MS. Eighteen variants resulted in almost complete ablation of D‐2‐HGDH activity and thus, should be considered pathogenic. The remaining 13 variants manifested residual activities ranging between 17% and 94% of control enzymatic activity. Our functional assay evaluating the effect of novel D2HGDH variants will be beneficial for the classification of missense variants and determination of pathogenicity.
Collapse
Affiliation(s)
- Ana Pop
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Erwin E W Jansen
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Matilde R Fernandez
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Warsha A Kanhai
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Silvy J M van Dooren
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Senay Ozturk
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Justin van Oostendorp
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Pascal Lennertz
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Martijn Kranendijk
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Emile van Schaftingen
- Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Laboratory of Biochemistry, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands.,Department of Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pshezhetsky AV, Martins C, Ashmarina M. Sanfilippo type C disease: pathogenic mechanism and potential therapeutic applications. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1534585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alexey V. Pshezhetsky
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Carla Martins
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
| | - Mila Ashmarina
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, Montreal, Canada
| |
Collapse
|
5
|
Sagnelli A, Savoiardo M, Marchesi C, Morandi L, Mora M, Morbin M, Farina L, Mazzeo A, Toscano A, Pagliarani S, Lucchiari S, Comi G, Salsano E, Pareyson D. Adult polyglucosan body disease in a patient originally diagnosed with Fabry’s disease. Neuromuscul Disord 2014; 24:272-6. [DOI: 10.1016/j.nmd.2013.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/12/2013] [Indexed: 11/17/2022]
|
6
|
Clinical neurogenetics: recent advances. J Neurol 2012; 259:2255-60. [DOI: 10.1007/s00415-012-6602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/25/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
7
|
Kranendijk M, Struys EA, Salomons GS, Van der Knaap MS, Jakobs C. Progress in understanding 2-hydroxyglutaric acidurias. J Inherit Metab Dis 2012; 35:571-87. [PMID: 22391998 PMCID: PMC3388262 DOI: 10.1007/s10545-012-9462-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 12/16/2022]
Abstract
The organic acidurias D: -2-hydroxyglutaric aciduria (D-2-HGA), L-2-hydroxyglutaric aciduria (L-2-HGA), and combined D,L-2-hydroxyglutaric aciduria (D,L-2-HGA) cause neurological impairment at young age. Accumulation of D-2-hydroxyglutarate (D-2-HG) and/or L-2-hydroxyglutarate (L-2-HG) in body fluids are the biochemical hallmarks of these disorders. The current review describes the knowledge gathered on 2-hydroxyglutaric acidurias (2-HGA), since the description of the first patients in 1980. We report on the clinical, genetic, enzymatic and metabolic characterization of D-2-HGA type I, D-2-HGA type II, L-2-HGA and D,L-2-HGA, whereas for D-2-HGA type I and type II novel clinical information is presented which was derived from questionnaires.
Collapse
Affiliation(s)
- Martijn Kranendijk
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Eduard A. Struys
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Gajja S. Salomons
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Cornelis Jakobs
- Metabolic Unit - Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|