1
|
Chan JL, Rawls AE, Wong JK, Hogarth P, Hilliard JD, Okun MS. Patient Selection for Deep Brain Stimulation for Pantothenate Kinase-Associated Neurodegeneration. Tremor Other Hyperkinet Mov (N Y) 2024; 14:51. [PMID: 39430809 PMCID: PMC11488193 DOI: 10.5334/tohm.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Clinical Vignette A 23-year-old woman with pantothenate kinase-associated neurodegeneration (PKAN) presented with medication-refractory generalized dystonia and an associated gait impairment. Clinical Dilemma Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) can be an effective treatment for dystonia. However, outcomes for PKAN DBS have been variable and there are no standardized criteria for patient selection. Clinical Solution Bilateral GPi DBS implantation resulted in improvement in dystonia and gait. The benefit has persisted over one year after implantation. Gap in Knowledge PKAN is a rare neurodegenerative disorder and evidence supporting the use of PKAN DBS has been largely limited to case reports and case series. Consequently, there is a paucity of long-term data, especially on gait-related outcomes. Expert Commentary The clinical characteristics of dystonia that respond to DBS tend to respond in PKAN. Clinicians counselling patients about the effects of DBS for PKAN should thoughtfully discuss gait and postural instability as important aspects to consider, especially as the disease will progress post-DBS.
Collapse
Affiliation(s)
- Jason L. Chan
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Ashley E. Rawls
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Joshua K. Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin D. Hilliard
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S. Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Wu X, Xue T, Pan S, Xing W, Huang C, Zhang J, Zhao G. Pallidal versus subthalamic deep brain stimulation for Meige syndrome: A systematic review and meta-analysis. Heliyon 2024; 10:e27945. [PMID: 38510025 PMCID: PMC10950702 DOI: 10.1016/j.heliyon.2024.e27945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Background Globus pallidus internus (GPi) and subthalamic nucleus (STN) are two common deep brain stimulation (DBS) targets. This meta-analysis was to compared the efficacy and safety of these two DBS targets for the treatment of Meige syndrome (MS). Methods A systematic search was performed using EMBASE, MEDLINE, the Cochrane Library, and ClinicalTrials.gov to identify DBS trials for MS. Review Manager 5.3 was used to perform meta-analysis and the mean difference (MD) was analyzed and calculated with a random effect model. Pearson's correlation coefficients and meta-regression analyses were utilized to identify relevant predictive markers. Results Twenty trials involving 188 participants with GPi-DBS and 110 individuals with STN-DBS were eligible. Both groups showed improvement of the Burke-Fahn-Marsden Dystonia Rating Scale-Movement (BFMDRS-M) and Disability (BFMDRS-D) scores (BFMDRS-M: MD = 10.57 [7.74-13.41] for GPi-DBS, and MD = 8.59 [4.08-13.11] for STN-DBS; BFMDRS-D: MD = 5.96 [3.15-8.77] for GPi-DBS, and MD = 4.71 [1.38-8.04] for STN-DBS; all P < 0.001) from baseline to the final follow-up, while no notable disparity in improvement rates was observed between them. Stimulation-related complications occurrence was also similar between two groups (38.54 ± 24.07% vs. 43.17 ± 29.12%, P = 0.7594). Simultaneously, preoperative BFMDRS-M score and disease duration were positively connected with the relative changes in BFMDRS-M score at the final visit. Conclusion Both GPi-DBS and STN-DBS are effective MS therapies, with no differences in efficacy or the frequency of stimulation-related problems. Higher preoperative scores and longer disease duration probably predict greater improvement.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shiqing Pan
- A6 East in Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weikang Xing
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| | - Chuanjun Huang
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guozheng Zhao
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, China
| |
Collapse
|
3
|
Rački V, Hero M, Papić E, Rožmarić G, Čizmarević NS, Chudy D, Peterlin B, Vuletić V. Applicability of clinical genetic testing for deep brain stimulation treatment in monogenic Parkinson's disease and monogenic dystonia: a multidisciplinary team perspective. Front Neurosci 2023; 17:1282267. [PMID: 38027472 PMCID: PMC10667448 DOI: 10.3389/fnins.2023.1282267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
In this perspective article, we highlight the possible applicability of genetic testing in Parkinson's disease and dystonia patients treated with deep brain stimulation (DBS). DBS, a neuromodulatory technique employing electrical stimulation, has historically targeted motor symptoms in advanced PD and dystonia, yet its precise mechanisms remain elusive. Genetic insights have emerged as potential determinants of DBS efficacy. Known PD genes such as GBA, SNCA, LRRK2, and PRKN are most studied, even though further studies are required to make firm conclusions. Variable outcomes depending on genotype is present in genetic dystonia, as DYT-TOR1A, NBIA/DYTPANK2, DYT-SCGE and X-linked dystonia-parkinsonism have demonstrated promising outcomes following GPi-DBS, while varying outcomes have been documented in DYT-THAP1. We present two clinical vignettes that illustrate the applicability of genetics in clinical practice, with one PD patient with compound GBA mutations and one GNAL dystonia patient. Integrating genetic testing into clinical practice is pivotal, particularly with advancements in next-generation sequencing. However, there is a clear need for further research, especially in rarer monogenic forms. Our perspective is that applying genetics in PD and dystonia is possible today, and despite challenges, it has the potential to refine patient selection and enhance treatment outcomes.
Collapse
Affiliation(s)
- Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mario Hero
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gloria Rožmarić
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Nada Starčević Čizmarević
- Department of Medical Genomics and Biology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vladimira Vuletić
- Department of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
4
|
Liu J, Ding H, Xu K, Wang D, Ouyang J, Liu Z, Liu R. Micro lesion effect of pallidal deep‑brain stimulation for meige syndrome. Sci Rep 2022; 12:19980. [PMID: 36411289 PMCID: PMC9678874 DOI: 10.1038/s41598-022-23156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
To analyse the microlesion effect (MLE) in the globus pallidus interna (GPi) of deep brain stimulation (DBS) in patients with Meige syndrome. Thirty-two patients with primary Meige syndrome who underwent GPi-DBS in this study. Burke-Fahn-Marsden Dystonia Rating Scale scores (BFMDRS-M) were obtained for the evaluation of clinical symptoms at 3 days before DBS (baseline), 24 h after DBS surgery, once weekly for 1 month until electrical stimulation, 6 months postoperatively and 12 months after surgery. Twenty-seven patients had MLE after GPi-DBS. The mean time of BFMDRS-M scores maximal improvement from MLE was 35.9 h postoperatively (range, 24-48 h), and the mean scores improved by 49.35 ± 18.16%. At 12 months after surgery, the mean BFMDRS-M scores improved by 50.28 ± 29.70%. There was a positive correlation between the magnitude of MLE and the motor score at 12 months after GPi-DBS (R2 = 0.335, p < 0.05). However, there was no correlation between the duration of MLE and DBS improvement. Most Meige syndrome patients who underwent GPi-DBS and had MLE benefited from MLE. For Meige syndrome, MLE might be a predictive factor for patient clinical symptom improvement from DBS.
Collapse
Affiliation(s)
- Jiayu Liu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Hu Ding
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Ke Xu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Dongliang Wang
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Jia Ouyang
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Zhi Liu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| | - Ruen Liu
- grid.411634.50000 0004 0632 4559Department of Neurosurgery, Peking University People’s Hospital, 11Th Xizhimen South St., Beijing, 100044 China
| |
Collapse
|
5
|
Neurophysiological Basis of Deep Brain Stimulation and Botulinum Neurotoxin Injection for Treating Oromandibular Dystonia. Toxins (Basel) 2022; 14:toxins14110751. [PMID: 36356002 PMCID: PMC9694803 DOI: 10.3390/toxins14110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Oromandibular dystonia (OMD) induces severe motor impairments, such as masticatory disturbances, dysphagia, and dysarthria, resulting in a serious decline in quality of life. Non-invasive brain-imaging techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) are powerful approaches that can elucidate human cortical activity with high temporal resolution. Previous studies with EEG and MEG have revealed that movements in the stomatognathic system are regulated by the bilateral central cortex. Recently, in addition to the standard therapy of botulinum neurotoxin (BoNT) injection into the affected muscles, bilateral deep brain stimulation (DBS) has been applied for the treatment of OMD. However, some patients' OMD symptoms do not improve sufficiently after DBS, and they require additional BoNT therapy. In this review, we provide an overview of the unique central spatiotemporal processing mechanisms in these regions in the bilateral cortex using EEG and MEG, as they relate to the sensorimotor functions of the stomatognathic system. Increased knowledge regarding the neurophysiological underpinnings of the stomatognathic system will improve our understanding of OMD and other movement disorders, as well as aid the development of potential novel approaches such as combination treatment with BoNT injection and DBS or non-invasive cortical current stimulation therapies.
Collapse
|
6
|
Lin S, Wang L, Shu Y, Guo S, Wang T, Li H, Zhang C, Sun B, Li D, Wu Y. Rescue procedure for isolated dystonia after the secondary failure of globus pallidus internus deep brain stimulation. Front Neurosci 2022; 16:924617. [PMID: 36061614 PMCID: PMC9434021 DOI: 10.3389/fnins.2022.924617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionGlobus pallidus internus (GPi) deep brain stimulation (DBS) is widely used in patients with dystonia. However, 10–20% of patients receive insufficient benefits. The objectives of this study are to evaluate the effectiveness of bilateral subthalamic nucleus (STN) DBS along with unilateral posteroventral pallidotomy (PVP) in patients with dystonia who experienced unsatisfactory GPi-DBS and to address the reported rescue procedures after suboptimal DBS or lesion surgery in dystonia patients.MethodsSix patients with isolated dystonia who had previously undergone bilateral GPi-DBS with suboptimal improvement were included. Standardized assessments of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and quality of life using SF-36 were evaluated before surgery and 1, 6 months, and last follow-up (LFU) after surgery. STN bilateral OFF (bi-OFF), unilateral ON (uni-ON), and bilateral ON (bi-ON) states were recorded at LFU. Specific items were used to find publications published before 10 April 2022 regarding rescue procedures after suboptimal DBS or lesion surgery in patients with dystonia for reference. Eleven original studies including case reports/series were identified for discussion.ResultsSubstantial clinical benefits were achieved in all six patients. Significant amelioration was achieved during the 1-month (6.5 ± 7.45; p = 0.0049), 6-month (5.67 ± 6.3; p = 0.0056) follow-ups, and at LFU (4.67 ± 4.72; p = 0.0094) when compared with the baseline (LFU of GPi DBS with on status) (17.33 ± 11.79) assessed by BFMDRS. The percentage of improvement reached 70.6, 74.67, and 77.05%, respectively. At LFU, significant differences were found between the stimulation bi-OFF and uni-ON (11.08 ± 8.38 vs. 9 ± 8.52, p = 0.0191), and between the stimulation bi-OFF and bi-ON (11.08 ± 8.38 vs. 4.67 ± 4.72, p = 0.0164). Trends depicting a better improvement in stimulation bi-ON compared with uni-ON (4.67 ± 4.72 vs. 9 ± 8.52, p = 0.0538) were observed.ConclusionOur results suggest that bilateral STN-DBS plus unilateral PVP may be an effective rescue procedure for patients with isolated dystonia who experienced suboptimal movement improvement following GPi-DBS. However, given the heterogeneity of patients and the small sample size, these findings should be interpreted with caution.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunyu Guo
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Dianyou Li,
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated With Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yiwen Wu,
| |
Collapse
|
7
|
Deep brain stimulation in dystonia: factors contributing to variability in outcome in short and long term follow-up. Curr Opin Neurol 2022; 35:510-517. [PMID: 35787538 DOI: 10.1097/wco.0000000000001072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is currently the most effective treatment for medically refractory dystonia with globus pallidus internus (GPi) usually the preferred target. Despite the overall success of DBS in dystonia, there remains variability in treatment outcome in both short and long-term follow-up, due to various factors. Factors contributing to variability in outcome comprise 'Dystonia Related' including dystonia classification, semiology, duration, body distribution, orthopaedic deformity, aetiology and genetic cause. The majority of these factors are identifiable from clinical assessment, brain MRI and genetic testing, and therefore merit careful preoperative consideration. 'DBS related' factors include brain target, accuracy of lead placement, stimulation parameters, time allowed for response, neurostimulation technology employed and DBS induced side-effects. In this review, factors contributing to variability in short and long-term dystonia DBS outcome are reviewed and discussed. RECENT FINDINGS The recognition of differential DBS benefit in monogenic dystonia, increasing experience with subthalamic nucleus (STN) DBS and in DBS for Meige syndrome, elucidation of DBS side effects and novel neurophysiological and imaging techniques to assist in predicting clinical outcome. SUMMARY Improved understanding of factors contributing to variability of DBS outcome in dystonia may assist in patient selection and predicting surgical outcomes.
Collapse
|
8
|
The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex. J Clin Med 2022; 11:jcm11123453. [PMID: 35743523 PMCID: PMC9224879 DOI: 10.3390/jcm11123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Focal laryngeal dystonia (LD) is a rare, idiopathic disease affecting the laryngeal musculature with an unknown cause and clinically presented as adductor LD or rarely as abductor LD. The most effective treatment options include the injection of botulinum toxin (BoNT) into the affected laryngeal muscle. The aim of this narrative review is to summarize the patho-neuro-physiological and genetic background of LD, as well as the standard recommended therapy (BoNT) and pharmacological treatment options, and to discuss possible treatment perspectives using neuro-modulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and vibrotactile stimulation. The review will present two LD cases, patients with adductor and abductor LD, standard diagnostic procedure, treatments and achievement, and the results of cortical excitability mapping the primary motor cortex for the representation of the laryngeal muscles in the assessment of corticospinal and corticobulbar excitability.
Collapse
|
9
|
Lucas J, Kusyk D, Whiting D. Bilateral pallidal DBS for blepharospasm: A case report and review of the literature. Surg Neurol Int 2022; 13:200. [PMID: 35673639 PMCID: PMC9168297 DOI: 10.25259/sni_1234_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/21/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
Deep brain stimulation (DBS) of the globus pallidus internus (GPi) in the treatment of craniocervical dystonia often requires an extended period of stimulation parameter manipulations.
Case Description:
We present a patient suffering from debilitating blepharospasm treated with bilateral DBS of the GPi alongside 7 years of stimulation parameter manipulations and a literature review of comparable patients.
Conclusion:
Our literature review suggests that a patient’s specific dystonic symptoms can guide stimulation parameter manipulations. Further research regarding trends in stimulation parameters being used in the field for different dystonic symptoms may expedite the stimulation parameter manipulation process.
Collapse
Affiliation(s)
- Joshua Lucas
- MD Program, Drexel University College of Medicine, Philadelphia,
| | - Dorian Kusyk
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, United States
| | - Donald Whiting
- Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Ma H, Qu J, Ye L, Shu Y, Qu Q. Blepharospasm, Oromandibular Dystonia, and Meige Syndrome: Clinical and Genetic Update. Front Neurol 2021; 12:630221. [PMID: 33854473 PMCID: PMC8039296 DOI: 10.3389/fneur.2021.630221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Meige syndrome (MS) is cranial dystonia characterized by the combination of upper and lower cranial involvement and including binocular eyelid spasms (blepharospasm; BSP) and involuntary movements of the jaw muscles (oromandibular dystonia; OMD). The etiology and pathogenesis of this disorder of the extrapyramidal system are not well-understood. Neurologic and ophthalmic examinations often reveal no abnormalities, making diagnosis difficult and often resulting in misdiagnosis. A small proportion of patients have a family history of the disease, but to date no causative genes have been identified to date and no cure is available, although botulinum toxin A therapy effectively mitigates the symptoms and deep brain stimulation is gaining increasing attention as a viable alternative treatment option. Here we review the history and progress of research on MS, BSP, and OMD, as well as the etiology, pathology, diagnosis, and treatment.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Liangjun Ye
- Department of Pharmacy, Hunan Provincial Corps Hospital of Chinese People's Armed Police Force, Changsha, China
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Kim HJ, Jeon B. Arching deep brain stimulation in dystonia types. J Neural Transm (Vienna) 2021; 128:539-547. [PMID: 33740122 DOI: 10.1007/s00702-021-02304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
Although medical treatment including botulinum toxic injection is the first-line treatment for dystonia, response is insufficient in many patients. In these patients, deep brain stimulation (DBS) can provide significant clinical improvement. Mounting evidence indicates that DBS is an effective and safe treatment for dystonia, especially for idiopathic and inherited isolated generalized/segmental dystonia, including DYT-TOR1A. Other inherited dystonia and acquired dystonia also respond to DBS to varying degrees. For Meige syndrome (craniofacial dystonia), other focal dystonia, and some rare inherited dystonia, further evidences are still needed to evaluate the role of DBS. Because short disease duration at DBS surgery and absence of fixed musculoskeletal deformity are associated with better outcome, DBS should be considered as early as possible when indicated after careful evaluation including genetic work-up. This review will focus on the factors to be considered in DBS for patients with dystonia and the outcome of DBS in the different types of dystonia.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
12
|
Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11:630391. [PMID: 33488508 PMCID: PMC7820073 DOI: 10.3389/fneur.2020.630391] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective intervention for medically refractory segmental and generalized dystonia in both children and adults. Predictive factors for the degree of improvement after GPi DBS include shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually responding better than acquired combined dystonias. Other factors contributing to variability in outcome may include body distribution, pattern of dystonia and DBS related factors such as lead placement and stimulation parameters. The responsiveness to DBS appears to vary between different monogenic forms of dystonia, with some improving more than others. The first observation in this regard was reports of superior DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression and secondary worsening after effective GPi DBS, has been described. Myoclonus dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes following GPi DBS have also been documented in X-linked dystonia Parkinsonism (DYT3). In contrast, poorer, more variable DBS outcomes have been reported in DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B (DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying results in smaller numbers of patients. In this article the available evidence for long term GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular perceptions of expected outcomes and revisit whether genetic diagnosis may assist in predicting DBS outcome.
Collapse
Affiliation(s)
- Stephen Tisch
- Department of Neurology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
13
|
Yu H, Takahashi K, Bloom L, Quaynor SD, Xie T. Effect of Deep Brain Stimulation on Swallowing Function: A Systematic Review. Front Neurol 2020; 11:547. [PMID: 32765388 PMCID: PMC7380112 DOI: 10.3389/fneur.2020.00547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
The effect of deep brain stimulation (DBS) on swallowing function in movement disorders is unclear. Here, we systematically reviewed this topic by searching keywords following PICOS strategy of problem (swallowing or swallow or dysphagia or aspiration) and intervention (deep brain stimulation, or DBS) in the PubMed and Web of Science in English in April 2020, with comparators [subthalamic nucleus (STN), globus pallidus interna (GPi), ventralis intermedius, (ViM), post-subthalamic area, or caudal zona incerta (PSA/cZi); ON/OFF DBS state/settings, ON/OFF medication state, Parkinson's disease (PD), dystonia, tremor], outcomes (swallowing function measures, subjective/objective) and study types (good quality original studies) in mind. We found that STN DBS at usual high-frequency stimulation could have beneficial effect (more so on subjective measures and/or OFF medication), no effect, or detrimental effect (more so on objective measures and/or ON medication) on swallowing function in patients with PD, while low-frequency stimulation (LFS) could have beneficial effect on swallowing function in patients with freezing of gait. GPi DBS could have a beneficial effect (regardless of medication state and outcome measures) or no effect, but no detrimental effect, on swallowing function in PD. GPi DBS also has beneficial effects on swallowing function in majority of the studies on Meige syndrome but not in other diseases with dystonia. PSA/cZi DBS rarely has detrimental effect on swallowing functions in patients with PD or tremor. There is limited information on ViM to assess. Information on swallowing function by DBS remains limited. Well-designed studies and direct comparison of targets are further needed.
Collapse
Affiliation(s)
- Huiyan Yu
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Department of Neurology, The University of Chicago Medicine, Chicago, IL, United States
| | - Kazutaka Takahashi
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, United States
| | - Lisa Bloom
- Department of Neurology, The University of Chicago Medicine, Chicago, IL, United States.,Speech and Swallowing Service, The University of Chicago Medicine, Chicago, IL, United States
| | - Samuel D Quaynor
- Department of Neurology, The University of Chicago Medicine, Chicago, IL, United States
| | - Tao Xie
- Department of Neurology, The University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
14
|
Tian H, Yu Y, Zhen X, Zhang L, Yuan Y, Zhang B, Wang L. Long-Term Efficacy of Deep Brain Stimulation of Bilateral Globus Pallidus Internus in Primary Meige Syndrome. Stereotact Funct Neurosurg 2020; 97:356-361. [DOI: 10.1159/000504861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
|
15
|
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat Disord 2019; 59:9-20. [PMID: 30658883 DOI: 10.1016/j.parkreldis.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. METHODS We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress. RESULTS Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation. CONCLUSIONS Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stephanie Cernera
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Aryn Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Horisawa S, Ochiai T, Goto S, Nakajima T, Takeda N, Kawamata T, Taira T. Long-term outcome of pallidal stimulation for Meige syndrome. J Neurosurg 2019; 130:84-89. [PMID: 29350600 DOI: 10.3171/2017.7.jns17323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Meige syndrome is characterized by blepharospasm and varied subphenotypes of craniocervical dystonia. Current literature on pallidal surgery for Meige syndrome is limited to case reports and a few small-scale studies. The authors investigated the clinical outcomes of deep brain stimulation (DBS) of the globus pallidus internus (GPi) in patients with Meige syndrome. METHODS Sixteen patients who underwent GPi DBS at the Tokyo Women's Medical University Hospital between 2002 and 2015 were included in this study. Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) movement subscale (BFMDRS-M) scores (range 0-120) obtained at the following 3 time points were included in this analysis: before surgery, 3 months after surgery, and at the most recent follow-up evaluation. RESULTS The patients' mean age (± SD) at symptom onset was 46.7 ± 10.1 years, and the mean disease duration at the time of the authors' initial evaluation was 5.9 ± 4.1 years. In 12 patients, the initial symptom was blepharospasm, and the other 4 patients presented with cervical dystonia. The mean postoperative follow-up period was 66.6 ± 40.7 months (range 13-150 months). The mean total BFMDRS-M scores at the 3 time points were 16.3 ± 5.5, 5.5 ± 5.6 (66.3% improvement, p < 0.001), and 6.7 ± 7.3 (58.9% improvement, p < 0.001). CONCLUSIONS The results indicate long-term efficacy for GPi DBS for the majority of patients with Meige syndrome.
Collapse
Affiliation(s)
- Shiro Horisawa
- 1Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo
| | | | - Shinichi Goto
- 1Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo
| | - Takeshi Nakajima
- 3Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Nobuhiko Takeda
- 1Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo
| | - Takakazu Kawamata
- 1Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo
| | - Takaomi Taira
- 1Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo
| |
Collapse
|
17
|
Shu W, Li Y, Li J, Zhang Y. Interleaving programming in pallidal deep brain stimulation improves outcomes in a patient with Meige syndrome. Br J Neurosurg 2018; 32:661-662. [PMID: 30526116 DOI: 10.1080/02688697.2018.1504883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wei Shu
- Beijing Institute of Function Neurosurgery, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
| | - Yongjie Li
- Beijing Institute of Function Neurosurgery, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
| | - Jianyu Li
- Beijing Institute of Function Neurosurgery, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
| | - Yuqing Zhang
- Beijing Institute of Function Neurosurgery, Xuanwu Hospital, Capital Medical University, Xicheng, Beijing, China
| |
Collapse
|
18
|
The impact of deep brain stimulation on health related quality of life and disease-specific disability in Meige Syndrome (MS). Clin Neurol Neurosurg 2018; 171:53-57. [DOI: 10.1016/j.clineuro.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/06/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
|
19
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
20
|
Cury RG, Kalia SK, Shah BB, Jimenez-Shahed J, Prashanth LK, Moro E. Surgical treatment of dystonia. Expert Rev Neurother 2018; 18:477-492. [PMID: 29781334 DOI: 10.1080/14737175.2018.1478288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Treatment of dystonia should be individualized and tailored to the specific needs of patients. Surgical treatment is an important option in medically refractory cases. Several issues regarding type of the surgical intervention, targets, and predict factors of benefit are still under debate. Areas covered: To date, several clinical trials have proven the benefit and safety of deep brain stimulation (DBS) for inherited and idiopathic isolated dystonia, whereas there is still insufficient evidence in combined and acquired dystonia. The globus pallidus internus (GPi) is the target with the best evidence, but data on the subthalamic nucleus seems also to be promising. Evidence suggests that younger patients with shorter disease duration experience greater benefit following DBS. Pallidotomy and thalamotomy are currently used in subset of carefully selected patients. The development of MRI-guided focused ultrasound might bring new options to ablation approach in dystonia. Expert commentary: GPi-DBS is effective and safe in isolated dystonia and should not be delayed when symptoms compromise quality of life and functionality. Identifying the best candidates to surgery on acquired and combined dystonias is still necessary. New insights about pathophysiology of dystonia and new technological advances will undoubtedly help to tailor surgery and optimize clinical effects.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- a Service de Neurologie, Centre Hospitalier Universitaire de Grenoble , Université Grenoble Alpes , Grenoble , France.,b Department of Neurology, School of Medicine , University of São Paulo , São Paulo , Brazil
| | - Suneil Kumar Kalia
- c Division of Neurosurgery and Krembil Research Institute, Department of Surgery , University of Toronto , Toronto , Canada
| | - Binit Bipin Shah
- d Parkinson's Disease and Movement Disorders Center, Department of Neurology , University of Virginia , Charlottesville , VA , USA
| | - Joohi Jimenez-Shahed
- e Parkinson's Disease Center and Movement Disorders Clinic , Baylor College of Medicine , Houston , TX , USA
| | | | - Elena Moro
- a Service de Neurologie, Centre Hospitalier Universitaire de Grenoble , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
21
|
Luthra NS, Mitchell KT, Volz MM, Tamir I, Starr PA, Ostrem JL. Intractable Blepharospasm Treated with Bilateral Pallidal Deep Brain Stimulation. Tremor Other Hyperkinet Mov (N Y) 2017; 7:472. [PMID: 28975046 PMCID: PMC5623756 DOI: 10.7916/d8sj1v9f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/21/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Blepharospasm can be present as an isolated dystonia or in conjunction with other forms of cranial dystonia, causing significant disability. CASE REPORT We report a case of a 69-year-old male with craniocervical dystonia, manifesting primarily as incapacitating blepharospasm refractory to medical treatments. He underwent bilateral globus pallidus (GP) deep brain stimulation (DBS) with complete resolution of his blepharospasm and sustained benefit at 12 months postoperatively. DISCUSSION This case illustrates successful treatment of blepharospasm with pallidal stimulation. GP-DBS should be considered a reasonable therapeutic option for intractable blepharospasm.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Kyle T. Mitchell
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Monica M. Volz
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Idit Tamir
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Phillip A. Starr
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Jill L. Ostrem
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Poologaindran A, Ivanishvili Z, Morrison MD, Rammage LA, Sandhu MK, Polyhronopoulos NE, Honey CR. The effect of unilateral thalamic deep brain stimulation on the vocal dysfunction in a patient with spasmodic dysphonia: interrogating cerebellar and pallidal neural circuits. J Neurosurg 2017; 128:575-582. [PMID: 28304188 DOI: 10.3171/2016.10.jns161025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Spasmodic dysphonia (SD) is a neurological disorder of the voice where a patient's ability to speak is compromised due to involuntary contractions of the intrinsic laryngeal muscles. Since the 1980s, SD has been treated with botulinum toxin A (BTX) injections into the throat. This therapy is limited by the delayed-onset of benefits, wearing-off effects, and repeated injections required every 3 months. In a patient with essential tremor (ET) and coincident SD, the authors set out to quantify the effects of thalamic deep brain stimulation (DBS) on vocal function while investigating the underlying motor thalamic circuitry. A 79-year-old right-handed woman with ET and coincident adductor SD was referred to our neurosurgical team. While primarily treating her limb tremor, the authors studied the effects of unilateral, thalamic DBS on vocal function using the Unified Spasmodic Dysphonia Rating Scale (USDRS) and voice-related quality of life (VRQOL). Since dystonia is increasingly being considered a multinodal network disorder, an anterior trajectory into the left thalamus was deliberately chosen such that the proximal contacts of the electrode were in the ventral oralis anterior (Voa) nucleus (pallidal outflow) and the distal contacts were in the ventral intermediate (Vim) nucleus (cerebellar outflow). In addition to assessing on/off unilateral thalamic Vim stimulation on voice, the authors experimentally assessed low-voltage unilateral Vim, Voa, or multitarget stimulation in a prospective, randomized, doubled-blinded manner. The evaluators were experienced at rating SD and were familiar with the vocal tremor of ET. A Wilcoxon signed-rank test was used to study the pre- and posttreatment effect of DBS on voice. Unilateral left thalamic Vim stimulation (DBS on) significantly improved SD vocal dysfunction compared with no stimulation (DBS off), as measured by the USDRS (p < 0.01) and VRQOL (p < 0.01). In the experimental interrogation, both low-voltage Vim (p < 0.01) and multitarget Vim + Voa (p < 0.01) stimulation were significantly superior to low-voltage Voa stimulation. For the first time, the effects of high-frequency stimulation of different neural circuits in SD have been quantified. Unexpectedly, focused Voa (pallidal outflow) stimulation was inferior to Vim (cerebellar outflow) stimulation despite the classification of SD as a dystonia. While only a single case, scattered reports exist on the positive effects of thalamic DBS on dysphonia. A Phase 1 pilot trial (DEBUSSY; clinical trial no. NCT02558634, clinicaltrials.gov) is underway at the authors' center to evaluate the safety and preliminary efficacy of DBS in SD. The authors hope that this current report stimulates neurosurgeons to investigate this new indication for DBS.
Collapse
Affiliation(s)
| | | | - Murray D Morrison
- 2Otolaryngology, The University of British Columbia, Vancouver, British Columbia,Canada
| | - Linda A Rammage
- 2Otolaryngology, The University of British Columbia, Vancouver, British Columbia,Canada
| | - Mini K Sandhu
- Department of Surgery, Divisions of1Neurosurgery and
| | | | | |
Collapse
|
23
|
Pandey S, Sharma S. Meige's syndrome: History, epidemiology, clinical features, pathogenesis and treatment. J Neurol Sci 2017; 372:162-170. [DOI: 10.1016/j.jns.2016.11.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
24
|
Valls-Sole J, Defazio G. Blepharospasm: Update on Epidemiology, Clinical Aspects, and Pathophysiology. Front Neurol 2016; 7:45. [PMID: 27064462 PMCID: PMC4814756 DOI: 10.3389/fneur.2016.00045] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Blepharospasm (BSP) is a rather distressing form of focal dystonia. Although many aspects of its pathophysiological mechanisms are already known, we lack fundamental evidence on etiology, prevention, and treatment. To advance in our knowledge, we need to review what is already known in various aspects of the disorder and use these bases to find future lines of interest. Some of the signs observed in BSP are cause, while others are consequence of the disorder. Non-motor symptoms and signs may be a cue for understanding better the disease. Various cerebral sites have been shown to be functionally abnormal in BSP, including the basal ganglia, the cortex, and the cerebellum. However, we still do not know if the dysfunction or structural change affecting these brain regions is cause or consequence of BSP. Further advances in neurophysiology and neuroimaging may eventually clarify the pathophysiological mechanisms implicated. In this manuscript, we aim to update what is known regarding epidemiology, clinical aspects, and pathophysiology of the disorder and speculate on the directions of research worth pursuing in the near future.
Collapse
Affiliation(s)
- Josep Valls-Sole
- EMG and Motor Control Section, Neurology Department, Hospital Clinic, University of Barcelona , Barcelona , Spain
| | - Giovanni Defazio
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, "Aldo Moro" University of Bari , Bari , Italy
| |
Collapse
|
25
|
Santos AF, Veiga A, Augusto L, Vaz R, Rosas MJ, Volkmann J. Successful Treatment of Blepharospasm by Pallidal Neurostimulation. Mov Disord Clin Pract 2016; 3:409-411. [PMID: 30713932 DOI: 10.1002/mdc3.12297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/19/2015] [Accepted: 10/13/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Andreia Veiga
- Neurology Department Centro Hospitalar de Trás os Montes e Alto Douro Vila Real Portugal
| | - Luís Augusto
- Neuroradiology Department Centro Hospitalar São João Porto Portugal
| | - Rui Vaz
- Movement Disorders and Functional Surgery Unit Centro Hospitalar São João Porto Portugal.,Department of Clinical Neurosciences and Mental Health Faculty of Medicine University of Porto Porto Portugal
| | - Maria José Rosas
- Movement Disorders and Functional Surgery Unit Centro Hospitalar São João Porto Portugal
| | - Jens Volkmann
- Neurologischen Klinik der Universität Würzburg Germany
| |
Collapse
|
26
|
Albanese A, Sorbo FD, Comella C, Jinnah HA, Mink JW, Post B, Vidailhet M, Volkmann J, Warner TT, Leentjens AFG, Martinez-Martin P, Stebbins GT, Goetz CG, Schrag A. Dystonia rating scales: critique and recommendations. Mov Disord 2014; 28:874-83. [PMID: 23893443 DOI: 10.1002/mds.25579] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023] Open
Abstract
Many rating scales have been applied to the evaluation of dystonia, but only few have been assessed for clinimetric properties. The Movement Disorders Society commissioned this task force to critique existing dystonia rating scales and place them in the clinical and clinimetric context. A systematic literature review was conducted to identify rating scales that have either been validated or used in dystonia. Thirty-six potential scales were identified. Eight were excluded because they did not meet review criteria, leaving 28 scales that were critiqued and rated by the task force. Seven scales were found to meet criteria to be "recommended": the Blepharospasm Disability Index is recommended for rating blepharospasm; the Cervical Dystonia Impact Scale and the Toronto Western Spasmodic Torticollis Rating Scale for rating cervical dystonia; the Craniocervical Dystonia Questionnaire for blepharospasm and cervical dystonia; the Voice Handicap Index (VHI) and the Vocal Performance Questionnaire (VPQ) for laryngeal dystonia; and the Fahn-Marsden Dystonia Rating Scale for rating generalized dystonia. Two "recommended" scales (VHI and VPQ) are generic scales validated on few patients with laryngeal dystonia, whereas the others are disease-specific scales. Twelve scales met criteria for "suggested" and 7 scales met criteria for "listed." All the scales are individually reviewed in the online information. The task force recommends 5 specific dystonia scales and suggests to further validate 2 recommended generic voice-disorder scales in dystonia. Existing scales for oromandibular, arm, and task-specific dystonia should be refined and fully assessed. Scales should be developed for body regions for which no scales are available, such as lower limbs and trunk.
Collapse
Affiliation(s)
- Alberto Albanese
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Milano, Italy; Neurologia I, Istituto Neurologico Carlo Besta, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hedera P. Treatment of Wilson's disease motor complications with deep brain stimulation. Ann N Y Acad Sci 2014; 1315:16-23. [DOI: 10.1111/nyas.12372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter Hedera
- Department of Neurology; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
28
|
Thompson AJ, Peng-Chen Z, Pastrana M, Foote KD, Haq I, Okun MS. Intraoperative smile in a multiple sclerosis patient with medication-refractory tremor. Neurocase 2014; 20:698-703. [PMID: 24156388 DOI: 10.1080/13554794.2013.841952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Deep brain stimulation has been utilized to improve disease symptoms in patients with Parkinson's disease, dystonia, essential tremor, and other neuropsychiatric syndromes such as depression and obsessive compulsive disorder. Deep brain stimulation has also been observed to improve tremor for select patients with multiple sclerosis. During intraoperative stimulation in these multiple sclerosis patients, researchers have observed a wide spectrum of motor and sensory phenomena, but no stimulation-induced emotional responses have been reported. We detailed intraoperative smiling associated with stimulation of the ventralis oralis anterior/ventralis oralis posterior border region of the left thalamus. A single patient with medication-resistant multiple sclerosis tremor experienced smiling, laughing, and subjective euphoria during intraoperative stimulation of the left thalamus. Specifically, during intraoperative stimulation of the left thalamic ventralis oralis anterior border, the patient developed a contralateral smile which progressed to a bilateral smile and was accompanied by a feeling of subjective happiness. The smile habituated in approximately 60 seconds and it was reproducible on a repeat stimulation. The patient could subjectively feel the facial movement, and, at higher voltages, the movement was described as a pulling sensation. Stimulation of the anterior ventralis oralis anterior border of the left thalamus in an multiple sclerosis patient produced a unilateral smile that rapidly developed into a bilateral smile accompanied by euphoria. There were presumed capsular side effects at higher voltages. The exact mechanism by which stimulation of the thalamus produced a smile and mood elevation is unknown, but we speculate that the smile could be induced by stimulation of corticobulbar fibers arising from the caudal cingulate motor area connecting the contralateral facial nerve nucleus.
Collapse
Affiliation(s)
- Amanda J Thompson
- a Center for Movement Disorders & Neurorestoration , University of Florida , Gainesville, FL , USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.
Collapse
Affiliation(s)
- Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
30
|
Jinnah HA, Berardelli A, Comella C, Defazio G, Delong MR, Factor S, Galpern WR, Hallett M, Ludlow CL, Perlmutter JS, Rosen AR. The focal dystonias: current views and challenges for future research. Mov Disord 2013; 28:926-43. [PMID: 23893450 PMCID: PMC3733486 DOI: 10.1002/mds.25567] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/11/2022] Open
Abstract
The most common forms of dystonia are those that develop in adults and affect a relatively isolated region of the body. Although these adult-onset focal dystonias are most prevalent, knowledge of their etiologies and pathogenesis has lagged behind some of the rarer generalized dystonias, in which the identification of genetic defects has facilitated both basic and clinical research. This summary provides a brief review of the clinical manifestations of the adult-onset focal dystonias, focusing attention on less well understood clinical manifestations that need further study. It also provides a simple conceptual model for the similarities and differences among the different adult-onset focal dystonias as a rationale for lumping them together as a class of disorders while at the same time splitting them into subtypes. The concluding section outlines some of the most important research questions for the future. Answers to these questions are critical for advancing our understanding of this group of disorders and for developing novel therapeutics.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lungu C, Considine E, Zahir S, Ponsati B, Arrastia S, Hallett M. Pilot study of topical acetyl hexapeptide-8 in the treatment for blepharospasm in patients receiving botulinum toxin therapy. Eur J Neurol 2013; 20:515-518. [PMID: 23146065 PMCID: PMC4747634 DOI: 10.1111/ene.12009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/10/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Injectable botulinum neurotoxin (BoNT) is the principal effective treatment for blepharospasm (BSP). This trial explores the safety and efficacy of topical acetyl hexapeptide-8 (AH8), a competitive SNAP25 inhibitor, as a potential new therapy in BSP. METHODS Double-blind, placebo-controlled, randomized trial of daily topical application of AH8 in 24 patients with BSP. The primary outcome was time to return to baseline Jankovic Blepharospasm Rating Scale (JBRS) after a BoNT injection simultaneously with the initiation of AH8. Patients displaying a strictly regular pattern of response to 3-monthly injections of BoNT were included. RESULTS There were no significant adverse events. There was a trend for longer time until return to baseline JBRS after injection in the active group compared to placebo (3.7 months vs. 3.0 months), and for better scores in the active group. One-third (4/12) of the patients in the active group had a considerable extension of symptom control after BoNT (range: 3.3-7.1 months). CONCLUSIONS Topical AH8 is safe and promising for extending the duration of action of BoNT therapy for BSP.
Collapse
Affiliation(s)
- Codrin Lungu
- Office of the Clinical Director, NINDS, NIH, Bethesda, MD
| | - Elaine Considine
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD
| | - Sana Zahir
- Office of the Clinical Director, NINDS, NIH, Bethesda, MD
| | | | | | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD
| |
Collapse
|
32
|
Vidailhet M, Jutras MF, Roze E, Grabli D. Deep brain stimulation for dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:167-187. [PMID: 24112893 DOI: 10.1016/b978-0-444-53497-2.00014-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The few reported controlled studies show that bilateral stimulation of the globus pallidus interna (GPi) is a safe and effective long-term treatment for hyperkinetic disorders. However, the recently published data on deep brain stimulation (DBS) applied to different targets or patients (especially those with secondary dystonia) are mainly uncontrolled case reports, precluding a clear determination of its efficacy, and providing little guidance as to the choice of a "good" target in a "good" patient. This chapter reviews the literature on DBS in primary dystonia, paying particular attention to the risk:benefit ratio in focal and segmental dystonias (cervical dystonia, cranial dystonia) and to the predictive factors for a good outcome. The chapter also highlights recent data on the marked benefits of the technique in myoclonus dystonia (in which pallidal, as opposed to thalamic, stimulation is more effective) and in tardive dystonia-dyskinesia. Although, the decision to treat appears relatively straightforward in patients with primary dystonia, myoclonus-dystonia, and tardive dystonia who have a normal findings on magnetic resonance imaging and normal cognitive function, there are still no reliable tools to help predict the timescale of postoperative benefit. This chapter provides a comprehensive analysis of the use of the treatment in various types of secondary dystonia, with little to moderate benefit in most cases, based on single cases or small series. Beyond the reduction in the severity of dystonia, the global motor and functional outcome is difficult to determine owing to the paucity of adequate evaluation tools. Because of the large interpatient variability, different targets may be effective depending on the symptoms in each individual.
Collapse
Affiliation(s)
- Marie Vidailhet
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Research Center of the Brain and Spinal Cord Institute, Université Paris 6/Inserm UMR S975, Paris, France; Pierre et Marie Curie Paris-6 University, Paris, France
| | | | | | | |
Collapse
|