1
|
Arnett SV, Prain K, Ramanathan S, Bhuta S, Brilot F, Broadley SA. Long-term outcomes of ADEM-like and tumefactive presentations of CNS demyelination: a case-comparison analysis. J Neurol 2024; 271:5275-5289. [PMID: 38861035 PMCID: PMC11319424 DOI: 10.1007/s00415-024-12349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 06/12/2024]
Abstract
A minority of initial multiple sclerosis (MS) presentations clinically or radiologically resemble other central nervous system (CNS) pathologies, acute disseminated encephalomyelitis (ADEM) or tumefactive demyelination (atypical demyelination presentations). With the aim of better defining the long-term outcomes of this group we have performed a retrospective cohort comparison of atypical demyelination versus 'typical' MS presentations. Twenty-seven cases with atypical presentations (both first and subsequent demyelinating events) were identified and compared with typical MS cases. Disease features analysed included relapse rates, disability severity, whole brain and lesion volumes, lesion number and distribution. Atypical cases represented 3.9% of all MS cases. There was considerable overlap in the magnetic resonance imaging (MRI) features of ADEM-like and tumefactive demyelination cases. ADEM-like cases tended to be younger but not significantly so. Atypical cases showed a trend towards higher peak expanded disability severity score (EDSS) score at the time of their atypical presentation. Motor, cranial nerve, cerebellar, cerebral and multifocal presentations were all more common in atypical cases, and less likely to present with optic neuritis. Cerebrospinal fluid (CSF) white cell counts were higher in atypical cases (p = 0.002). One atypical case was associated with peripheral blood myelin oligodendrocyte glycoprotein (MOG) antibodies, but subsequent clinical and radiological course was in keeping with MS. There was no difference in long-term clinical outcomes including annualised relapse rates (ARR), brain volume, lesion numbers or lesion distributions. Atypical demyelination cases were more likely to receive high potency disease modifying therapy early in the course of their illness. Despite the severity of initial illness, our cohort analysis suggests that atypical demyelination presentations do not confer a higher risk of long-term adverse outcomes.
Collapse
Affiliation(s)
- Simon V Arnett
- School of Medicine, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia.
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, 4215, Australia.
- Griffith university, Gold Coast Campus, Gold Coast, Queensland, Australia.
| | - Kerri Prain
- Department of Immunology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia
| | - Sudarshini Ramanathan
- Neuroimmunology Group, Kids Neurosciences Centre, Faculty of Medicine and Health, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, 2145, Australia
- Department of Neurology, Concord Hospital, Sydney, NSW, 2139, Australia
| | - Sandeep Bhuta
- Department of Neurology, Concord Hospital, Sydney, NSW, 2139, Australia
| | - Fabienne Brilot
- Neuroimmunology Group, Kids Neurosciences Centre, Faculty of Medicine and Health, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, 2145, Australia
| | - Simon A Broadley
- School of Medicine, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| |
Collapse
|
2
|
Codreanu-Balaban RA, Stuparu AZ, Musat D, Baz RA, Baz R, Docu-Axelerad S, Vranau DM, Tase CR, Gogu AE, Jianu DC, Frecus CE, Muja LF. Acute disseminated encephalomyelitis in a young patient: A case report. Exp Ther Med 2024; 28:323. [PMID: 38939178 PMCID: PMC11208760 DOI: 10.3892/etm.2024.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
The diagnosis of acute disseminated encephalomyelitis (ADEM) is challenging due to the existence of other medical conditions that mimic its symptoms and the lack of precise biomarkers. Timely diagnosis is essential for commencing an appropriate treatment, which enhances the clinical trajectory and long-term prognosis. The purpose of the present study was to emphasize significant concerns, specifically for neurologists and radiologists, due to the difficulties involved in identifying this disorder. Neurologists must have an extensive understanding of the clinical manifestations and constraints of current diagnostic tests. Furthermore, this understanding is equally essential for radiologists, as it serves as the foundation for precise diagnostic interpretations derived from imaging findings. The intricate nature of neurological disorders frequently necessitates a cooperative effort between neurologists and radiologists to guarantee precise diagnosis and efficient therapy strategizing. The present study discusses a case of a male patient who was diagnosed with ADEM based on clinical, biological and imaging evaluations.
Collapse
Affiliation(s)
| | - Alina Zorina Stuparu
- Department of Neurology, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Daniela Musat
- Department of Neurology, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
| | - Radu-Andrei Baz
- Department of Radiology and Imaging Laboratory, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Radu Baz
- Department of Radiology and Imaging Laboratory, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Silviu Docu-Axelerad
- Faculty of General Medicine, ‘Titu Maiorescu’ University, 040441 Bucuresti, Romania
| | - Diana-Marina Vranau
- Department of Neurology, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
| | - Cristina Ramona Tase
- Department of Neurology, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
| | - Anca Elena Gogu
- Department of Neurology, ‘Victor Babeș’ University of Medicine and Pharmacy, Timișoara 300041, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, ‘Victor Babeș’ University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dragos Catalin Jianu
- Department of Neurology, ‘Victor Babeș’ University of Medicine and Pharmacy, Timișoara 300041, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, ‘Victor Babeș’ University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Corina Elena Frecus
- Department of Pediatrics, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
- Department of Pediatrics, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Lavinia-Florenta Muja
- Department of Neurology, ‘Sf. Ap. Andrei’ Emergency County Clinical Hospital, 900591 Constanta, Romania
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| |
Collapse
|
3
|
Weidauer S, Hattingen E, Arendt CT. Cervical myelitis: a practical approach to its differential diagnosis on MR imaging. ROFO-FORTSCHR RONTG 2023; 195:1081-1096. [PMID: 37479218 DOI: 10.1055/a-2114-1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
BACKGROUND Differential diagnosis of non-compressive cervical myelopathy encompasses a broad spectrum of inflammatory, infectious, vascular, neoplastic, neurodegenerative, and metabolic etiologies. Although the speed of symptom onset and clinical course seem to be specific for certain neurological diseases, lesion pattern on MR imaging is a key player to confirm diagnostic considerations. METHODS The differentiation between acute complete transverse myelitis and acute partial transverse myelitis makes it possible to distinguish between certain entities, with the latter often being the onset of multiple sclerosis. Typical medullary MRI lesion patterns include a) longitudinal extensive transverse myelitis, b) short-range ovoid and peripheral lesions, c) polio-like appearance with involvement of the anterior horns, and d) granulomatous nodular enhancement prototypes. RESULTS AND CONCLUSION Cerebrospinal fluid analysis, blood culture tests, and autoimmune antibody testing are crucial for the correct interpretation of imaging findings. The combination of neuroradiological features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy. KEY POINTS · The differentiation of medullary lesion patterns, i. e., longitudinal extensive transverse, short ovoid and peripheral, polio-like, and granulomatous nodular, facilitates the diagnosis of myelitis.. · Discrimination of acute complete and acute partial transverse myelitis makes it possible to categorize different entities, with the latter frequently being the overture of multiple sclerosis (MS).. · Neuromyelitis optica spectrum disorders (NMOSD) may start as short transverse myelitis and should not be mistaken for MS.. · The combination of imaging features and neurological and laboratory findings including cerebrospinal fluid analysis improves diagnostic accuracy.. · Additional brain imaging is mandatory in suspected demyelinating, systemic autoimmune, infectious, paraneoplastic, and metabolic diseases..
Collapse
Affiliation(s)
- Stefan Weidauer
- Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
4
|
Magnetic Resonance Imaging of Autoimmune Demyelinating Diseases as a Diagnostic Challenge for Radiologists: Report of Two Cases and Literature Review. Life (Basel) 2022; 12:life12040488. [PMID: 35454978 PMCID: PMC9027326 DOI: 10.3390/life12040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
The magnetic resonance characteristics of autoimmune demyelinating diseases are complex and represent a challenge for the radiologist. In this study we presented two different cases of detected autoimmune demyelinating diseases: one case of acute disseminated encephalomyelitis and one case of neuromyelitis optica, respectively. Expected and unexpected findings of magnetic resonance imaging examination for autoimmune demyelinating diseases were reported in order to provide a valuable approach for diagnosis. In particular, we highlight, review and discuss the presence of several uncommon imaging findings which could lead to a misinterpretation. The integration of magnetic resonance imaging findings with clinical and laboratory data is necessary to provide a valuable diagnosis.
Collapse
|
5
|
Sedeek KH, Aboualfotouh K, Hassanein SM, Osman NM, Shalaby MH. Role of MRI evaluation in acute secondary inability to walk in children. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Acute bilateral lower limb weakness is a common problem in children which necessitates a rapid method for diagnosis. MRI is a non-invasive imaging technique that produces high-quality images of the internal structure of the brain and spinal cord.
Results
MRI was very helpful in reaching rapid and prompt diagnosis in children with acute inability to walk. Acute disseminated encephalomyelitis (ADEM), Guillain–Barré syndrome (GBS), and acute transverse myelitis (ATM) were the most common causes in our study. MRI proved to be of high sensitivity in detecting the lesions and reaching the diagnosis in ADEM and GBS; however, there was no significant relation between the lesions’ size, enhancement pattern, and severity of the disease or prognosis, yet in ATM the site of the lesion and number of cord segment affection were significantly related to the severity of the disease and prognosis.
Conclusion
MRI is a quick tool to reach the diagnosis of children with acute secondary inability to walk, and to eliminate other differential diagnosis which is essential for proper treatment and rapid full recovery. It is highly sensitive in detecting the lesions, their site and size.
Collapse
|
6
|
Vakrakou AG, Tzanetakos D, Evangelopoulos ME, Argyrakos T, Tzartos JS, Anagnostouli M, Andreadou E, Koutsis G, Velonakis G, Toulas P, Gialafos E, Dimitrakopoulos A, Psimenou E, Stefanis L, Kilidireas C. Clinico-radiologic features and therapeutic strategies in tumefactive demyelination: a retrospective analysis of 50 consecutive cases. Ther Adv Neurol Disord 2021; 14:17562864211006503. [PMID: 34046086 PMCID: PMC8135218 DOI: 10.1177/17562864211006503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Aims Our goal was to expand the spectrum of clinico-radiologic characteristics and the possible therapeutic choices in patients with tumefactive demyelinating lesions (TDLs). Methods A retrospective analysis of 50 patients with at least one TDL was performed at an academic neurology center (2008-2020). Results Our cohort comprised mostly women (33/50) with a mean age of 38 years at TDL onset. The mean follow-up time was 76 months. The mean Expanded Disability Status Scale score at TDL onset and at the latest neurological evaluation was 3.7 and 2.3, respectively. We subcategorized the patients into seven groups based mainly on the clinical/radiological findings and disease course. Group A included patients presenting with a Marburg-like TDL (n = 4). Groups B and C comprised patients presenting with monophasic (n = 7) and recurrent TDLs (n = 12), respectively. Multiple sclerosis (MS) patients who subsequently developed TDL (n = 16) during the disease course were categorized as Group D. Group E comprised patients who initially presented with TDL and subsequently developed a classical relapsing-remitting MS without further evidence of TDL (n = 5). Groups F (n = 2) and G (n = 4) involved MS patients who developed TDL during drug initiation (natalizumab, fingolimod) and cessation (interferon, fingolimod), respectively. Regarding long-term treatments applied after corticosteroid administration in the acute phase, B-cell-directed therapies were shown to be highly effective especially in cases with recurrent TDLs. Cyclophosphamide was spared for more aggressive disease indicated by a poor response to corticosteroids and plasma exchange failure. Conclusion Tumefactive central nervous system demyelination is an heterogenous disease; its stratification into distinct groups according to different phenotypes can establish more efficient treatment strategies, thus improving clinical outcomes in the future.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- 1st Department of Neurology, Medical School of Athens, National & Kapodistrian University, Aeginition Hospital, 72 Vasilissis Sofias Ave, Athens, 11528, Greece
| | - Dimitrios Tzanetakos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleptheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - John S Tzartos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Anagnostouli
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elissavet Andreadou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Koutsis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology, 2nd Department of Radiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Gialafos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Dimitrakopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Erasmia Psimenou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Boziki M, Sintila SA, Ioannidis P, Grigoriadis N. Biomarkers in Rare Demyelinating Disease of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21218409. [PMID: 33182495 PMCID: PMC7665127 DOI: 10.3390/ijms21218409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022] Open
Abstract
Rare neurological diseases are a heterogeneous group corresponding approximately to 50% of all rare diseases. Neurologists are among the main specialists involved in their diagnostic investigation. At the moment, a consensus guideline on which neurologists may base clinical suspicion is not available. Moreover, neurologists need guidance with respect to screening investigations that may be performed. In this respect, biomarker research has emerged as a particularly active field due to its potential applications in clinical practice. With respect to autoimmune demyelinating diseases of the Central Nervous System (CNS), although these diseases occur in the frame of organ-specific autoimmunity, pathology of the disease itself is orchestrated among several anatomical and functional compartments. The differential diagnosis is broad and includes, but is not limited to, rare neurological diseases. Multiple Sclerosis (MS) needs to be differentially diagnosed from rare MS variants, Acute Disseminated Encephalomyelitis (ADEM), the range of Neuromyelitis Optica Spectrum Disorders (NMOSDs), Myelin Oligodendrocyte Glycoprotein (MOG) antibody disease and other systemic inflammatory diseases. Diagnostic biomarkers may facilitate timely diagnosis and proper disease management, preventing disease exacerbation due to misdiagnosis and false treatment. In this review, we will describe advances in biomarker research with respect to rare neuroinflammatory disease of the CNS.
Collapse
|
8
|
Chang BL, Ro LS, Chen CM, Lo YS, Lyu RK, Kuo HC, Liao MF, Chang CW, Chang HS, Huang CC, Wu YR, Chu CC, Weng YC, Chang KH. Serum levels of cell adhesion molecules in patients with neuromyelitis optica spectrum disorder. Ann Clin Transl Neurol 2020; 7:1854-1861. [PMID: 32860355 PMCID: PMC7545585 DOI: 10.1002/acn3.51167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives Blood–brain barrier (BBB) disruption is a critical pathological process involved in neuromyelitis optica spectrum disorder (NMOSD). Here, we characterized the profile of five cell adhesion molecules in patients with NMOSD. Methods We measured levels of cell adhesion molecules, including ICAM‐1, ICAM‐2, VCAM‐1, PECAM‐1, and NCAM‐1, in the serum of 28 patients with NMOSD, 24 patients with multiple sclerosis (MS), and 25 healthy controls (HCs). Results ICAM‐2 levels (median: 394.8 ng/mL) were increased in patients with NMOSD compared with MS (267.1 ng/mL, P = 0.005) and HCs (257.4 ng/mL, P = 0.007), and VCAM‐1 and ICAM‐1 levels were higher in patients with NMOSD (641.9 ng/mL and 212.7 ng/mL, respectively) compared with HCs (465 ng/mL [P = 0.013] and 141.8 ng/mL [P = 0.002], respectively). However, serum PECAM‐1 levels were lower in patients with NMOSD (89.62 ng/mL) compared with MS (106.9 ng/mL, P = 0.015) and HCs (107.2 ng/mL, P = 0.007). Receiver operating characteristic curve analysis revealed that PECAM‐1 (area under the curve (AUC): 0.729) and ICAM‐2 (AUC: 0.747) had adequate abilities to distinguish NMOSD from MS, and VCAM‐1 (AUC: 0.719), PECAM‐1 (area under the curve: 0.743), ICAM‐1 (AUC: 0.778), and ICAM‐2 (AUC: 0.749) exhibited potential to differentiate NMOSD and HCs. Serum levels of PECAM‐1 also demonstrated a negative correlation with Kurtzke Expanded Disability Status Scale scores in patients with NMOSD. Interpretation Our results reveal possible BBB breakdown signals specifically observed in NMOSD and highlight the potential role of cell adhesion molecules as biomarkers of this disease.
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Rong-Kuo Lyu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Hung-Chou Kuo
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chun-Wei Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Hong-Shiu Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ching-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chun-Che Chu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yi-Ching Weng
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| |
Collapse
|
9
|
Weidauer S, Wagner M, Hattingen E. White Matter Lesions in Adults - a Differential Diagnostic Approach. ROFO-FORTSCHR RONTG 2020; 192:1154-1173. [PMID: 32688424 DOI: 10.1055/a-1207-1006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Cerebral white matter lesions on MRI in adults are a common finding. On the one hand, they may correspond to a clinically incidental feature, be physiologically or age-associated, or on the other hand they may be the overture to a severe neurological disease. With regard to pathophysiological aspects, practical hints for the differential diagnostic interpretation of lesions in daily clinical practice are presented. MATERIAL AND METHODS With special regard to the vascular architecture and supply of the cerebral white matter, physiological structures are schematically represented and pathophysiological processes are highlighted by comparative image analysis of equally angulated MR sequences. RESULTS The most frequent vascular, inflammatory, metabolic, and neoplastic disease entities are presented on the basis of characteristic imaging findings and corresponding clinical- neurological constellations. The details of signal intensities and localization essential for differential diagnosis are highlighted. CONCLUSION By means of comparative image analysis and the recognition of characteristic lesion patterns, taking into account anatomical principles and pathophysiological processes, the differential diagnostic classification of cerebral white matter lesions and associated diseases can be significantly facilitated. The additional consideration of clinical and laboratory findings is essential. KEY POINTS · Cerebral white matter lesions can be a harmless secondary finding or overture to a severe neurological disease.. · The comparative image analysis of different sequences with identical angulation is crucial.. · With special regard to the vascular anatomy, different lesion patterns can be identified.. · The consideration of neurological and laboratory chemical constellations is essential for the differential diagnosis.. CITATION FORMAT · Weidauer S, Wagner M, Hattingen E. White Matter Lesions in Adults - a Differential Diagnostic Approach. Fortschr Röntgenstr 2020; 192: 1154 - 1173.
Collapse
Affiliation(s)
- Stefan Weidauer
- Neurology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marlies Wagner
- Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Vakrakou AG, Tzanetakos D, Argyrakos T, Koutsis G, Evangelopoulos ME, Andreadou E, Anagnostouli M, Breza M, Tzartos JS, Gialafos E, Dimitrakopoulos AN, Velonakis G, Toulas P, Stefanis L, Kilidireas C. Recurrent Fulminant Tumefactive Demyelination With Marburg-Like Features and Atypical Presentation: Therapeutic Dilemmas and Review of Literature. Front Neurol 2020; 11:536. [PMID: 32714265 PMCID: PMC7344179 DOI: 10.3389/fneur.2020.00536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Atypical forms of demyelinating diseases with tumor-like lesions and aggressive course represent a diagnostic and therapeutic challenge for neurologists. Herein, we describe a 50-year-old woman presenting with subacute onset of left hemiparesis, memory difficulties and headache. Brain MRI revealed a tumefactive right frontal-parietal lesion with perilesional edema, mass effect and homogenous post-contrast enhancement, along with other small atypical lesions in the white-matter. Brain biopsy of cerebral lesion ruled out lymphoma or any other neoplastic process and patient placed on corticosteroids with complete clinical/radiological remission. Two years after disease initiation, there was disease exacerbation with reappearance of the tumor-like mass. The patient initially responded to high doses of corticosteroids but soon became resistant. Plasma-exchange sessions were not able to limit disease burden. Resistance to therapeutic efforts led to a second biopsy that showed perivascular demyelination, predominantly consisting of macrophages, with a small number of T and B lymphocytes, and the presence of reactive astrocytes, typical of Creutzfeldt-Peters cells. The patient received high doses of cyclophosphamide with substantial clinical/radiological response but relapsed after 7-intensive cycles. She received 4-weekly doses of rituximab with disease exacerbation and brainstem involvement. She eventually died with complicated pneumonia. We present a very rare case of recurrent tumefactive demyelinating lesions, with atypical tumor-like characteristics, with initial response to corticosteroids and cyclophosphamide, but subsequent development of drug-resistance and unexpected exacerbation upon rituximab administration. Our clinical case raises therapeutic dilemmas and points to the need for immediate and appropriate immunosuppression in difficult to treat tumefactive CNS lesions with Marburg-like features.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Georgios Koutsis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleptheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Andreadou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Anagnostouli
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianthi Breza
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - John S Tzartos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Gialafos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Dimitrakopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology, 2nd Department of Radiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Zelek WM, Fathalla D, Morgan A, Touchard S, Loveless S, Tallantyre E, Robertson NP, Morgan BP. Cerebrospinal fluid complement system biomarkers in demyelinating disease. Mult Scler 2019; 26:1929-1937. [PMID: 31701790 DOI: 10.1177/1352458519887905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) can be difficult to differentiate from other demyelinating diseases, notably neuromyelitis optica spectrum disorder (NMOSD). We previously showed that NMOSD is distinguished from MS by plasma complement biomarkers. OBJECTIVE Here, we measure cerebrospinal fluid (CSF) complement proteins in MS, NMOSD and clinically isolated syndrome (CIS), a neurological episode that may presage MS, to test whether these distinguish NMOSD from MS and CIS. MATERIALS AND METHODS CSF (53 MS, 17 CIS, 11 NMOSD, 35 controls) was obtained; complement proteins (C4, C3, C5, C9, C1, C1q, Factor B (FB)), regulators (Factor I (FI), Factor H (FH), FH-Related Proteins 1, 2 and 5 (FHR125), C1 Inhibitor (C1INH), Properdin) and activation products (terminal complement complex (TCC), iC3b) were quantified by ELISA and results expressed relative to CSF total protein (μg/mg). RESULTS Compared to control CSF, (1) levels of C4, C1INH and Properdin were elevated in MS; (2) TCC, iC3b, FI and FHR125 were increased in CIS; and (3) all complement biomarkers except TCC, FHR125, Properdin and C5 were higher in NMOSD CSF. A statistical model comprising six analytes (C3, C9, FB, C1q, FI, Properdin) plus age/gender optimally differentiated MS from NMOSD.
Collapse
Affiliation(s)
| | - Dina Fathalla
- Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Angharad Morgan
- Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Samuel Touchard
- Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma Tallantyre
- Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
12
|
Susceptibility-weighted imaging in the differential diagnosis of autoimmune central nervous system vasculitis and multiple sclerosis. Mult Scler Relat Disord 2019; 33:70-74. [DOI: 10.1016/j.msard.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/05/2019] [Accepted: 05/19/2019] [Indexed: 11/17/2022]
|
13
|
Gabr RE, Pednekar AS, Kamali A, Lincoln JA, Nelson FM, Wolinsky JS, Narayana PA. Interleaved susceptibility-weighted and FLAIR MRI for imaging lesion-penetrating veins in multiple sclerosis. Magn Reson Med 2018; 80:1132-1137. [PMID: 29334139 PMCID: PMC5980669 DOI: 10.1002/mrm.27091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/27/2017] [Indexed: 11/10/2022]
Abstract
Purpose To simultaneously image brain lesions and veins in multiple sclerosis. Methods An interleaved sequence was developed to simultaneously acquire 3D T2*-weighted (or susceptibility-weighted, SW) and fluid-attenuated inversion recovery (FLAIR) images on a 3.0T MRI system. The pulse sequence parameters were calculated to minimize signal perturbation from steady state while maintaining acceptable image contrast and scan time. Fifteen multiple sclerosis patients were enrolled in this prospective study and underwent a standard MS imaging protocol. In addition, SW and FLAIR images were acquired separately and also in an interleaved manner. The SW and FLAIR images were combined into one image to visualize lesions and penetrating veins. The contrast ratios between white matter lesions and penetrating veins were compared between the interleaved sequence and the individual non-interleaved acquisitions. Results Interleaved scanning of the FLAIR and the SW pulse sequences was achieved, producing aligned images, and with similar image contrast as in the non-interleaved images. A total of 1076 lesions were identified in all patients on the combined SW-FLAIR image, of which 968 lesions (90%) had visible penetrating veins. Lesion-to-vein contrast ratio was 32.7 ± 17.9 (mean ± standard deviation) for the interleaved sequence compared to 28.1 ± 13.7 using the separate acquisitions (P<0.001). Conclusion The feasibility of interleaved acquisition of susceptibility-weighted and FLAIR images was demonstrated. This sequence provides self-registered images and facilitates the visualization of veins in brain lesions.
Collapse
Affiliation(s)
- Refaat E. Gabr
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX
| | - Amol S. Pednekar
- Philips Healthcare, Cleveland, OH
- Texas Children’s Hospital, Houston, TX
| | - Arash Kamali
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX
| | - John A Lincoln
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX
| | - Flavia M. Nelson
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX
| | - Jerry S. Wolinsky
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
14
|
Manconi B, Liori B, Cabras T, Vincenzoni F, Iavarone F, Lorefice L, Cocco E, Castagnola M, Messana I, Olianas A. Top-down proteomic profiling of human saliva in multiple sclerosis patients. J Proteomics 2018; 187:212-222. [PMID: 30086402 DOI: 10.1016/j.jprot.2018.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is a chronic disease of the central nervous system characterized by inflammation, demyelination and neurodegeneration which is of undetermined origin. To date a single diagnostic test of multiple sclerosis does not exists and novel biomarkers are demanded for a more accurate and early diagnosis. In this study, we performed the quantitative analysis of 119 salivary peptides/proteins from 49 multiple sclerosis patients and 54 healthy controls by a mass spectrometry-based top-down proteomic approach. Statistical analysis evidenced different levels on 23 proteins: 8 proteins showed lower levels in multiple sclerosis patients with respect to controls and they were mono- and di-oxidized cystatin SN, mono- and di-oxidized cystatin S1, mono-oxidized cystatin SA and mono-phosphorylated statherin. 15 proteins showed higher levels in multiple sclerosis patients with respect to controls and they were antileukoproteinase, two proteoforms of Prolactin-Inducible Protein, P-C peptide (Fr.1-14, Fr. 26-44, and Fr. 36-44), SV1 fragment of statherin, cystatin SN Des1-4, cystatin SN P11 → L variant, and cystatin A T96 → M variant. The differences observed between the salivary proteomic profile of patients suffering from multiple sclerosis and healthy subjects is consistent with the inflammatory condition and altered immune response typical of the pathology. Data are available via ProteomeXchange with identifier PXD009440. SIGNIFICANCE To date a single diagnostic test of multiple sclerosis does not exist, and diagnosis is based on multiple tests which mainly include the analysis of cerebrospinal fluid. However, the need for lumbar puncture makes the analysis of cerebrospinal fluid impractical for monitoring disease activity and response to treatment. The possible use of saliva as a diagnostic fluid for oral and systemic diseases has been largely investigated, but only marginally in multiple sclerosis compared to other body fluids. Our study demonstrates that the salivary proteome of multiple sclerosis patients differs considerably compared to that of sex and age matched healthy individuals and suggests that some differences might be associated with the different disease-modifying therapy used to treat multiple sclerosis patients.
Collapse
Affiliation(s)
- Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy.
| | - Barbara Liori
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Federica Vincenzoni
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Federica Iavarone
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy
| | - Lorena Lorefice
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, University of Cagliari, via Is Guadazzonis 2, 09126 Cagliari, Italy
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ATS Sardegna, University of Cagliari, via Is Guadazzonis 2, 09126 Cagliari, Italy
| | - Massimo Castagnola
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy; Institute of Chemistry of the Molecular Recognition CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Irene Messana
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome, L.go F. Vito 1, 00168 Rome, Italy; Institute of Chemistry of the Molecular Recognition CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari, Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
15
|
Igra MS, Paling D, Wattjes MP, Connolly DJA, Hoggard N. Multiple sclerosis update: use of MRI for early diagnosis, disease monitoring and assessment of treatment related complications. Br J Radiol 2017; 90:20160721. [PMID: 28362522 DOI: 10.1259/bjr.20160721] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MRI has long been established as the most sensitive in vivo technique for detecting multiple sclerosis (MS) lesions. The 2010 revisions of the McDonald Criteria have simplified imaging criteria, such that a diagnosis of MS can be made on a single contrast-enhanced MRI scan in the appropriate clinical context. New disease-modifying therapies have proven effective in reducing relapse rate and severity. Several of these therapies, most particularly natalizumab, but also dimethyl fumarate and fingolimod, have been associated with progressive multifocal leukoencephalopathy (PML). PML-immune reconstitution inflammatory syndrome (IRIS) has been recognized in patients following cessation of natalizumab owing to PML, and discontinuation for other reasons can lead to the phenomenon of rebound MS. These complications often provide a diagnostic dilemma and have implications for imaging surveillance of patients. We demonstrate how the updated McDonald Criteria aid the diagnosis of MS and describe the imaging characteristics of conditions such as PML and PML-IRIS in the context of MS. Potential imaging surveillance protocols are considered for the diagnosis and assessment of complications. We will explain how changes in MS treatment are leading to new imaging demands in order to monitor patients for disease progression and treatment-related complications.
Collapse
Affiliation(s)
- Mark S Igra
- 1 Department of Neuroradiology, Royal Hallamshire Hospital, Sheffield, UK
| | - David Paling
- 2 Department of Clinical Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Mike P Wattjes
- 3 Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | | | - Nigel Hoggard
- 4 Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Samra K, Boon IS, Packer G, Jacob S. Lethal high: acute disseminated encephalomyelitis (ADEM) triggered by toxic effect of synthetic cannabinoid black mamba. BMJ Case Rep 2017; 2017:bcr-2016-218431. [PMID: 28433979 DOI: 10.1136/bcr-2016-218431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A previously well 25-year-old man presented with agitation, double incontinence and left-sided incoordination. His symptoms started after smoking a synthetic cannabinoid (black mamba) 5 days earlier. Over 48 hours, he developed aphasia, generalised hypertonia, hyper-reflexia and dense left hemiparesis. This progressed to profuse diaphoresis, fever, tachycardia, hypertension and a possible seizure necessitating admission to the intensive care unit. CT head and cerebrospinal fluid analysis were unremarkable. MRI brain demonstrated asymmetric multifocal hyperintense lesions in white and grey matter, which raised suspicions of acute disseminated encephalomyelitis (ADEM). An electroencephalogram showed widespread brain wave slowing, indicating diffuse cerebral dysfunction. Cerebral angiogram was normal. Toxicology analysis of the substance confirmed a potent synthetic cannabinoid NM2201, technically legal at the time. The patient made a slow but significant recovery after a course of intravenous methylprednisolone, intravenous immunoglobulins and oral steroids, and was later transferred to a rehabilitation bed.
Collapse
Affiliation(s)
- Kiran Samra
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ian S Boon
- Department of Diabetes, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gregory Packer
- Clinical Decision Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Saiju Jacob
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
17
|
Gil Alzueta M, Erro Aguirre M, Herrera Isasi M, Cabada Giadás M. Encefalomielitis aguda diseminada como complicación del lupus eritematoso sistémico. Neurologia 2016; 31:209-11. [DOI: 10.1016/j.nrl.2014.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 11/15/2022] Open
|
18
|
Gil Alzueta M, Erro Aguirre M, Herrera Isasi M, Cabada Giadás M. Acute disseminated encephalomyelitis as a complication of systemic lupus erythematosus. NEUROLOGÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.nrleng.2014.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Al Sawaf A, Berger JR. Longitudinally extensive transverse myelitis suspected for isolated Neuro-Behçet: A diagnostic conundrum. Mult Scler Relat Disord 2015; 4:395-399. [PMID: 26346785 DOI: 10.1016/j.msard.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 01/31/2023]
Abstract
Behçet disease (BD) is a chronic relapsing autoimmune disease. Involvement of the nervous system occurs in 5-50% and is referred to as Neuro-Behçet's (NBD). The clinical diagnosis of NBD can be challenging, particularly when the history is atypical and the systemic manifestations of the disorder are absent or scant. We report a young Caucasian man who presented with a non-specific systemic illness evolving rapidly to a basilar meningitis with a neutrophilic pleocytosis. Shortly afterwards, he developed a cervical myelopathy and ultimately a longitudinally extensive transverse myelitis and brainstem involvement with an active uveitis. There was no history of recurrent oral aphthous ulcers or genital ulcers, other skin lesions, or thrombophlebitis. The diagnosis was supported by the clinical, radiographic and laboratory findings including heterozygosity for the HLA-B51 allele on genetic testing. NBD must be included in the differential diagnosis of longitudinally extensive transverse myelitis, especially when it is associated with uveitis.
Collapse
Affiliation(s)
- Abdullah Al Sawaf
- Department of Neurology, University of Kentucky College of Medicine, Kentucky Clinic L445, Lexington, KY 40536-0284, USA
| | - Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Gates W, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Negrotto L, Tur C, Tintoré M, Arrambide G, Sastre-Garriga J, Río J, Comabella M, Nos C, Galán I, Vidal-Jordana A, Simon E, Castilló J, Palavra F, Mitjana R, Auger C, Rovira À, Montalban X. Should we systematically test patients with clinically isolated syndrome for auto-antibodies? Mult Scler 2015; 21:1802-10. [DOI: 10.1177/1352458515575338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/04/2015] [Indexed: 01/20/2023]
Abstract
Background: Several autoimmune diseases (ADs) can mimic multiple sclerosis (MS). For this reason, testing for auto-antibodies (auto-Abs) is often included in the diagnostic work-up of patients with a clinically isolated syndrome (CIS). Objective: The purpose was to study how useful it was to systematically determine antinuclear-antibodies, anti-SSA and anti-SSB in a non-selected cohort of CIS patients, regarding the identification of other ADs that could represent an alternative diagnosis. Methods: From a prospective CIS cohort, we selected 772 patients in which auto-Ab levels were tested within the first year from CIS. Baseline characteristics of auto-Ab positive and negative patients were compared. A retrospective revision of clinical records was then performed in the auto-Ab positive patients to identify those who developed ADs during follow-up. Results: One or more auto-Ab were present in 29.4% of patients. Only 1.8% of patients developed other ADs during a mean follow-up of 6.6 years. In none of these cases the concurrent AD was considered the cause of the CIS. In all cases the diagnosis of the AD resulted from the development of signs and/or symptoms suggestive of each disease. Conclusion: Antinuclear-antibodies, anti-SSA and anti-SSB should not be routinely determined in CIS patients but only in those presenting symptoms suggestive of other ADs.
Collapse
Affiliation(s)
- Laura Negrotto
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Carmen Tur
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Georgina Arrambide
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Jaume Sastre-Garriga
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Jordi Río
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Manuel Comabella
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Carlos Nos
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Ingrid Galán
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Angela Vidal-Jordana
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Eva Simon
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Joaquín Castilló
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Filipe Palavra
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| | - Raquel Mitjana
- Radiology Department (IDI), Vall d’Hebron University Hospital, Spain
| | - Cristina Auger
- Radiology Department (IDI), Vall d’Hebron University Hospital, Spain
| | - Àlex Rovira
- Radiology Department (IDI), Vall d’Hebron University Hospital, Spain
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron University Hospital, Spain
| |
Collapse
|
21
|
Kroksveen AC, Opsahl JA, Guldbrandsen A, Myhr KM, Oveland E, Torkildsen Ø, Berven FS. Cerebrospinal fluid proteomics in multiple sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:746-56. [PMID: 25526888 DOI: 10.1016/j.bbapap.2014.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/27/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated chronic inflammatory disease of the central nervous system usually initiated during young adulthood, affecting approximately 2.5 million people worldwide. There is currently no cure for MS, but disease modifying treatment has become increasingly more effective, especially when started in the first phase of the disease. The disease course and prognosis are often unpredictable and it can be challenging to determine an early diagnosis. The detection of novel biomarkers to understand more of the disease mechanism, facilitate early diagnosis, predict disease progression, and find treatment targets would be very attractive. Over the last decade there has been an increasing effort toward finding such biomarker candidates. One promising strategy has been to use state-of-the-art quantitative proteomics approaches to compare the cerebrospinal fluid (CSF) proteome between MS and control patients or between different subgroups of MS. In this review we summarize and discuss the status of CSF proteomics in MS, including the latest findings with a focus on the last five years. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ann C Kroksveen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Jill A Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Astrid Guldbrandsen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway
| | - Kjell-Morten Myhr
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway
| | - Øivind Torkildsen
- The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Postbox 7804, N-5009 Bergen, Norway; The KG Jebsen Centre for MS-Research, Department of Clinical Medicine, University of Bergen, Postbox 7804, N-5021 Bergen, Norway; The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway.
| |
Collapse
|
22
|
Martinez-Altarriba MC, Ramos-Campoy O, Luna-Calcaño IM, Arrieta-Antón E. [A review of multiple sclerosis (2). Diagnosis and treatment]. Semergen 2014; 41:324-8. [PMID: 25442466 DOI: 10.1016/j.semerg.2014.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 07/21/2014] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis is a major demyelinating disease of the central nervous system. It has a significant economic and social impact. Its etiology is unclear, although there are several hypotheses, such as infections or genetics. In its pathophysiology, it seems that immune activation attacks the myelin sheath, causing a progressive and irreversible axonal degeneration. The disease produces a variety of symptoms, and diagnosis requires fulfilling a number of criteria and the exclusion of other possible causes. The role of neuroimaging is very important, especially Magnetic Resonance Imaging. Despite the availability of disease-modifying drugs, none of them are able to halt its progress, and the most useful drugs are those designed to alleviate the symptoms of outbreaks. Overall, multiple sclerosis requires a significant effort in research to clarify not only why and how it occurs, as well as the development of new measures to improve quality of life of affected patients.
Collapse
Affiliation(s)
- M C Martinez-Altarriba
- Centre d'Atenció Primària (CAP) Horta, Barcelona, España; Secretaria del Grupo de Trabajo de Neurología de SEMERGEN, Barcelona, España.
| | - O Ramos-Campoy
- Centre d'Atenció Primària (CAP) Horta, Barcelona, España
| | | | - E Arrieta-Antón
- Centro de Salud Segovia Rural, Segovia, España; Coordinador del Grupo de Trabajo de Neurología de SEMERGEN, Barcelona, España
| |
Collapse
|
23
|
Differentiation of neuromyelitis optica from multiple sclerosis in a cohort from the mainland of China. Chin Med J (Engl) 2014. [DOI: 10.1097/00029330-201409200-00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
24
|
Neuromyelitis optica spectrum disorders associated with other autoimmune diseases. Rheumatol Int 2014; 35:243-53. [DOI: 10.1007/s00296-014-3066-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/03/2014] [Indexed: 12/30/2022]
|
25
|
Li H, Zhang Y, Yi Z, Huang D, Wei S. Frequency of autoantibodies and connective tissue diseases in Chinese patients with optic neuritis. PLoS One 2014; 9:e99323. [PMID: 24950188 PMCID: PMC4064964 DOI: 10.1371/journal.pone.0099323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/13/2014] [Indexed: 12/29/2022] Open
Abstract
Background Optic neuritis (ON) is often associated with other clinical or serological markers of connective tissue diseases (CTDs). To date, the effects of autoantibodies on ON are not clear. Purpose To assess the prevalence, clinical patterns, and short outcomes of autoantibodies and Sjögren’s syndrome (SS) involvement in Chinese ON patients and evaluate the relationship between ON, including their subtypes, and autoantibodies. Methods A total of 190 ON patients were divided into recurrent ON (RON), bilateral ON (BON), and isolated monocular ON (ION). Demographic, clinical, and serum autoantibodies data were compared between them with and without SS involvement. Serum was drawn for antinuclear antibody (ANA), extractable nuclear antigen antibodies (SSA/SSB), rheumatoid factor (RF), anticardiolipin antibodies (ACA), and anti-double-stranded DNA antibody (A-ds DNA), anticardiolipin antibody (ACLs), anti-β2-glycoprotein I (β2-GPI) and Aquaporin-4 antibodies (AQP4-Ab). Spectral-domain optical coherence tomography (SD-OCT) was used to evaluate the atrophy of the optic nerve. Results 68 patients (35.79%) had abnormal autoantibodies, 26(13.68%) patients met diagnostic criteria for CTDs, including 15(7.89%) patients meeting the criteria for SS. Antibodies including SSA/SSB 23 (30.26%) (p1 and p 2<0.001) and AQP4–Ab10 (13.16%) (p1 = 0.044, p2 = 0.01) were significantly different in patients in the RON group when compared with those in the BON (P1 = RON VS ION) and ION (p2 = RON VS ION) groups. SS was more common in RON patients (p1 = 0.04, p2 = 0.028). There was no significant difference between SSA/SSB positive and negative patients in disease characteristics or severity. Similar results were obtained when SS was diagnosed in SSA/SSB positive patients. Conclusion RON and BON were more likely associated with abnormal autoantibodies; furthermore, AQP4 antibody, SSA/SSB and SS were more common in the RON patients. AQP4 antibodydetermination is crucial in RON patients who will develop NMO. However, when compared with other autoantibodies, SSA/SSB detected in patients was not significantly associated with disease characteristics or severity.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yan Zhang
- Department of Ophthalmology, The General Hospital of Beijing Military Region, Beijing, China
| | - Zuohuizi Yi
- Department of Ophthalmology, The People’s Hospital Affiliated Wuhan University, Wuhan, China
| | - Dehui Huang
- Department of Neurology, The Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shihui Wei
- Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Weidauer S, Nichtweiss M, Hattingen E. Differential diagnosis of white matter lesions: Nonvascular causes-Part II. Clin Neuroradiol 2014; 24:93-110. [PMID: 24519493 DOI: 10.1007/s00062-013-0267-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022]
Abstract
The knowledge of characteristic lesion patterns is important in daily practice imaging, as the radiologist increasingly is required to provide precise differential diagnosis despite unspecific clinical symptoms like cognitive impairment and missed elaborated neurological workup. This part II dealing with nonvascular white matter changes of proven cause and diagnostic significance aimed to assist the evaluation of diseases exhibiting lesions exclusively or predominantly located in the white matter. The etiologies commented on are classified as follows: (a) toxic-metabolic, (b) leukodystrophies and mitochondriopathies, (c) infectious, (d) neoplastic, and (e) immune mediated. The respective mode of lesion formation is characterized, and typical radiological findings are displayed. More or less symmetrical lesion patterns on the one hand as well as focal and multifocal ones on the other are to be analyzed with reference to clinical data and knowledge of predilection sites characterizing major disease categories. Complementing spinal cord imaging may be useful not only in acute and relapsing demyelinating diseases but in certain leukodystrophies as well. In neuromyelitis optica (NMO), the detection of a specific antibody and some recently published observations may lead to a new understanding of certain deep white matter lesions occasionally complicating systemic autoimmune disease.
Collapse
Affiliation(s)
- S Weidauer
- Department of Neurology, Sankt Katharinen Hospital, Teaching Hospital of the Goethe University, Seckbacher Landstraße 65, 60389, Frankfurt am Main, Germany,
| | | | | |
Collapse
|
27
|
Treatment strategies for vasculitis that affects the nervous system. Drug Discov Today 2013; 18:818-35. [DOI: 10.1016/j.drudis.2013.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 01/04/2023]
|
28
|
Quinn MP, Kremenchutzky M, Menon RS. Venocentric Lesions: An MRI Marker of MS? Front Neurol 2013; 4:98. [PMID: 23885252 PMCID: PMC3717618 DOI: 10.3389/fneur.2013.00098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/08/2013] [Indexed: 01/14/2023] Open
Abstract
From the earliest descriptions of multiple sclerosis (MS), the venocentric characteristic of plaques was noted. Recently, numerous magnetic resonance imaging (MRI) studies have proposed this finding as a prospective biomarker for MS, which might aid in differentiating MS from other diseases with similar MRI findings. High-field MRI studies have shown that penetrating veins can be detected in most MS lesions using T2∗ weighted or susceptibility-weighted imaging. Future studies must address the feasibility of imaging such veins in a clinically practical context. The specificity of this biomarker has been studied only in a limited capacity. Results in microangiopathic lesions are conflicting, whereas asymptomatic white matter hyperintensities as well as lesions of neuromyelitis optica are less frequently venocentric compared to MS plaques. Prospective studies have shown that the presence of venocentric lesions at an early clinical presentation is highly predictive of future MS diagnosis. This is very promising, but work remains to be done to confirm or exclude lesions of common MS mimics, such as acute disseminate encephalomyelitis, as venocentric. A number of technical challenges must be addressed before the introduction of this technique as a complementary tool in current diagnostic procedures.
Collapse
Affiliation(s)
- Matthew P Quinn
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University , London, ON , Canada ; Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University , London, ON , Canada
| | | | | |
Collapse
|
29
|
Zhao GX, Liu Y, Li ZX, Lv CZ, Traboulsee A, Sadovnick AD, Wu ZY. Variants in the promoter region of CYP7A1 are associated with neuromyelitis optica but not with multiple sclerosis in the Han Chinese population. Neurosci Bull 2013; 29:525-30. [PMID: 23740208 DOI: 10.1007/s12264-013-1347-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/08/2012] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica (NMO) are common autoimmune demyelinating disorders of the central nervous system. The exact etiology of each remains unclear. CYP7A1 was reported to be associated with NMO in Korean patients, but this is yet to be confirmed in other populations. In this study, we used Sanger sequencing to detect SNPs in the promoter region of CYP7A1 in a population consisting of unrelated patients and controls from the Han Chinese population (129 MS; 89 NMO; 325 controls). Two known SNPs, -204A>C (rs3808607) and -469T>C (rs3824260), and a novel SNP (-208G>C) were identified in the 5'-UTR of CYP7A1. The -204A>C was in complete linkage with -469T>C and both were associated with NMO but not with MS. Results suggest that the CYP7A1 allele was associated with NMO. NMO and MS have different genetic risk factors. This further supports the emerging evidence that MS and NMO are distinct disorders.
Collapse
Affiliation(s)
- Gui-Xian Zhao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Lescure FX, Moulignier A, Savatovsky J, Amiel C, Carcelain G, Molina JM, Gallien S, Pacanovski J, Pialoux G, Adle-Biassette H, Gray F. CD8 encephalitis in HIV-infected patients receiving cART: a treatable entity. Clin Infect Dis 2013; 57:101-8. [PMID: 23515205 DOI: 10.1093/cid/cit175] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Despite its overall efficacy, combined antiretroviral therapy (cART) has failed to control human immunodeficiency virus (HIV) infection of the central nervous system (CNS). New acute and chronic neurological complications continue to be reported. METHODS We conducted a retrospective study of 14 HIV-infected patients with documented encephalitis, which was initially attributed to an undetermined origin. Brain magnetic resonance imaging (MRI) uniformly revealed unusual, multiple linear gadolinium-enhanced perivascular lesions. RESULTS All patients had manifested acute or subacute neurological symptoms; the brain MRIs indicating diffuse brain damage. The mean duration of HIV infection was approximately 10 years, and 8 patients were immunovirologically stable. Cerebrospinal fluid abnormalities with mildly elevated protein and pleocytosis with >90% lymphocytes, predominantly CD8, were found in all but 1 patient. The mean cerebral spinal fluid HIV load was 5949 copies/mL. Six patients reported a minor infection a few days prior to neurological symptoms, 2 patients presented criteria for the immune reconstitution inflammatory syndrome of the CNS, 2 were in virological escape, and 1 developed encephalitis after interruption of cART. Brain biopsies revealed inflammatory encephalitis associated with astrocytic and microglial activation as well as massive perivascular infiltration by polyclonal CD8(+) lymphocytes. All patients had been treated with glucocorticosteroids. The long-term therapeutic response varied from excellent, with no sequalae (n = 5), to moderate, with cognitive disorders (n = 4). The mean survival time was 8 years; however, 5 patients died within 13 months of initiation of treatment. CONCLUSIONS CD8 encephalitis in HIV-infected patients receiving cART is a clinical entity that should be added to the list of HIV complications.
Collapse
|
31
|
Acute necrotizing encephalopathy (ANE1): rare autosomal-dominant disorder presenting as acute transverse myelitis. J Neurol 2013; 260:1545-53. [PMID: 23329376 DOI: 10.1007/s00415-012-6825-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/03/2012] [Accepted: 12/24/2012] [Indexed: 12/20/2022]
Abstract
The term "acute transverse myelitis (ATM)" comprises various non-traumatic disorders that eventually can be associated with a focal myelopathy. Patients characteristically present with an acutely occurring paraparesis/plegia and require a comprehensive and timely diagnostic work up for the initiation of an appropriate treatment. We present a case of a 36-year-old female patient with a rare genetic disorder (ANE1: Acute Necrotizing Encephalopathy due to a RANBP2 mutation) who presented with an acute quadriplegia. Following an acute pulmonal infection, she rapidly (< 24 h) developed a severe quadriplegia (total motor score 38) with some facial sensory symptoms (perioral hypoesthesia). Magnetic resonance imaging (MRI) revealed a combination of longitudinal extensive transverse myelitis and symmetrical thalamic lesions. A work-up for infectious and systemic diseases was negative; specifically, no findings related to multiple sclerosis, neuromyelitis optica or vascular disorders. After empirical high dose steroid treatment and rehabilitation therapy, the patient gained almost normal gait and upper limb function. She was found to carry an autosomal-dominant missense mutation in the RANBP2 gene predisposing for ANE. Gene segregation was confirmed in other family members that had been affected by other episodes of acute steroid-responsive encephalopathies. We propose that a redefined diagnostic workup of ATM might include ANE1, as the frequency of this rare disorder might be underestimated.
Collapse
|
32
|
Rocca MA, Messina R, Filippi M. Multiple sclerosis imaging: recent advances. J Neurol 2012; 260:929-35. [DOI: 10.1007/s00415-012-6788-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 01/28/2023]
|
33
|
Nichols NL, Punzo AM, Duncan ID, Mitchell GS, Johnson RA. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats. Neuroscience 2012; 229:77-87. [PMID: 23159317 DOI: 10.1016/j.neuroscience.2012.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor functions are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by significant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14-day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease.
Collapse
Affiliation(s)
- N L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States.
| | | | | | | | | |
Collapse
|
34
|
Jones MV, Collongues N, de Seze J, Kinoshita M, Nakatsuji Y, Levy M. Review of Animal Models of Neuromyelitis Optica. Mult Scler Relat Disord 2012; 1:174-179. [PMID: 24555175 DOI: 10.1016/j.msard.2012.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuromyelitis optica (NMO) is a recurrent neuroinflammatory disease of the optic nerves and spinal cord associated with the anti-aquaporin-4 (AQP4) antibody biomarker, NMO-IgG. As clinical and scientific research interest in NMO grows, the need for an animal model becomes more urgent. Over the past few years, several groups have developed rodent models that partially represent human NMO disease. Passive transfer of the NMO-IgG is not pathogenic alone, but in certain contexts can recruit granulocytes and lead to increased inflammation. Studies of the cellular immune response against AQP4 have also shed light on the roles of B and T cells in NMO, especially focusing on the role of Th17 T helper cells. This review discusses the contribution of the available NMO animal models to the understanding of NMO disease pathogenesis.
Collapse
Affiliation(s)
- Melina V Jones
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas Collongues
- Department of Neurology, University Hospitals of Strasbourg, Strasbourg, France
| | - Jerome de Seze
- Department of Neurology, University Hospitals of Strasbourg, Strasbourg, France
| | - Makoto Kinoshita
- Department of Neurology, Department of Microbiology and Immunology, Osaka University, Osaka, Japan
| | | | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
Melzer N, Meuth SG, Wiendl H. Paraneoplastic and non-paraneoplastic autoimmunity to neurons in the central nervous system. J Neurol 2012; 260:1215-33. [PMID: 22983427 PMCID: PMC3642360 DOI: 10.1007/s00415-012-6657-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/11/2012] [Accepted: 08/11/2012] [Indexed: 12/20/2022]
Abstract
Autoimmune central nervous system (CNS) inflammation occurs both in a paraneoplastic and non-paraneoplastic context. In a widening spectrum of clinical disorders, the underlying adaptive (auto) immune response targets neurons with a divergent role for cellular and humoral disease mechanisms: (1) in encephalitis associated with antibodies to intracellular neuronal antigens, neuronal antigen-specific CD8+ T cells seemingly account for irreversible progressive neuronal cell death and neurological decline with poor response to immunotherapy. However, a pathogenic effect of humoral immune mechanisms is also debated. (2) In encephalitis associated with antibodies to synaptic and extrasynaptic neuronal cell surface antigens, potentially reversible antibody-mediated disturbance of synaptic transmission and neuronal excitability occurs in the absence of excessive neuronal damage and accounts for a good response to immunotherapy. However, a pathogenic effect of cellular immune mechanisms is also debated. We provide an overview of entities, clinical hallmarks, imaging features, characteristic laboratory, electrophysiological, cerebrospinal fluid and neuropathological findings, cellular and molecular disease mechanisms as well as therapeutic options in these two broad categories of inflammatory CNS disorders.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, Inflammatory Disorders of the Nervous System and Neurooncology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | | | | |
Collapse
|
36
|
Abstract
Multiple sclerosis (MS) is a chronic autoimmune condition affecting the CNS. Despite recent refinements in diagnostic criteria and the availability of ancillary studies, such as cerebrospinal fluid analysis, MRI, electrophysiological studies and optical coherence tomography, MS remains a clinical diagnosis. Repeated studies have convincingly demonstrated that early treatment is critical in decreasing the rate of disease progression and, therefore, establishing the diagnosis in a timely fashion and initiating treatment is imperative. However, the latter is not always easy and recognizing disorders that may mimic MS is essential in avoiding the administration of costly and, on occasion, potentially risky therapy. Furthermore, it is important to recognize MS mimics to initiate appropriate treatment for those conditions. Prominent MS mimickers, many with features of focal neurological disease separated in both time and space, are discussed in this article. Diagnostic pearls to avoid misdiagnosis have been included.
Collapse
Affiliation(s)
- Divya Singhal
- Department of Neurology, University of Kentucky College of Medicine, Kentucky Clinic Room L-445, 740 S Limestone St Lexington, KY 40536-0284, USA
| | - Joseph R Berger
- Department of Neurology, University of Kentucky College of Medicine, Kentucky Clinic Room L-445, 740 S Limestone St Lexington, KY 40536-0284, USA
| |
Collapse
|