1
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. CHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2122-2129. [PMID: 38436911 PMCID: PMC11489197 DOI: 10.1007/s12311-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
2
|
Milovanović A, Westenberger A, Stanković I, Tamaš O, Branković M, Marjanović A, Laabs BH, Brand M, Rajalingam R, Marras C, Lohmann K, Branković V, Novaković I, Petrović I, Svetel M, Klein C, Kostić VS, Dragašević-Mišković N. ANO10-Related Spinocerebellar Ataxia: MDSGene Systematic Literature Review and a Romani Case Series. Mov Disord 2024; 39:887-892. [PMID: 38469933 DOI: 10.1002/mds.29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in the ANO10 gene cause autosomal recessive progressive ataxia (ATX-ANO10). METHODS Following the MDSGene protocol, we systematically investigated genotype-phenotype relationships in ATX-ANO10 based on the clinical and genetic data from 82 published and 12 newly identified patients. RESULTS Most patients (>80%) had loss-of-function (LOF) variants. The most common variant was c.1150_1151del, found in all 29 patients of Romani ancestry, who had a 14-year earlier mean age at onset than patients homozygous for other LOF variants. We identified previously undescribed clinical features of ATX-ANO10 (e.g., facial muscle involvement and strabismus) suggesting the involvement of brainstem pathology, and we propose a diagnostic algorithm that may aid clinical ATX-ANO10 diagnosis. CONCLUSIONS The early disease onset in patients with c.1150_1151del may indicate the existence of genetic/environmental disease-modifying factors in the Romani population. Our findings will inform patient counseling and may improve our understanding of the disease mechanism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Andona Milovanović
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Iva Stanković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Olivera Tamaš
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Branković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ana Marjanović
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Max Brand
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rajasumi Rajalingam
- Department of Medicine, Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| | - Connie Marras
- Department of Medicine, Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vesna Branković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivana Novaković
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Petrović
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Svetel
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir S Kostić
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Natasa Dragašević-Mišković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Khelashvili G, Kots E, Cheng X, Levine MV, Weinstein H. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. Commun Biol 2022; 5:990. [PMID: 36123525 PMCID: PMC9484709 DOI: 10.1038/s42003-022-03930-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michael V Levine
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
4
|
Aida I, Ozawa T, Ohta K, Fujinaka H, Goto K, Nakajima T. Autosomal Recessive Spinocerebellar Ataxia Type 10: A Report of a New Case in Japan. Intern Med 2022; 61:2517-2521. [PMID: 35110481 PMCID: PMC9449628 DOI: 10.2169/internalmedicine.8608-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autosomal recessive spinocerebellar ataxia of type 10 (SCAR10) is a very rare neurodegenerative disease caused by mutations in the TMEM16K (ANO10) gene. This disorder is characterized by slowly progressive cerebellar ataxia and pyramidal signs inconstantly associated with cognitive decline, polyneuropathy, epilepsy, and vesicorectal dysfunction. To date, more than 40 cases have been reported in Europe. In contrast, only three cases have been identified in Asian countries. We herein report the third Japanese case of SCAR10 harboring a novel homozygous deletion mutation (c.616delG, p.Glu206Lysfs*17). This case presented with adult-onset slowly progressive spastic ataxia with cerebellar atrophy and mild cognitive decline.
Collapse
Affiliation(s)
- Izumi Aida
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
| | - Tetsuo Ozawa
- Department of Internal Medicine, National Hospital Organization Niigata National Hospital, Japan
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Kentaro Ohta
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Hidehiko Fujinaka
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
- Department of Pediatrics, National Hospital Organization Niigata National Hospital, Japan
- Department of Clinical Research, National Hospital Organization Niigata National Hospital, Japan
| | - Kiyoe Goto
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
| |
Collapse
|
5
|
ANO10 Function in Health and Disease. CEREBELLUM (LONDON, ENGLAND) 2022; 22:447-467. [PMID: 35648332 PMCID: PMC10126014 DOI: 10.1007/s12311-022-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Anoctamin 10 (ANO10), also known as TMEM16K, is a transmembrane protein and member of the anoctamin family characterized by functional duality. Anoctamins manifest ion channel and phospholipid scrambling activities and are involved in many physiological processes such as cell division, migration, apoptosis, cell signalling, and developmental processes. Several diseases, including neurological, muscle, blood disorders, and cancer, have been associated with the anoctamin family proteins. ANO10, which is the main focus of the present review, exhibits both scrambling and chloride channel activity; calcium availability is necessary for protein activation in either case. Additional processes implicating ANO10 include endosomal sorting, spindle assembly, and calcium signalling. Dysregulation of calcium signalling in Purkinje cells due to ANO10 defects is proposed as the main mechanism leading to spinocerebellar ataxia autosomal recessive type 10 (SCAR10), a rare, slowly progressive spinocerebellar ataxia. Regulation of the endolysosomal pathway is an additional ANO10 function linked to SCAR10 aetiology. Further functional investigation is essential to unravel the ANO10 mechanism of action and involvement in disease development.
Collapse
|
6
|
Ásbjörnsdóttir B, Henriksen OM, Lindquist S, Møller LB, Sidaros A, Nielsen JE. Widening the spectrum of spinocerebellar ataxia autosomal recessive type 10 (SCAR10). BMJ Case Rep 2022; 15:e248228. [PMID: 35256372 PMCID: PMC8905945 DOI: 10.1136/bcr-2021-248228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/04/2022] Open
Abstract
Biallelic pathogenic variants in the ANO10 gene cause spinocerebellar ataxia recessive type 10. We report two patients, both compound heterozygous for ANO10 variants, including two novel variants. Both patients had onset of cerebellar ataxia in adulthood with slow progression and presented corticospinal tract signs, eye movement abnormalities and cognitive executive impairment. One of them had temporal lobe epilepsy and she also carried a heterozygous variant in CACNB4, a potential risk gene for epilepsy. Both patients had pronounced cerebellar atrophy on cerebral magnetic resonance imaging (MRI) and reduced metabolic activity in cerebellum as well as in the frontal lobes on 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ((18F)FDG PET) scans. We provide comprehensive clinical, radiological and genetic data on two patients carrying likely pathogenic ANO10 gene variants. Furthermore, we provide evidence for a cerebellar as well as a frontal involvement on brain (18F)FDG PET scans which has not previously been reported.
Collapse
Affiliation(s)
- Birna Ásbjörnsdóttir
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne Lindquist
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Birk Møller
- Department of Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Sidaros
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Erik Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
8
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
9
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
10
|
The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. J Mol Biol 2021; 433:166941. [PMID: 33741412 DOI: 10.1016/j.jmb.2021.166941] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
The TMEM16 family of membrane proteins displays a remarkable functional dichotomy - while some family members function as Ca2+-activated anion channels, the majority of characterized TMEM16 homologs are Ca2+-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled. In this review, we will summarize the recent advances in the field and how they influenced our view of TMEM16 family function and evolution. Structural, functional and computational studies reveal how relatively small rearrangements in the permeation pathway are responsible for the observed functional duality: while TMEM16 scramblases can adopt both ion- and lipid conductive conformations, TMEM16 channels can only populate the former. Recent data further provides the molecular details of a stepwise activation mechanism, which is initiated by Ca2+ binding and modulated by various cellular factors, including lipids. TMEM16 function and the surrounding membrane properties are inextricably intertwined, with the protein inducing bilayer deformations associated with scrambling, while the surrounding lipids modulate TMEM16 conformation and activity.
Collapse
|
11
|
Petkovic M, Oses-Prieto J, Burlingame A, Jan LY, Jan YN. TMEM16K is an interorganelle regulator of endosomal sorting. Nat Commun 2020; 11:3298. [PMID: 32620747 PMCID: PMC7335067 DOI: 10.1038/s41467-020-17016-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Communication between organelles is essential for their cellular homeostasis. Neurodegeneration reflects the declining ability of neurons to maintain cellular homeostasis over a lifetime, where the endolysosomal pathway plays a prominent role by regulating protein and lipid sorting and degradation. Here we report that TMEM16K, an endoplasmic reticulum lipid scramblase causative for spinocerebellar ataxia (SCAR10), is an interorganelle regulator of the endolysosomal pathway. We identify endosomal transport as a major functional cluster of TMEM16K in proximity biotinylation proteomics analyses. TMEM16K forms contact sites with endosomes, reconstituting split-GFP with the small GTPase RAB7. Our study further implicates TMEM16K lipid scrambling activity in endosomal sorting at these sites. Loss of TMEM16K function led to impaired endosomal retrograde transport and neuromuscular function, one of the symptoms of SCAR10. Thus, TMEM16K-containing ER-endosome contact sites represent clinically relevant platforms for regulating endosomal sorting.
Collapse
Affiliation(s)
- Maja Petkovic
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA.
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Yuh Nung Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
Yang SL, Chen SF, Jiao YQ, Dong ZY, Dong Q, Han X. Autosomal Recessive Spinocerebellar Ataxia Caused by a Novel Homozygous ANO10 Mutation in a Consanguineous Chinese Family. J Clin Neurol 2020; 16:333-335. [PMID: 32319254 PMCID: PMC7174130 DOI: 10.3988/jcn.2020.16.2.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Shi Lin Yang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shu Fen Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Qiong Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi Yuan Dong
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
14
|
Nieto A, Pérez-Flores J, Corral-Juan M, Matilla-Dueñas A, Martínez-Burgallo F, Montón F. Cognitive characterization of SCAR10 caused by a homozygous c.132dupA mutation in the ANO10 gene. Neurocase 2019; 25:195-201. [PMID: 31423897 DOI: 10.1080/13554794.2019.1655064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Autosomal recessive spinocerebellar ataxia type 10 (SCAR10) caused by a homozygous c.132dupA mutation in the anoctamin 10 gene is infrequent and little is known about its cognitive profile. Three siblings (1 male) with this mutation were assessed with a neuropsychological battery measuring multiple cognitive domains. The deficits observed in one patient were in executive functions whereas the other two patients showed deficits in practically all the functions. Cognitive impairment seems to be a characteristic of the SCAR10 produced by this mutation, with a range from mild impairment, especially involving prefrontal systems, to a severe cognitive impairment suggesting widespread cerebral involvement.
Collapse
Affiliation(s)
- Antonieta Nieto
- School of Psychology, Universidad de La Laguna , San Cristóbal de La Laguna , Spain
| | - Javier Pérez-Flores
- School of Psychology, Universidad de La Laguna , San Cristóbal de La Laguna , Spain
| | - Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Francisco Martínez-Burgallo
- Human Genetic Unit, Clinical Analyses Service, Hospital Ntra Sra de la Candelaria , Santa Cruz de Tenerife , Spain
| | - Fernando Montón
- Service of Neurology, Hospital Ntra. Sra. de la Candelaria , Santa Cruz de Tenerife , Spain
| |
Collapse
|
15
|
Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA, Tessitore A, Chu A, Wang Q, Shrestha L, Mukhopadhyay SMM, Love JD, Burgess-Brown NA, Sitsapesan R, Stansfeld PJ, Huiskonen JT, Tammaro P, Accardi A, Carpenter EP. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat Commun 2019; 10:3956. [PMID: 31477691 PMCID: PMC6718402 DOI: 10.1038/s41467-019-11753-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity. TMEM16K is a member of the TMEM16 family of integral membrane proteins that are either lipid scramblases or chloride channels. Here the authors combine cell biology, electrophysiology measurements, X-ray crystallography, cryo-EM and MD simulations to structurally characterize TMEM16K and show that it is an ER-resident lipid scramblase.
Collapse
Affiliation(s)
- Simon R Bushell
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Nils J G Rorsman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,OxSyBio, Atlas Building, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Chau M Ta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Department of Cardiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Thomas D Newport
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.,Oxford Nanopore Technologies, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - John C Christianson
- Nuffield Department of Rheumatology, Orthopaedics and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Lara F Scofano
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Chitra A Shintre
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Vertex Pharmaceuticals Ltd, Milton Park, Oxfordshire, OX14 4RW, UK
| | - Annamaria Tessitore
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Nuffield Division of Clinical Laboratory Sciences, Oxford University, Oxford, OX3 9DU, UK
| | - Amy Chu
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, Oxford University, Oxford, OX1 3QT, UK
| | - Qinrui Wang
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shubhashish M M Mukhopadhyay
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - James D Love
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461-1602, USA.,Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Nicola A Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA.,Department of Anesthesiology, Weill Cornell Medical School, 25 East 68th Street, New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
16
|
Lee B, Hong GS, Lee SH, Kim H, Kim A, Hwang EM, Kim J, Lee MG, Yang JY, Kweon MN, Tse CM, Mark D, Oh U. Anoctamin 1/TMEM16A controls intestinal Cl - secretion induced by carbachol and cholera toxin. Exp Mol Med 2019; 51:1-14. [PMID: 31383845 PMCID: PMC6802608 DOI: 10.1038/s12276-019-0287-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) mediate numerous physiological functions and are best known for the transport of electrolytes and water in epithelia. In the intestine, CaCC currents are considered necessary for the secretion of fluid to protect the intestinal epithelium. Although genetic ablation of ANO1/TMEM16A, a gene encoding a CaCC, reduces the carbachol-induced secretion of intestinal fluid, its mechanism of action is still unknown. Here, we confirm that ANO1 is essential for the secretion of intestinal fluid. Carbachol-induced transepithelial currents were reduced in the proximal colon of Ano1-deficient mice. Surprisingly, cholera toxin-induced and cAMP-induced fluid secretion, believed to be mediated by CFTR, were also significantly reduced in the intestine of Ano1-deficient mice. ANO1 is largely expressed in the apical membranes of intestines, as predicted for CaCCs. The Ano1-deficient colons became edematous under basal conditions and had a greater susceptibility to dextran sodium sulfate-induced colitis. However, Ano1 depletion failed to affect tumor development in a model of colorectal cancer. We thus conclude that ANO1 is necessary for cAMP- and carbachol-induced Cl− secretion in the intestine, which is essential for the protection of the intestinal epithelium from colitis. An ion channel, a membrane protein allowing ion transport, that controls the flow of chloride is needed for proper secretion of protective fluids in the intestine. Uhtaek Oh from the Korea Institute of Science & Technology in Seoul, South Korea, and colleagues showed that cells lining the intestinal surface express a calcium-activated chloride channel called anoctamin-1 (ANO1) that regulates fluid secretion in the gut. Compared to control animals, ANO1-deficient mice released less fluid into their intestines following exposure to a diarrhea-inducing toxin or to a chloride transport–stimulating signaling molecule. This fluid secretion was previously thought to be mediated via a different ion channel. The ANO1-deficient mice accumulated fluid within colonic tissues, which increased their susceptibility to colitis. The findings point to ANO1 activation as a potential therapeutic strategy for treating colitis.
Collapse
Affiliation(s)
- Byeongjun Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Hyungsup Kim
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Ajung Kim
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea
| | - Jiyoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jin-Young Yang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, 05505, Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, 05505, Korea
| | - Chung-Ming Tse
- Departments of Physiology and Medicine, Division of Gastroenterois maintained by the opening of plasmalogy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donowitz Mark
- Departments of Physiology and Medicine, Division of Gastroenterois maintained by the opening of plasmalogy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Uhtaek Oh
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea. .,Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul, 02792, Korea.
| |
Collapse
|
17
|
Nanetti L, Sarto E, Castaldo A, Magri S, Mongelli A, Rossi Sebastiano D, Canafoglia L, Grisoli M, Malaguti C, Rivieri F, D’Amico MC, Di Bella D, Franceschetti S, Mariotti C, Taroni F. ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol 2018; 266:378-385. [DOI: 10.1007/s00415-018-9141-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022]
|
18
|
Falzone ME, Malvezzi M, Lee BC, Accardi A. Known structures and unknown mechanisms of TMEM16 scramblases and channels. J Gen Physiol 2018; 150:933-947. [PMID: 29915161 PMCID: PMC6028493 DOI: 10.1085/jgp.201711957] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Falzone et al. interpret the mechanisms underlying the activity of TMEM16 family members from recent structural and functional work. The TMEM16 family of membrane proteins is composed of both Ca2+-gated Cl− channels and Ca2+-dependent phospholipid scramblases. The functional diversity of TMEM16s underlies their involvement in numerous signal transduction pathways that connect changes in cytosolic Ca2+ levels to cellular signaling networks. Indeed, defects in the function of several TMEM16s cause a variety of genetic disorders, highlighting their fundamental pathophysiological importance. Here, we review how our mechanistic understanding of TMEM16 function has been shaped by recent functional and structural work. Remarkably, the recent determination of near-atomic-resolution structures of TMEM16 proteins of both functional persuasions has revealed how relatively minimal rearrangements in the substrate translocation pathway are sufficient to precipitate the dramatic functional differences that characterize the family. These structures, when interpreted in the light of extensive functional analysis, point to an unusual mechanism for Ca2+-dependent activation of TMEM16 proteins in which substrate permeation is regulated by a combination of conformational rearrangements and electrostatics. These breakthroughs pave the way to elucidate the mechanistic bases of ion and lipid transport by the TMEM16 proteins and unravel the molecular links between these transport activities and their function in human pathophysiology.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, New York, NY
| | - Mattia Malvezzi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Byoung-Cheol Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, New York, NY .,Department of Anesthesiology, Weill Cornell Medical School, New York, NY.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical School, New York, NY
| |
Collapse
|
19
|
Abstract
The autosomal-recessive cerebellar ataxias comprise more than half of the known genetic forms of ataxia and represent an extensive group of clinically heterogeneous disorders that can occur at any age but whose onset is typically prior to adulthood. In addition to ataxia, patients often present with polyneuropathy and clinical symptoms outside the nervous system. The most common of these diseases is Friedreich ataxia, caused by mutation of the frataxin gene, but recent advances in genetic analysis have greatly broadened the ever-expanding number of causative genes to over 50. In this review, the clinical neurogenetics of the recessive cerebellar ataxias will be discussed, including updates on recently identified novel ataxia genes, advancements in unraveling disease-specific molecular pathogenesis leading to ataxia, potential treatments under development, technologic improvements in diagnostic testing such as clinical exome sequencing, and what the future holds for clinicians and geneticists.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Malicdan MCV, Vilboux T, Ben-Zeev B, Guo J, Eliyahu A, Pode-Shakked B, Dori A, Kakani S, Chandrasekharappa SC, Ferreira C, Shelestovich N, Marek-Yagel D, Pri-Chen H, Blatt I, Niederhuber JE, He L, Toro C, Taylor RW, Deeken J, Yardeni T, Wallace DC, Gahl WA, Anikster Y. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat 2018; 39:69-79. [PMID: 29044765 PMCID: PMC5722658 DOI: 10.1002/humu.23345] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
Primary coenzyme Q10 (CoQ10 ; MIM# 607426) deficiencies are an emerging group of inherited mitochondrial disorders with heterogonous clinical phenotypes. Over a dozen genes are involved in the biosynthesis of CoQ10 , and mutations in several of these are associated with human disease. However, mutations in COQ5 (MIM# 616359), catalyzing the only C-methylation in the CoQ10 synthetic pathway, have not been implicated in human disease. Here, we report three female siblings of Iraqi-Jewish descent, who had varying degrees of cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, and cognitive disability. Whole-exome and subsequent whole-genome sequencing identified biallelic duplications in the COQ5 gene, leading to reduced levels of CoQ10 in peripheral white blood cells of all affected individuals and reduced CoQ10 levels in the only muscle tissue available from one affected proband. CoQ10 supplementation led to clinical improvement and increased the concentrations of CoQ10 in blood. This is the first report of primary CoQ10 deficiency caused by loss of function of COQ5, with delineation of the clinical, laboratory, histological, and molecular features, and insights regarding targeted treatment with CoQ10 supplementation.
Collapse
Affiliation(s)
- May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Jennifer Guo
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
| | - Aviva Eliyahu
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Amir Dori
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Joseph Sagol Neuroscience Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Sravan Kakani
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Settara C. Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Carlos Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Natalia Shelestovich
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Ilan Blatt
- Department of Neurology, Sheba Medical Center, Tel-Hashomer, 5621 Israel
| | - John E. Niederhuber
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
- Johns Hopkins University School of Medicine, 733 North Broadway Street, Baltimore, MD, USA
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - John Deeken
- Inova Translational Medicine Institute, Falls Church, 22042 Virginia, USA
| | - Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, USA
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, 20892 Maryland, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, 5621 Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| |
Collapse
|
21
|
|
22
|
Bogdanova-Mihaylova P, Austin N, Alexander MD, Cassidy L, Early A, Murphy RP, Murphy SM, Walsh RA. Anoctamin 10-Related Autosomal Recessive Cerebellar Ataxia: Comprehensive Clinical Phenotyping of an Irish Sibship. Mov Disord Clin Pract 2017; 4:258-262. [PMID: 30838263 DOI: 10.1002/mdc3.12396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 11/10/2022] Open
Abstract
The autosomal recessive cerebellar ataxias are a heterogeneous group of neurodegenerative disorders. Mutations in the anoctamin 10 gene (ANO10) recently have been identified as a cause of autosomal recessive spinocerebellar ataxia type 10. Comprehensive phenotypic data are provided on 3 siblings with homozygous ANO10 mutations, including detailed ocular and cognitive assessments and bladder involvement not previously described in the literature. Data also are provided on unblinded therapy with coenzyme Q10, previously reported as a possible therapy in ANO10-related ataxia. A genetic diagnosis in this family was obtained through next-generation sequencing techniques after over 10 years of expensive sequencing of individual genes using the traditional Sanger approach. Greater commercial availability of gene panels will improve the ability to obtain a genetic diagnosis in the uncommon "non-Friedreich's" recessive ataxias. Clinical recognition of these recessive ataxic syndromes will also inevitably improve as the full phenotypic spectrum is identified.
Collapse
Affiliation(s)
- Petya Bogdanova-Mihaylova
- National Ataxia Clinic Department of Neurology Adelaide & Meath Hospital Dublin incorporating the National Children's Hospital Tallaght Dublin Ireland
| | - Neil Austin
- Department of Psychology Adelaide & Meath Hospitals incorporating the National Children's Hospital Tallaght Dublin Ireland
| | - Michael D Alexander
- Department of Neurophysiology Adelaide & Meath Hospitals incorporating the National Children's Hospital Tallaght Dublin Ireland.,Academic Unit of Neurology Trinity College Dublin Ireland
| | - Lorraine Cassidy
- Department of Ophthalmology Adelaide & Meath Hospitals incorporating the National Children's Hospital Tallaght Dublin Ireland
| | - Anne Early
- Department of Ophthalmology Adelaide & Meath Hospitals incorporating the National Children's Hospital Tallaght Dublin Ireland
| | - Raymond P Murphy
- National Ataxia Clinic Department of Neurology Adelaide & Meath Hospital Dublin incorporating the National Children's Hospital Tallaght Dublin Ireland.,Academic Unit of Neurology Trinity College Dublin Ireland
| | - Sinéad M Murphy
- National Ataxia Clinic Department of Neurology Adelaide & Meath Hospital Dublin incorporating the National Children's Hospital Tallaght Dublin Ireland.,Academic Unit of Neurology Trinity College Dublin Ireland
| | - Richard A Walsh
- National Ataxia Clinic Department of Neurology Adelaide & Meath Hospital Dublin incorporating the National Children's Hospital Tallaght Dublin Ireland.,Academic Unit of Neurology Trinity College Dublin Ireland
| |
Collapse
|
23
|
Beaudin M, Klein CJ, Rouleau GA, Dupré N. Systematic review of autosomal recessive ataxias and proposal for a classification. CEREBELLUM & ATAXIAS 2017; 4:3. [PMID: 28250961 PMCID: PMC5324265 DOI: 10.1186/s40673-017-0061-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
Abstract
Background The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. Methods We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. Results After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. Conclusion We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications. Electronic supplementary material The online version of this article (doi:10.1186/s40673-017-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Beaudin
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada
| | | | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4 Canada
| | - Nicolas Dupré
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada.,Department of Neurological Sciences, CHU de Quebec - Université Laval, 1401 18th street, Québec City, QC G1J 1Z4 Canada
| |
Collapse
|
24
|
Wanitchakool P, Ousingsawat J, Sirianant L, Cabrita I, Faria D, Schreiber R, Kunzelmann K. Cellular defects by deletion of ANO10 are due to deregulated local calcium signaling. Cell Signal 2016; 30:41-49. [PMID: 27838374 DOI: 10.1016/j.cellsig.2016.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
TMEM16K (ANO10) belongs to a family of ion channels and phospholipid scramblases. Mutations in ANO10 cause neurological and immunological defects, and abrogated ion transport. Here we show that Ano10 knockout in epithelial cells leads to defective ion transport, attenuated volume regulation and deranged Ca2+ signaling. Intestinal epithelial cells from Ano10 null mice are reduced in size and demonstrate an almost abolished spontaneous and TNFα-induced apoptosis. Similar defects were found in mouse peritoneal Ano10 null macrophages and in human THP1 macrophages with reduced ANO10 expression. A cell cycle dependent colocalization of Ano10 with acetylated tubulin, centrioles, and a submembranous tubulin containing compartment was observed in Fisher rat thyroid cells. Axs, the Drosophila ortholog of ANO10 is known for its role in mitotic spindle formation and association with the endoplasmic reticulum and Ca2+ signaling. We therefore propose that mutations in ANO10 cause cellular defects and genetic disorders through deranged local Ca2+ signaling.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Diana Faria
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
25
|
Mišković ND, Domingo A, Dobričić V, Max C, Braenne I, Petrović I, Grütz K, Pawlack H, Tournev I, Kalaydjieva L, Svetel M, Lohmann K, Kostić VS, Westenberger A. Seemingly dominant inheritance of a recessive ANO10 mutation in romani families with cerebellar ataxia. Mov Disord 2016; 31:1929-1931. [PMID: 27787937 DOI: 10.1002/mds.26816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nataša Dragašević Mišković
- Clinic of Neurology, Faculty of Medicine, Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany
| | - Valerija Dobričić
- Clinic of Neurology, Faculty of Medicine, Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Christoph Max
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ingrid Braenne
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
| | - Igor Petrović
- Clinic of Neurology, Faculty of Medicine, Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Heike Pawlack
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ivailo Tournev
- Clinic of Nervous Diseases, University Hospital Aleksandrovska, Department of Neurology, Sofia Medical University, Sofia.,Department of Cognitive Science and Psychology, New Bulgarian University, Sofia
| | - Luba Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Marina Svetel
- Clinic of Neurology, Faculty of Medicine, Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir S Kostić
- Clinic of Neurology, Faculty of Medicine, Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Bargary G, Hogg RE, Mollon JD. A population study of binocular function. Vision Res 2015; 110:34-50. [PMID: 25771401 DOI: 10.1016/j.visres.2015.02.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
As part of a genome-wide association study (GWAS) of perceptual traits in healthy adults, we measured stereo acuity, the duration of alternative percepts in binocular rivalry and the extent of dichoptic masking in 1060 participants. We present the distributions of the measures, the correlations between measures, and their relationships to other psychophysical traits. We report sex differences, and correlations with age, interpupillary distance, eye dominance, phorias, visual acuity and personality. The GWAS, using data from 988 participants, yielded one genetic association that passed a permutation test for significance: The variant rs1022907 in the gene VTI1A was associated with self-reported ability to see autostereograms. We list a number of other suggestive genetic associations (p<10(-5)).
Collapse
Affiliation(s)
- J M Bosten
- Department of Psychology, University of Cambridge, UK; School of Psychology, University of Sussex, Brighton, UK.
| | - P T Goodbourn
- Department of Psychology, University of Cambridge, UK; School of Psychology, University of Sydney, Australia
| | | | - G Bargary
- Department of Psychology, University of Cambridge, UK; Division of Optometry and Visual Science, City University, London, UK
| | - R E Hogg
- Department of Psychology, University of Cambridge, UK; Centre for Experimental Medicine, Queen's University Belfast, UK
| | - J D Mollon
- Department of Psychology, University of Cambridge, UK
| |
Collapse
|
27
|
Hammer C, Wanitchakool P, Sirianant L, Papiol S, Monnheimer M, Faria D, Ousingsawat J, Schramek N, Schmitt C, Margos G, Michel A, Kraiczy P, Pawlita M, Schreiber R, Schulz TF, Fingerle V, Tumani H, Ehrenreich H, Kunzelmann K. A Coding Variant of ANO10, Affecting Volume Regulation of Macrophages, Is Associated with Borrelia Seropositivity. Mol Med 2015; 21:26-37. [PMID: 25730773 DOI: 10.2119/molmed.2014.00219] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/23/2015] [Indexed: 01/12/2023] Open
Abstract
In a first genome-wide association study (GWAS) approach to anti-Borrelia seropositivity, we identified two significant single nucleotide polymorphisms (SNPs) (rs17850869, P = 4.17E-09; rs41289586, P = 7.18E-08). Both markers, located on chromosomes 16 and 3, respectively, are within or close to genes previously connected to spinocerebellar ataxia. The risk SNP rs41289586 represents a missense variant (R263H) of anoctamin 10 (ANO10), a member of a protein family encoding Cl(-) channels and phospholipid scramblases. ANO10 augments volume-regulated Cl(-) currents (IHypo) in Xenopus oocytes, HEK293 cells, lymphocytes and macrophages and controls volume regulation by enhancing regulatory volume decrease (RVD). ANO10 supports migration of macrophages and phagocytosis of spirochetes. The R263H variant is inhibitory on IHypo, RVD and intracellular Ca(2+) signals, which may delay spirochete clearance, thereby sensitizing adaptive immunity. Our data demonstrate for the first time that ANO10 has a central role in innate immune defense against Borrelia infection.
Collapse
Affiliation(s)
- Christian Hammer
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Sergi Papiol
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Mathieu Monnheimer
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Diana Faria
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | | | | | - Corinna Schmitt
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Angelika Michel
- Division of Genome Modifications and Carcinogenesis, Infections and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt am Main, Frankfurt/Main, Germany
| | - Michael Pawlita
- Division of Genome Modifications and Carcinogenesis, Infections and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Yoshida K, Miyatake S, Kinoshita T, Doi H, Tsurusaki Y, Miyake N, Saitsu H, Matsumoto N. 'Cortical cerebellar atrophy' dwindles away in the era of next-generation sequencing. J Hum Genet 2014; 59:589-90. [PMID: 25209172 PMCID: PMC4521292 DOI: 10.1038/jhg.2014.75] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomomi Kinoshita
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroshi Doi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Clinical Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
29
|
Balreira A, Boczonadi V, Barca E, Pyle A, Bansagi B, Appleton M, Graham C, Hargreaves IP, Rasic VM, Lochmüller H, Griffin H, Taylor RW, Naini A, Chinnery PF, Hirano M, Quinzii CM, Horvath R. ANO10 mutations cause ataxia and coenzyme Q₁₀ deficiency. J Neurol 2014; 261:2192-8. [PMID: 25182700 PMCID: PMC4221650 DOI: 10.1007/s00415-014-7476-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Inherited ataxias are heterogeneous
disorders affecting both children and adults, with over 40 different causative genes, making molecular genetic diagnosis challenging. Although recent advances in next-generation sequencing have significantly improved mutation detection, few treatments exist for patients with inherited ataxia. In two patients with adult-onset cerebellar ataxia and coenzyme Q10 (CoQ10) deficiency in muscle, whole exome sequencing revealed mutations in ANO10, which encodes anoctamin 10, a member of a family of putative calcium-activated chloride channels, and the causative gene for autosomal recessive spinocerebellar ataxia-10 (SCAR10). Both patients presented with slowly progressive ataxia and dysarthria leading to severe disability in the sixth decade. Epilepsy and learning difficulties were also present in one patient, while retinal degeneration and cataract were present in the other. The detection of mutations in ANO10 in our patients indicate that ANO10 defects cause secondary low CoQ10 and SCAR10 patients may benefit from CoQ10 supplementation.
Collapse
Affiliation(s)
- Andrea Balreira
- Department of Neurology, Columbia University Medical Center, New York, NY USA
| | - Veronika Boczonadi
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, NY USA
| | - Angela Pyle
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Boglarka Bansagi
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Marie Appleton
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Graham
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Iain P. Hargreaves
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Vedrana Milic Rasic
- Clinic for Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Ali Naini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Patrick F. Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY USA
| | - Catarina M. Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY USA
| | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch 2014; 467:1203-13. [PMID: 24974903 DOI: 10.1007/s00424-014-1559-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.
Collapse
|
31
|
Wang Y, Alam T, Hill-Harfe K, Lopez AJ, Leung CK, Iribarne D, Bruggeman B, Miyamoto MM, Harfe BD, Choe KP. Phylogenetic, expression, and functional analyses of anoctamin homologs in Caenorhabditis elegans. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1376-89. [DOI: 10.1152/ajpregu.00303.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+-activated Cl− channels (CaCCs) are critical to processes such as epithelial transport, membrane excitability, and signal transduction. Anoctamin, or TMEM16, is a family of 10 mammalian transmembrane proteins, 2 of which were recently shown to function as CaCCs. The functions of other family members have not been firmly established, and almost nothing is known about anoctamins in invertebrates. Therefore, we performed a phylogenetic analysis of anoctamins across the animal kingdom and examined the expression and function of anoctamins in the genetically tractable nematode Caenorhabditis elegans. Phylogenetic analyses support five anoctamin clades that are at least as old as the deuterostome/protosome ancestor. This includes a branch containing two Drosophila paralogs that group with mammalian ANO1 and ANO2, the two best characterized CaCCs. We identify two anoctamins in C. elegans (ANOH-1 and ANOH-2) that are also present in basal metazoans. The anoh-1 promoter is active in amphid sensory neurons that detect external chemical and nociceptive cues. Within amphid neurons, ANOH-1::GFP fusion protein is enriched within sensory cilia. RNA interference silencing of anoh-1 reduced avoidance of steep osmotic gradients without disrupting amphid cilia development, chemotaxis, or withdrawal from noxious stimuli, suggesting that ANOH-1 functions in a sensory mode-specific manner. The anoh-2 promoter is active in mechanoreceptive neurons and the spermatheca, but loss of anoh-2 had no effect on motility or brood size. Our study indicates that at least five anoctamin duplicates are evolutionarily ancient and suggests that sensory signaling may be a basal function of the anoctamin protein family.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, University of Florida, Gainesville, Florida
| | - Tashrique Alam
- Department of Biology, University of Florida, Gainesville, Florida
| | | | | | - Chi K. Leung
- Department of Biology, University of Florida, Gainesville, Florida
| | - Daniela Iribarne
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, Florida; and
| | - Bradley Bruggeman
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, Florida; and
| | | | - Brian D. Harfe
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, Florida; and
- Genetics Institute, University of Florida, Gainesville, Florida
| | - Keith P. Choe
- Department of Biology, University of Florida, Gainesville, Florida
- Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Recent advances in clinical neurogenetics. J Neurol 2013; 260:2451-7. [DOI: 10.1007/s00415-012-6757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/24/2022]
|
33
|
Maruyama H, Morino H, Miyamoto R, Murakami N, Hamano T, Kawakami H. Exome sequencing reveals a novel ANO10 mutation in a Japanese patient with autosomal recessive spinocerebellar ataxia. Clin Genet 2013; 85:296-7. [PMID: 23551081 DOI: 10.1111/cge.12140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/08/2013] [Accepted: 03/08/2013] [Indexed: 01/24/2023]
Affiliation(s)
- H Maruyama
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|