1
|
Xia P, Lv H, Yuan C, Duan W, Wang J, Guan J, Du Y, Zhang C, Liu Z, Wang K, Wang Z, Wang X, Wu H, Chen Z, Jian F. Role of Preoperative Albumin Quotient in Surgical Planning for Posttraumatic Syringomyelia: A Comparative Cohort Study. Neurospine 2024; 21:212-222. [PMID: 38317552 PMCID: PMC10992642 DOI: 10.14245/ns.2347152.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Surgical procedures for patients with posttraumatic syringomyelia (PTS) remain controversial. Until now, there have been no effective quantitative evaluation methods to assist in selecting appropriate surgical plans before surgery. METHODS We consecutively enrolled PTS patients (arachnoid lysis group, n = 42; shunting group, n = 14) from 2003 to 2023. Additionally, 19 intrathecal anesthesia patients were included in the control group. All patients with PTS underwent physical and neurological examinations and spinal magnetic resonance imaging preoperatively, 3-12 months postoperatively and during the last follow-up. Preoperative lumbar puncture was performed and blood-spinal cord barrier disruption was detected by quotient of albumin (Qalb, cerebrospinal fluid/serum). RESULTS The ages (p = 0.324) and sex (p = 0.065) of the PTS and control groups did not differ significantly. There were also no significant differences in age (p = 0.216), routine blood data and prognosis (p = 0.399) between the arachnoid lysis and shunting groups. But the QAlb level of PTS patients was significantly higher than that of the control group (p < 0.001), and the shunting group had a significantly higher QAlb (p < 0.001) than the arachnoid lysis group. A high preoperative QAlb (odds ratio, 1.091; 95% confidence interval, 1.004-1.187; p = 0.041) was identified as the predictive factor for the shunting procedure, with the receiver operating characteristic curve showing 100% specificity and 80.95% sensitivity for patients with a QAlb > 12.67. CONCLUSION Preoperative QAlb is a significant predictive factor for the types of surgery. For PTS patients with a QAlb > 12.67, shunting represents the final recourse, necessitating the exploration and development of novel treatments for these patients.
Collapse
Affiliation(s)
- Pingchuan Xia
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Houyuan Lv
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Chenghua Yuan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | | | - Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yueqi Du
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Can Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Zuowei Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Xingwen Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| |
Collapse
|
2
|
Relationship between cerebrospinal fluid/serum albumin quotient and phenotype in amyotrophic lateral sclerosis: a retrospective study on 328 patients. Neurol Sci 2023; 44:1679-1685. [PMID: 36646859 DOI: 10.1007/s10072-023-06604-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND We analysed the relationship between cerebrospinal fluid (CSF)/serum albumin quotient (Q-Alb) and phenotype in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS Three hundred twenty-eight single-centre consecutive patients with ALS were evaluated for Q-Alb, basic epidemiological and clinical data, motor phenotype, cognitive/behavioural impairment, clinical staging, clinical and neurophysiological indexes of upper (UMN) and lower motor neuron (LMN) dysfunction, and presence of ALS gene mutations. RESULTS Q-Alb did not correlate with age but was independently associated with sex, with male patients having higher levels than female ones; the site of onset was not independently associated with Q-Alb. Q-Alb was not associated with motor phenotype, cognitive/behavioural impairment, disease stage, progression rate, survival, or genetic mutations. Among measures of UMN and LMN dysfunction, Q-Alb only had a weak positive correlation with an electromyography-based index of active limb denervation. CONCLUSION Previous work has documented increased Q-Alb in ALS compared to unaffected individuals. This, together with the absence of associations with nearly all ALS phenotypic features in our cohort, suggests dysfunction of the blood-CSF barrier as a shared, phenotype-independent element in ALS pathophysiology. However, correlation with the active denervation index could point to barrier dysfunction as a local driver of LMN degeneration.
Collapse
|
3
|
Klose V, Jesse S, Lewerenz J, Kassubek J, Dorst J, Tumani H, Ludolph AC, Roselli F. CSF oligoclonal IgG bands are not associated with ALS progression and prognosis. Front Neurol 2023; 14:1170360. [PMID: 37213901 PMCID: PMC10196068 DOI: 10.3389/fneur.2023.1170360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Amyotrophic Lateral Sclerosis (ALS) is characterized by progressive motoneuron degeneration through cell autonomous and non-cell autonomous mechanisms; and the involvement of the innate and adaptive immune system has been hypothesized based on human and murine model data. We have explored if B-cell activation and IgG responses, as detected by IgG Oligoclonal bands (OCB) in serum and cerebrospinal fluid, were associated with ALS or with a subgroup of patients with distinct clinical features. Methods IgG OCB were determined in patients affected by ALS (n=457), Alzheimer Disease (n=516), Mild Cognitive Impairment (n=91), Tension-type Headache (n=152) and idiopathic Facial Palsy (n=94). For ALS patients, clinico-demographic and survival data were prospectively collected in the Register Schabia. Results The prevalence of IgG OCB is comparable in ALS and the four neurological cohorts. When the OCB pattern was considered (highlighting either intrathecal or systemic B-cells activation), no effect of OCB pattern on clinic-demographic parameters and overall. ALS patients with intrathecal IgG synthesis (type 2 and 3) were more likely to display infectious, inflammatory or systemic autoimmune conditions. Discussion These data suggest that OCB are not related to ALS pathophysiology but rather are a finding possibly indicative a coincidental infectious or inflammatory comorbidity that merits further investigation.
Collapse
Affiliation(s)
- Veronika Klose
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Sarah Jesse
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Johannes Dorst
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Albert C. Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
- *Correspondence: Albert C. Ludolph,
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
- Francesco Roselli,
| |
Collapse
|
4
|
Tiloca C, Goldwurm S, Calcagno N, Verde F, Peverelli S, Calini D, Zecchinelli AL, Sangalli D, Ratti A, Pezzoli G, Silani V, Ticozzi N. TARDBP mutations in a cohort of Italian patients with Parkinson’s disease and atypical parkinsonisms. Front Aging Neurosci 2022; 14:1020948. [PMID: 36247987 PMCID: PMC9557978 DOI: 10.3389/fnagi.2022.1020948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAggregates of TAR DNA-binding protein of 43 kDa (TDP-43) represent the pathological hallmark of most amyotrophic lateral sclerosis (ALS) and of nearly 50% of frontotemporal dementia (FTD) cases but were also observed to occur as secondary neuropathology in the nervous tissue of patients with different neurodegenerative diseases, including Parkinson’s disease (PD) and atypical parkinsonism. Mutations of TARDBP gene, mainly in exon 6 hotspot, have been reported to be causative of some forms of ALS and FTD, with clinical signs of parkinsonism observed in few mutation carriers.MethodsDirect DNA sequencing of TARDBP exon 6 was performed in a large Italian cohort of 735 patients affected by PD (354 familial and 381 sporadic) and 142 affected by atypical parkinsonism, including 39 corticobasal syndrome (CBS) and 103 progressive sopranuclear palsy (PSP). Sequencing data from 1710 healthy, ethnically matched controls were already available.ResultsFour TARDBP missense variants (p.N267S, p. G294A, p.G295S, p.S393L) were identified in four patients with typical PD and in two individuals with atypical parkinsonism (1 CBS and 1 PSP). None of the detected mutations were found in healthy controls and only the variant p.N267S was previously described in association to idiopathic familial and sporadic PD and to CBS.ConclusionIn this study we provide further insight into the clinical phenotypic heterogeneity associated with TARDBP mutations, which expands beyond the classical ALS and FTD diseases to include also PD and atypical parkinsonism, although with a low mutational frequency, varying considerably in different Caucasian populations. In addition, our study extends the spectrum of TARDBP pathogenetic mutations found in familial and sporadic PD.
Collapse
Affiliation(s)
- Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stefano Goldwurm
- Parkinson Institute of Milan, ASST Gaetano Pini/CTO, Milan, Italy
| | - Narghes Calcagno
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Neurology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Daniela Calini
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | - Davide Sangalli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Neurology – Stroke Unit, A. Manzoni Hospital – ASST Lecco, Lecco, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Gianni Pezzoli
- Parkinson Institute of Milan, ASST Gaetano Pini/CTO, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Nicola Ticozzi,
| |
Collapse
|
5
|
Elevated Cerebrospinal Fluid Proteins and Albumin Determine a Poor Prognosis for Spinal Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms231911063. [PMID: 36232365 PMCID: PMC9570498 DOI: 10.3390/ijms231911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease, both in its onset phenotype and in its rate of progression. The aim of this study was to establish whether the dysfunction of the blood–brain barrier (BBB) and blood–spinal cord barrier (BSCB) measured through cerebrospinal fluid (CSF) proteins and the albumin-quotient (QAlb) are related to the speed of disease progression. An amount of 246 patients diagnosed with ALS were included. CSF and serum samples were determined biochemically for different parameters. Survival analysis based on phenotype shows higher probability of death for bulbar phenotype compared to spinal phenotype (p-value: 0.0006). For the effect of CSF proteins, data shows an increased risk of death for spinal ALS patients as the value of CSF proteins increases. The same model replicated for CSF albumin yielded similar results. Statistical models determined that the lowest cut-off value for CSF proteins able to differentiate patients with a good prognosis and worse prognosis corresponds to CSF proteins ≥ 0.5 g/L (p-value: 0.0189). For the CSF albumin, the QAlb ≥0.65 is associated with elevated probability of death (p-value: 0.0073). High levels of QAlb are a bad prognostic indicator for the spinal phenotype, in addition to high CSF proteins levels that also act as a marker of poor prognosis.
Collapse
|
6
|
Giacopuzzi Grigoli E, Cinnante C, Doneddu PE, Calcagno N, Lenti S, Ciammola A, Maderna L, Ticozzi N, Castellani M, Beretta S, Rovaris M, Silani V, Verde F. Progressive motor neuron syndromes with single CNS lesions and CSF oligoclonal bands: never forget solitary sclerosis! Neurol Sci 2022; 43:6951-6954. [DOI: 10.1007/s10072-022-06407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
|
7
|
Carta S, Ferraro D, Ferrari S, Briani C, Mariotto S. Oligoclonal bands: clinical utility and interpretation cues. Crit Rev Clin Lab Sci 2022; 59:391-404. [DOI: 10.1080/10408363.2022.2039591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sara Carta
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Diana Ferraro
- Department of Biomedicine, Metabolic, and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine, and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Li JY, Cai ZY, Sun XH, Shen DC, Yang XZ, Liu MS, Cui LY. Blood-brain barrier dysfunction and myelin basic protein in survival of amyotrophic lateral sclerosis with or without frontotemporal dementia. Neurol Sci 2021; 43:3201-3210. [PMID: 34826032 DOI: 10.1007/s10072-021-05731-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We aim to investigate blood-brain barrier (BBB) dysfunction and myelin basic protein (MBP) in amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD) and further determine the effect of these factors on the survival of ALS. METHODS This was a retrospective study of 113 ALS patients, 12 ALS-FTD patients, and 40 disease controls hospitalized between September 2013 and October 2020. CSF parameters including total protein (TP), albumin (Alb), immunoglobulin-G (IgG), and MBP were collected and compared between groups. The CSF-TP, CSF-Alb, CSF-IgG, and CSF/serum quotients of Alb and IgG (QAlb, QIgG) were used to reflect the BBB status. Patients were followed up until December 2020. Cox regression and Kaplan-Meier method were used for survival analysis. RESULTS The CSF-TP, CSF-Alb, and CSF-IgG concentrations were significantly higher in patients than controls (p < 0.01). Increased CSF-TP and CSF-IgG was found in 45 (39.8%) and 27 (23.9%) ALS patients, while in 7 (58.3%) and 5 (41.7%) ALS-FTD patients. The level of CSF-Alb, CSF-IgG, and CSF-MBP were significantly higher in patients with ALS-FTD than ALS. MBP showed a moderate accuracy in the distinction between ALS-FTD and ALS (AUC = 0.715 ± 0.101). No difference in MBP was found between patients and controls. Kaplan-Meier analysis indicated that a higher CSF-TP, CSF-IgG, QIgG, or QAlb was significantly associated with shorter survival. Cox regression model showed that CSF-TP, CSF-IgG, and QIgG were independent predictors of survival. CONCLUSION Our findings suggested that BBB dysfunction was more prominent in ALS-FTD than ALS and associated with a worse prognosis. Further studies are needed to determine the role of CSF-MBP as a biomarker in ALS.
Collapse
Affiliation(s)
- Jin-Yue Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Zheng-Yi Cai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xiao-Han Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Dong-Chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
9
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
10
|
Cerebrospinal Fluid Parameters in Antisense Oligonucleotide-Treated Adult 5q-Spinal Muscular Atrophy Patients. Brain Sci 2021; 11:brainsci11030296. [PMID: 33652830 PMCID: PMC7996901 DOI: 10.3390/brainsci11030296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Approval of nusinersen, an intrathecally administered antisense oligonucleotide, for the treatment of 5q-spinal muscular atrophy (SMA) marked the beginning of a new therapeutic era in neurological diseases. Changes in routine cerebrospinal fluid (CSF) parameters under nusinersen have only recently been described in adult SMA patients. We aimed to explore these findings in a real-world setting and to identify clinical and procedure-associated features that might impact CSF parameters. Routinely collected CSF parameters (leukocyte count, lactate, total protein, CSF/serum albumin quotient (QAlbumin), oligoclonal bands) of 28 adult SMA patients were examined for up to 22 months of nusinersen treatment. Total protein and QAlbumin values significantly increased in the first 10 months, independent of the administration procedure. By month 14, no further increases were detected. Two patients developed transient pleocytosis. In two cases, positive oligoclonal bands were found in the beginning and in four patients throughout the whole observation period. No clinical signs of inflammatory central nervous system disease were apparent. Our data confirm elevated CSF total protein and QAlbumin during nusinersen treatment. These alterations may be caused by both repeated lumbar punctures and the interval between procedures rather than by the medication itself. Generally, there were no severe alterations of CSF routine parameters. These results further underline the safety of nusinersen therapy.
Collapse
|
11
|
Cheng Y, Chen Y, Shang H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:3. [PMID: 33419478 PMCID: PMC7792103 DOI: 10.1186/s40035-020-00228-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has suggested that the pathological changes in amyotrophic lateral sclerosis (ALS) are not only confined to the central nervous system but also occur in the peripheral circulating system. Here, we performed a meta-analysis based on the PubMed, EMBASE, EBSCO, and CNKI databases, to find out biochemical indicators associated with energy metabolism, iron homeostasis, and muscle injury that are altered in ALS patients and their correlations with ALS phenotypes. Forty-six studies covering 17 biochemical indicators, representing 5454 ALS patients and 7986 control subjects, were included in this meta-analysis. Four indicators, including fasting blood glucose level (weighted mean difference [WMD] = 0.13, 95% CI [0.06–0.21], p = 0.001), serum ferritin level (WMD = 63.42, 95% CI [48.12–78.73], p < 0.001), transferrin saturation coefficient level (WMD = 2.79, 95% CI [1.52–4.05], p < 0.001), and creatine kinase level (WMD = 80.29, 95% CI [32.90–127.67], p < 0.001), were significantly higher in the ALS patients, whereas the total iron-binding capacity (WMD = − 2.42, 95% CI [− 3.93, − 0.90], p = 0.002) was significantly lower in ALS patients than in the control subjects. In contrast, the other 12 candidates did not show significant differences between ALS patients and controls. Moreover, pooled hazard ratios (HR) showed significantly reduced survival (HR = 1.38, 95% CI [1.02–1.88], p = 0.039) of ALS patients with elevated serum ferritin levels. These findings suggest that abnormalities in energy metabolism and disruption of iron homeostasis are involved in the pathogenesis of ALS. In addition, the serum ferritin level is negatively associated with the overall survival of ALS patients.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Rajib D. Central nervous system diseases associated with blood brain barrier breakdown - A Comprehensive update of existing literatures. ACTA ACUST UNITED AC 2020. [DOI: 10.29328/journal.jnnd.1001035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood vessels that supply and feed the central nervous system (CNS) possess unique and exclusive properties, named as blood–brain barrier (BBB). It is responsible for tight regulation of the movement of ions, molecules, and cells between the blood and the brain thereby maintaining controlled chemical composition of the neuronal milieu required for appropriate functioning. It also protects the neural tissue from toxic plasma components, blood cells and pathogens from entering the brain. In this review the importance of BBB and its disruption causing brain pathology and progression to different neurological diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) etc. will be discussed.
Collapse
|
13
|
A Systematic Review of Genotype-Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS. J Pers Med 2020; 10:jpm10030058. [PMID: 32610599 PMCID: PMC7564886 DOI: 10.3390/jpm10030058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disease characterised by progressive deterioration of upper and lower motor neurons that eventually culminates in severe muscle atrophy, respiratory failure and death. There is a concerning lack of understanding regarding the mechanisms that lead to the onset of ALS and as a result there are no reliable biomarkers that aid in the early detection of the disease nor is there an effective treatment. This review first considers the clinical phenotypes associated with ALS, and discusses the broad categorisation of ALS and ALS-mimic diseases into upper and lower motor neuron diseases, before focusing on the genetic aetiology of ALS and considering the potential relationship of mutations of different genes to variations in phenotype. For this purpose, a systematic review is conducted collating data from 107 original published clinical studies on monogenic forms of the disease, surveying the age and site of onset, disease duration and motor neuron involvement. The collected data highlight the complexity of the disease's genotype-phenotype relationship, and thus the need for a nuanced approach to the development of clinical assays and therapeutics.
Collapse
|
14
|
Costa J, Streich L, Pinto S, Pronto-Laborinho A, Nimtz M, Conradt HS, de Carvalho M. Exploring Cerebrospinal Fluid IgG N-Glycosylation as Potential Biomarker for Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 56:5729-5739. [PMID: 30674035 DOI: 10.1007/s12035-019-1482-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which the existing candidate biomarkers (neurofilaments) have low specificity. Changes in blood IgG N-glycosylation have been observed in several diseases, including ALS, whereas cerebrospinal fluid (CSF) IgG has been less studied. Here, we characterized N-glycans of CSF IgG from ALS patients in comparison with a control group of other neurological diseases. Cerebrospinal fluid was collected from patients with ALS (n = 26) and other neurological diseases (n = 10). N-Glycans were released from CSF purified IgG with peptide N-glycosidase F, labeled with 2-aminobenzamide and analyzed by NP-HPLC chromatography in combination with exoglycosidase digestion and MALDI-TOF mass spectrometry. The N-glycosylation profile of ALS CSF IgG consisted of diantennary N-glycans predominantly with proximal fucose and some bisecting GlcNAc; agalacto-, mono-, and digalactosylated as well as α2,6-sialylated structures were detected. Differences between ALS and control patients were observed; most relevant was the increase in ALS CSF IgG of the level of galactosylated structures defined here as Gal-index (median 46.87 and 40.50% for ALS and controls, respectively; p = 0.006). The predictive value of the Gal-index (AUC = 0.792, p = 0.007) considering ROC analysis had potential utility as a diagnostic test for ALS and was comparable to that of phosphoneurofilament heavy chain (AUC = 0.777, p = 0.011), which was used as benchmark marker for our group of patients. The results provide the basis to further explore the potential of IgG N-glycan galactosylation as biomarker for ALS by using larger cohorts of patients and controls.
Collapse
Affiliation(s)
- Julia Costa
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Linda Streich
- GlycoThera GmbH, Feodor-Lynen Strasse 35, 30625, Hannover, Germany
| | - Susana Pinto
- Institute of Physiology, Instituto de Medicina Molecular-Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana Pronto-Laborinho
- Institute of Physiology, Instituto de Medicina Molecular-Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Manfred Nimtz
- Helmholtz-Zentrum für Infektionsforschung, 38124, Braunschweig, Germany
| | - Harald S Conradt
- GlycoThera GmbH, Feodor-Lynen Strasse 35, 30625, Hannover, Germany
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular-Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Department Neurosciences and Mental Health, Hospital de Santa Maria-CHLN, Lisbon, Portugal
| |
Collapse
|
15
|
Diamanti L, Quaquarini E, Berzero G, Bini P, Gastaldi M, Franciotta D, Alfonsi E, Ceroni M, Frascaroli M, Bernardo A, Marchioni E. Lower motor neuron syndrome in a patient with HER2-positive metastatic breast cancer: A case report and review of the literature. Clin Neurol Neurosurg 2018; 172:141-142. [PMID: 30007590 DOI: 10.1016/j.clineuro.2018.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 01/16/2023]
Abstract
Paraneoplastic neurological syndromes are very rare and often associated to breast, ovarian and small cells lung cancers. Paraneoplastic motor neuron diseases (MNDs) are even rarer, and frequently described in patients with breast cancer. We presented the first case of patient affected by HER2-positive breast tumor and possible paraneoplastic lower motor neuron disease. In literature, few cases are reported but no one highlights the tumor receptors' profile. Instead, HER2-positive breast cancers are prone to be related to anti-Yo-associated paraneoplastic cerebellar disorders. Anti-onconeural antibodies positivity can be rarely found, confirming that paraneoplastic MND have no specific biomarkers. The presence of CSF oligoclonal bands (OBs) suggests the presence of immune-mediated mechanism, in absence of other possible OBs causes.
Collapse
Affiliation(s)
- Luca Diamanti
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Erica Quaquarini
- Department of Oncology, ICS Maugeri IRCCS, Pavia, Italy; Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy.
| | - Giulia Berzero
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paola Bini
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy
| | - Matteo Gastaldi
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Diego Franciotta
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy
| | - Enrico Alfonsi
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy
| | - Mauro Ceroni
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Enrico Marchioni
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy
| |
Collapse
|
16
|
Mélé N, Berzero G, Maisonobe T, Salachas F, Nicolas G, Weiss N, Beaudonnet G, Ducray F, Psimaras D, Lenglet T. Motor neuron disease of paraneoplastic origin: a rare but treatable condition. J Neurol 2018; 265:1590-1599. [DOI: 10.1007/s00415-018-8881-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
|
17
|
Paraneoplastic subacute lower motor neuron syndrome associated with solid cancer. J Neurol Sci 2015; 358:413-6. [PMID: 26323521 DOI: 10.1016/j.jns.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
We retrospectively analyzed three patients with pure motor neuronopathy followed for more than four years in our center. The patients presented a rapidly progressive lower motor neuron syndrome (LMNS) over the course of a few weeks leading to a severe functional impairment. The neurological symptoms preceded the diagnosis of a breast adenocarcinoma and a thymoma in the first two patients, one of them with anti-CV2/CRMP5 antibodies. Cancer was not detected in the third patient who had circulating anti-Hu antibodies. A final diagnosis of paraneoplastic syndrome was made after investigations for alternative causes of lower motor neuron syndrome. Early diagnosis, combined treatment of the underlying cancer, and immunomodulatory treatment led to neurological improvement of the disease in two out of the three cases in which the cancer was diagnosed. Cases of subacute LMNS with rapid progression may occur as an expression of a paraneoplastic neurological syndrome. Identification of these syndromes is important, as the treatment of underlying malignancy along with immunomodulatory treatment may result in a favorable long-term outcome of these potentially fatal diseases.
Collapse
|
18
|
Comparison of neurophysiological and MRI findings of patients with multiple sclerosis using oligoclonal band technique. Ann Neurosci 2014; 20:149-54. [PMID: 25206039 PMCID: PMC4117134 DOI: 10.5214/ans.0972.7531.200406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/13/2022] Open
Abstract
Background The correlation of oligoclonal bands (OCBs) and intrathecal IgG synthesis are not yet clear in multiple sclerosis (MS). Purpose In this study, we investigated the OCB situation and IgG index, cranial and cervical magnetic resonance imaging (MRI) findings and also compared visual evoked potentials (VEP) and somatosensorial evoked potentials (SEP) in order to better understand the OCB pattern and pathogenesis. Methods Retrospective study included 40 patients (19 male, 21 female, mean age 29 ± 4,24) with precise MS diagnosis according to McDonald criteria. Result Sixteen of the patients were OCB negative, and 24 patients were positive. The different between the OCB situation and number of plaques in cranial and cervical MRI, atrophy, oedema and contrast material retention were insignificant. The different between the OCB situation and VEP and SEP were insignificant. Conclusion These laboratory findings are all specific, all developing via independent mechanisms and are not related to each other during the silence periods of patients.
Collapse
|
19
|
Farias AS, Pradella F, Schmitt A, Santos LMB, Martins-de-Souza D. Ten years of proteomics in multiple sclerosis. Proteomics 2014; 14:467-80. [PMID: 24339438 DOI: 10.1002/pmic.201300268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Collapse
Affiliation(s)
- Alessandro S Farias
- Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil; Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
20
|
Chełstowska B, Kuźma-Kozakiewicz M. Is cerebrospinal fluid obtained for diagnostic purpose a good material for biomarker studies in amyotrophic lateral sclerosis? Biomarkers 2014; 19:571-7. [PMID: 25133306 DOI: 10.3109/1354750x.2014.949867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED The cerebrospinal fluid (CSF) used for identification of molecular biomarkers in amyotrophic lateral sclerosis (ALS) is mainly obtained from lumbar puncture (LP) performed to exclude other causes of motor neuron damage. AIM The aim of the study was to analyze whether CSF of ALS patients obtained for diagnostic purposes is suitable for biomarker studies in the entire ALS population. MATERIAL AND METHODS We analyzed the medical data, LP frequency and CSF parameters in 568 ALS patients. RESULTS LP was performed in 34% of cases. Patients who underwent LP were significantly younger and more frequently presented limb onset ALS, there were no differences in the clinical phenotypes. CONCLUSION CSF obtained for diagnostic purposes can be used for biomarkers studies in ALS.
Collapse
|
21
|
|
22
|
Pamphlett R, Kum Jew S. Heavy metals in locus ceruleus and motor neurons in motor neuron disease. Acta Neuropathol Commun 2013; 1:81. [PMID: 24330485 PMCID: PMC3878779 DOI: 10.1186/2051-5960-1-81] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022] Open
Abstract
Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.
Collapse
|
23
|
Amyotrophic lateral sclerosis and multiple sclerosis overlap: a case report. Case Rep Med 2012; 2012:324685. [PMID: 23326272 PMCID: PMC3541770 DOI: 10.1155/2012/324685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/17/2012] [Accepted: 12/09/2012] [Indexed: 11/17/2022] Open
Abstract
The concurrence of amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) is extremely rare. We reported the case of a 33-year-old woman with a past history of paresthesias at the right hand, who developed progressive quadriparesis with muscular atrophy of limbs and, finally, bulbar signs and dyspnea. Clinical and neurophysiologic investigations revealed upper and lower motor neuron signs in the bulbar region and extremities, suggesting the diagnosis of ALS. Moreover, magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) analysis demonstrated 3 periventricular and juxtacortical lesions, hyperintense in T2 and FLAIR sequences, and 3 liquoral immunoglobulin G (IgG) oligoclonal bands, consistent with diagnosis of primary progressive MS (PPMS). This unusual overlap of ALS and MS leads to the discussion of a hypothetical common pathological process of immunological dysfunction in these two disorders, although the role of immune response in ALS remains ambivalent and unclear.
Collapse
|
24
|
Neuroinflammation as the proximate cause of signature pathogenic pattern progression in amyotrophic lateral sclerosis, AIDS, and multiple sclerosis. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:169270. [PMID: 23304639 PMCID: PMC3529499 DOI: 10.1155/2012/169270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022]
Abstract
The realization of injury to large motor neurons is embedded within contextual reference to the parallel pathways of apoptosis and necrosis of system-patterned evolution. A widespread loss of cell components occurs intracellularly and involves a reactive participation to a neuroinflammation that potentially is immunologically definable. In such terms, sporadic and hereditary forms of amyotrophic sclerosis are paralleled by the components of a reactive nature that involve the aggregation of proteins and conformational misfolding on the one hand and a powerful oxidative degradation that overwhelms the proteasome clearance mechanisms. In such terms, global participation is only one aspect of a disorder realization that induces the development of the defining systems of modulation and of injury that involves the systems of consequence as demonstrated by the overwhelming immaturity of the molecular variants of mutated superoxide dismutase. It is further to such processes of neuroinflammatory consequence that the immune system is integral to the reactive involvement of neurons as patterns of disease recognition and as the system biology of prevalent voluntarily motor character. It is highly significant to recognize various inflammatory states in the nervous system as prototype variability in phenotype expression and as incremental progression in pathogenesis. In fact a determining definition of amyotrophic lateral sclerosis is an incremental phenotype modulation within the pathways of the consequential loss and depletion of motor cell components in the first instance. Neuroinflammation proves a pattern of the contextual spread of such pathogenic progression in the realization of end-stage injury states involving neurons and neuronal networks.
Collapse
|