1
|
Govender S, Hochstrasser D, Todd NP, Colebatch JG. Head Orientation Modulates Vestibular Cerebellar Evoked Potentials (VsCEPs) and Reflexes Produced by Impulsive Mastoid and Midline Skull Stimulation. CEREBELLUM (LONDON, ENGLAND) 2024; 23:957-972. [PMID: 37466894 PMCID: PMC11102417 DOI: 10.1007/s12311-023-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The cerebellum plays a critical role in the modulation of vestibular reflexes, dependent on input from proprioceptive afferents. The mechanism of this cerebellar control is not well understood. In a sample of 11 healthy human subjects, we investigated the effects of head orientation on ocular, cervical, postural and cerebellar short latency potentials evoked by impulsive stimuli applied at both mastoids and midline skull sites. Subjects were instructed to lean backwards with the head positioned straight ahead or held rotated in different degrees of yaw towards the right and left sides. Impulsive mastoid stimulation, a potent method of utricular stimulation, produced localised vestibular cerebellar evoked potentials (VsCEPs: P12-N17) which were strongly modulated by head orientation. The response was larger on the side opposite to the direction of head rotation and with stimulation on the side of rotation. In contrast, ocular VEMPs (oVEMPs: n10-p16) were present but showed little change with head posture, while cervical VEMPs (cVEMPs: p15-n23) were larger with the head held rotated away from the side of the recording. Postural effects with lateral vestibular stimulation were strongly modulated by head rotation, with more powerful effects occurring bilaterally with stimulation on the side of rotation. The duration of the postural EMG changes was similar to the post-excitation inhibition of the electrocerebellogram (ECeG), consistent with cerebellar participation. We conclude that head rotation selectively affects evoked vestibular reflexes towards different targets, consistent with their physiological roles. Changes in VsCEPs may contribute to the modulation of postural reflexes by the cerebellum.
Collapse
Affiliation(s)
- Sendhil Govender
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW, 2052, Australia
| | - Daniel Hochstrasser
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead, Sydney, NSW, 2145, Australia
| | - Neil Pm Todd
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, NSW, 2052, Australia
| | - James G Colebatch
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, NSW, 2052, Australia.
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW, 2052, Australia.
- Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
2
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Jiang TY, Shi B, Wu DM, Zhang L, Weng CS, Zhang LH. Effect of vision loss on plasticity of the head and neck proprioception. Int J Ophthalmol 2021; 14:1059-1065. [PMID: 34282392 DOI: 10.18240/ijo.2021.07.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate whether head and neck proprioception and motor control could be compensatory enhanced by long-term vision loss or impairment. METHODS Individuals who were blind, low vision or sighted were included in the study, which would undergo the head repositioning test (HRT). The constant error (CE), absolute error (AE), variable error (VE) and root mean square error (RMSE) of each subject were statistically analyzed. Data were analyzed using the SAS 9.4. Tukey-Kramer for one-way ANOVA was used for comparison of blind, low vision, and sighted subjects, as well as to compare subjects with balanced vision, strong vision in the left eye and strong vision in the right eye. Independent sample t-test was used to compare subjects with congenital blindness and acquired blindness, as well as left and right hand dominance subjects. RESULTS A total of 90 individuals (25 blind subjects, 31 low vision subjects, and 34 sighted subjects) were included in the study. Among the blind subjects, 14 cases had congenital blindness and 11 cases had acquired blindness. Among the blind and low vision subjects, 21 cases had balanced binocular vision, 17 cases had strong vision in the left eye and 18 cases had strong vision in the right eye. Among all subjects, 11 cases were left hand dominance, and 79 cases were right hand dominance. There were significant differences in AE, VE, and RMSE in head rotation between blind, low vision, and sighted subjects (P<0.01), in AE, VE, and RMSE between blind and sighted (P<0.01), and in VE and RMSE between low vision and sighted (P<0.05). No significant difference between blind and low vision (P>0.05). Significant differences in CE and AE of head right rotation and CE of general head rotation between congenital and acquired (P<0.05). No significant differences between left and right hand dominance and in balance or not of binocular vision (P>0.05). CONCLUSION Long-term vision loss or impairment does not lead to compensatory enhancement of head and neck proprioception and motor control. Acquired experience contributes to HRT performance in the blind and has long-lasting effects on plasticity in the development of proprioception and sensorimotor control.
Collapse
Affiliation(s)
- Tian-Yu Jiang
- Department of Rehabilitation Medicine, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Shi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Dong-Mei Wu
- Weizikeng Clinic, Chinese PLA General Hospital, Beijing 100101, China
| | - Lin Zhang
- Special Education College, Beijing Union University, Beijing 110106, China
| | - Chang-Shui Weng
- Department of Rehabilitation Medicine, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Hai Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Kammermeier S, Maierbeck K, Dietrich L, Plate A, Lorenzl S, Singh A, Bötzel K, Maurer C. Qualitative postural control differences in Idiopathic Parkinson's Disease vs. Progressive Supranuclear Palsy with dynamic-on-static platform tilt. Clin Neurophysiol 2018; 129:1137-1147. [PMID: 29631169 DOI: 10.1016/j.clinph.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES We aimed to assess whether postural abnormalities in Progressive Supranuclear Palsy (PSP) and Idiopathic Parkinson's Disease (IPD) are qualitatively different by analysing spontaneous and reactive postural control. METHODS We assessed postural control upon platform tilts in 17 PSP, 11 IPD patients and 18 healthy control subjects using a systems analysis approach. RESULTS Spontaneous sway abnormalities in PSP resembled those of IPD patients. Spontaneous sway was smaller, slower and contained lower frequencies in both PSP and IPD as compared to healthy subjects. The amount of angular body excursions as a function of platform angular excursions (GAIN) in PSP was qualitatively different from both IPD and healthy subjects (GAIN cut-off value: 2.9, sensitivity of 94%, specificity of 72%). This effect was pronounced at the upper body level and at low as well as high frequencies. In contrast, IPD patients' stimulus-related body excursions were smaller compared to healthy subjects. Using a systems analysis approach, we were able to allocate these different postural strategies to differences in the use of sensory information as well as to different error correction efforts. CONCLUSIONS While both PSP and IPD patients show abnormal postural control, the underlying pathology seems to be different. SIGNIFICANCE The identification of disease-specific postural abnormalities shown here may be helpful for diagnostic as well as therapeutic discriminations of PSP vs. IPD.
Collapse
Affiliation(s)
- Stefan Kammermeier
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany.
| | - Kathrin Maierbeck
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Klinik für Anästhesiologie, Marchioninistraße 15, 81377 München, Germany
| | - Lucia Dietrich
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Abteilung für Allgemeinchirurgie, Kliniken Ostallgäu-Kaufbeuren, Dr.-Gutermann-Straße 2, 87600 Kaufbeuren, Germany
| | - Annika Plate
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany
| | - Stefan Lorenzl
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Abteilung für Neurologie, Krankenhaus Agatharied, Norbert-Kerkel-Platz, 83734 Hausham, Germany
| | - Arun Singh
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany; Department of Neurology, University of Iowa, Iowa, IA, United States
| | - Kai Bötzel
- Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377 München, Germany
| | - Christoph Maurer
- Klinik für Neurologie und Neurophysiologie, Universitätsklinikum Freiburg, Breisacher Str. 64, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Effect of acupuncture at three different acupoints on electrical activity of gastric distention-affected neurons in rat medial vestibular nucleus. J TRADIT CHIN MED 2018. [DOI: 10.1016/j.jtcm.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Quantifying postural stability of patients with cerebellar disorder during quiet stance using three-axis accelerometer. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Abstract
The cerebellum plays an integral role in the control of limb and ocular movements, balance, and walking. Cerebellar disorders may be classified as sporadic or hereditary with clinical presentation varying with the extent and site of cerebellar damage and extracerebellar signs. Deficits in balance and walking reflect the cerebellum's proposed role in coordination, sensory integration, coordinate transformation, motor learning, and adaptation. Cerebellar dysfunction results in increased postural sway, hypermetric postural responses to perturbations and optokinetic stimuli, and postural responses that are poorly coordinated with volitional movement. Gait variability is characteristic and may arise from a combination of balance impairments, interlimb incoordination, and incoordination between postural activity and leg movement. Intrinsic problems with balance lead to a high prevalence of injurious falls. Evidence for pharmacologic management is limited, although aminopyridines reduce attacks in episodic ataxias and may have a role in improving gait ataxia in other conditions. Intensive exercises targeting balance and coordination lead to improvements in balance and walking but require ongoing training to maintain/maximize any effects. Noninvasive brain stimulation of the cerebellum may become a useful adjunct to therapy in the future. Walking aids, orthoses, specialized footwear and seating may be required for more severe cases of cerebellar ataxia.
Collapse
Affiliation(s)
- Jonathan F Marsden
- Department of Rehabilitation, School of Health Professions, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
8
|
Kammermeier S, Singh A, Bötzel K. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation. Front Neurol 2017; 8:587. [PMID: 29163348 PMCID: PMC5675885 DOI: 10.3389/fneur.2017.00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022] Open
Abstract
Introduction Human multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation. Methods 14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording. Results Vestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average”) bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study. Conclusion Galvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level. Significance Differential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.
Collapse
Affiliation(s)
- Stefan Kammermeier
- Klinikum der Universität München, Neurologische Klinik und Poliklinik, München, Germany
| | - Arun Singh
- Klinikum der Universität München, Neurologische Klinik und Poliklinik, München, Germany.,Department of Neurology, University of Iowa, Iowa, IA, United States
| | - Kai Bötzel
- Klinikum der Universität München, Neurologische Klinik und Poliklinik, München, Germany
| |
Collapse
|
9
|
Lam CK, Staines WR, Tokuno CD, Bent LR. The medium latency muscle response to a vestibular perturbation is increased after depression of the cerebellar vermis. Brain Behav 2017; 7:e00782. [PMID: 29075558 PMCID: PMC5651382 DOI: 10.1002/brb3.782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Galvanic vestibular stimulation (GVS) is able to evoke distinct responses in the muscles used for balance. These reflexes, termed the short (SL) and medium latency (ML) responses, can be altered by sensory input; decreasing in size when additional sensory cues are available. Although much is known about these responses, the origin and role of the responses are still not fully understood. It has been suggested that the cerebellum, a structure that is involved in postural control and sensory integration, may play a role in the modulation of these reflexes. METHODS The cerebellar vermis was temporarily depressed using continuous theta burst stimulation and SL, ML and overall vestibular electromyographic and force plate shear response amplitudes were compared before and after cerebellar depression. RESULTS There were no changes in force plate shear amplitude and a non-significant increase for the SL muscle response (p = .071), however, we did find significant increases in the ML and overall vestibular muscle response amplitudes after cerebellar depression (p = .026 and p = .016, respectively). No changes were evoked when a SHAM stimulus was used. DISCUSSION These results suggest that the cerebellar vermis plays a role in the modulation of vestibular muscle reflex responses to GVS.
Collapse
|
10
|
Kusmirek S, Hana K, Socha V, Prucha J, Kutilek P, Svoboda Z. Postural instability assessment using trunk acceleration frequency analysis. EUROPEAN JOURNAL OF PHYSIOTHERAPY 2016. [DOI: 10.1080/21679169.2016.1211174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Lam CK, Tokuno CD, Staines WR, Bent LR. The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis. Exp Brain Res 2016; 234:3689-3697. [DOI: 10.1007/s00221-016-4766-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
12
|
Quantification of Trunk Postural Stability Using Convex Polyhedron of the Time-Series Accelerometer Data. JOURNAL OF HEALTHCARE ENGINEERING 2016; 2016:1621562. [PMID: 27195465 PMCID: PMC5058576 DOI: 10.1155/2016/1621562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 03/29/2016] [Indexed: 12/02/2022]
Abstract
Techniques to quantify postural stability usually rely on the evaluation of only two variables, that is, two coordinates of COP. However, by using three variables, that is, three components of acceleration vector, it is possible to describe human movement more precisely. For this purpose, a single three-axis accelerometer was used, making it possible to evaluate 3D movement by use of a novel method, convex polyhedron (CP), together with a traditional method, based on area of the confidence ellipse (ACE). Ten patients (Pts) with cerebellar ataxia and eleven healthy individuals of control group (CG) participated in the study. The results show a significant increase of volume of the CP (CPV) in Pts or CG standing on foam surface with eyes open (EO) and eyes closed (EC) after the EC phase. Significant difference between Pts and CG was found in all cases as well. Correlation coefficient indicates strong correlation between the CPV and ACE in most cases of patient examinations, thus confirming the possibility of quantification of postural instability by the introduced method of CPV.
Collapse
|
13
|
Kutílek P, Socha V, Čakrt O, Svoboda Z. Assessment of postural stability in patients with cerebellar disease using gyroscope data. J Bodyw Mov Ther 2015; 19:421-8. [PMID: 26118512 DOI: 10.1016/j.jbmt.2014.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
This study examines a relatively new method of studying and quantifying human postural stability in patients with degenerative cerebellar disease. Trunk sway and feet sway were measured during quiet stance. To test the method, ten patients and eleven healthy subjects performed two different stance tasks: standing with eyes open on a firm surface and standing with eyes closed on a foam support surface. Data were recorded using three body-worn gyroscopes (Xsens Technologies B.V.) to measure roll and pitch angular movements of the lower trunk, and left and right foot. The pitch versus roll plots of the trunk and feet were created, and the areas of the convex hull shapes were calculated. It was found that the area of the convex hull of the pitch versus roll plots is suitable for the identification of postural instability disorders caused by degenerative cerebellar disease.
Collapse
Affiliation(s)
- Patrik Kutílek
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, Kladno, Czech Republic
| | - Vladimír Socha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, Kladno, Czech Republic.
| | - Ondřej Čakrt
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, Kladno, Czech Republic; Department of Rehabilitation and Sport Medicine, 2nd Faculty of Medicine, University Hospital Motol, Charles University in Prague, V Uvalu 84, Prague, Czech Republic
| | - Zdeněk Svoboda
- Palacky University of Olomouc, Faculty of Physical Culture, Tr. Miru 115, 771 11, Olomouc, Czech Republic
| |
Collapse
|
14
|
Kutílek P, Socha V, Čakrt O, Schlenker J, Bizovská L. Trajectory length of pitch vs. roll: Technique for assessment of postural stability. ACTA GYMNICA 2015. [DOI: 10.5507/ag.2015.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Hejda J, Cakrt O, Socha V, Schlenker J, Kutilek P. 3-D trajectory of body sway angles: A technique for quantifying postural stability. Biocybern Biomed Eng 2015. [DOI: 10.1016/j.bbe.2015.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|