1
|
Lee EK, Kim S, Sohn E. Clinical characteristics and predictive factors of recurrent idiopathic transverse myelitis. Front Neurol 2024; 15:1416251. [PMID: 39364419 PMCID: PMC11448116 DOI: 10.3389/fneur.2024.1416251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Background Idiopathic transverse myelitis (iTM) is defined as an inflammatory myelopathy of undetermined etiology, even after a comprehensive workup to identify other possible causes. Generally, the characteristics of recurrent iTM are not clearly defined. This study aimed to identify the clinical characteristics and predictive factors of recurrence in patients with iTM. Methods We retrospectively recruited patients with transverse myelitis (TM) who visited Chungnam National University Hospital between January 2011 and December 2021. We included patients who were followed up for at least 2 years and excluded those diagnosed with multiple sclerosis or neuromyelitis optica spectrum disorder (NMOSD) during the initial episode or follow-up period. Patients with iTM were categorized into two groups: monophasic idiopathic TM (mTM) and recurrent idiopathic TM (rTM). We compared the clinical characteristics and spinal magnetic resonance imaging findings between the two groups. Results In total, 167 patients were reviewed, of whom 112 were excluded. Finally, we included 55 patients with iTM. In 55 patients, 11 (20.0%) and 44 (80%) were classified into the rTM and mTM groups, respectively. Male predominance was observed in the iTM, rTM, and mTM groups. The percentage of patients with low vitamin D levels was significantly higher in the rTM group (100.0%) compared with the mTM group (70%) (p = 0.049). In addition, longitudinally extensive transverse myelitis (LETM) was observed more frequently in the rTM group, in 8 of 11 (72.7%) patients, compared with 15 of 44 (34.1%) patients in the mTM group, with the difference being statistically significant (p = 0.020). In multivariate regression analysis, female sex, younger age at onset, low serum vitamin D level (<30 ng/mL), and LETM were risk factors for recurrence. LETM was a significant predictor of relapse in iTM (p = 0.043, odds ratio = 13.408). Conclusion In this study, the clinical features of mTM and rTM are nearly indistinguishable. In conclusion, >20% of the patients with iTM experience recurrence, and LETM is the most significant risk factor for recurrence. In cases of recurrence, there is a favorable response to immunotherapy, and the prognosis is generally good. Although LETM may be the initial symptom of NMOSD, it may be manifestation of iTM, and in cases of idiopathic LETM, it is important to be mindful of the elevated risk of recurrence. Based on these results, idiopathic rTM has good clinical prognosis and response to immunosuppressive treatment.
Collapse
Affiliation(s)
- Eun Kyoung Lee
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Sooyoung Kim
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Eunhee Sohn
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Rocchi C, Forcadela M, Kelly P, Linaker S, Gibbons E, Bhojak M, Jacob A, Hamid S, Huda S. The absence of antibodies in longitudinally extensive transverse myelitis may predict a more favourable prognosis. Mult Scler 2024; 30:345-356. [PMID: 38258822 DOI: 10.1177/13524585231221664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Isolated first episodes of longitudinally extensive transverse myelitis (LETM) have typically been associated with neuromyelitis optica spectrum disorder (NMOSD) or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, in some cases, serological testing and screening for other aetiologies are negative, a condition referred to as double seronegative longitudinally extensive transverse myelitis (dsLETM). OBJECTIVE The objective of this study was to evaluate comparative outcomes of dsLETM, MOGAD-LETM and NMOSD-LETM. METHODS Cohort study of LETM cases seen in the UK NMOSD Highly Specialised Service between January 2008 and March 2022. RESULTS LETM = 87 cases were identified (median onset age = 46 years (15-85); median follow-up = 46 months (1-144); 47% NMOSD-LETM = 41 (aquaporin-4 antibodies (AQP4-IgG) positive = 36), 20% MOGAD-LETM = 17 and 33% dsLETM = 29). Despite similar Expanded Disability Status Scale (EDSS) at nadir, last EDSS was higher in AQP4-IgG and seronegative NMOSD-LETM (sNMOSD) (p = 0.006). Relapses were less common in dsLETM compared to AQP4-IgG NMOSD-LETM and sNMOSD-LETM (19% vs 60% vs 100%; p = 0.001). Poor prognosis could be predicted by AQP4-IgG (odds ratio (OR) = 38.86 (95% confidence interval (CI) = 1.36-1112.86); p = 0.03) and EDSS 3 months after onset (OR = 65.85 (95% CI = 3.65-1188.60); p = 0.005). CONCLUSION dsLETM remains clinically challenging and difficult to classify with existing nosological terminology. Despite a similar EDSS at nadir, patients with dsLETM relapsed less and had a better long-term prognosis than NMOSD-LETM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anu Jacob
- The Walton Centre Foundation Trust, Liverpool, UK/Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shahd Hamid
- The Walton Centre Foundation Trust, Liverpool, UK
| | - Saif Huda
- The Walton Centre Foundation Trust, Liverpool, UK
| |
Collapse
|
3
|
Fadda G, Flanagan EP, Cacciaguerra L, Jitprapaikulsan J, Solla P, Zara P, Sechi E. Myelitis features and outcomes in CNS demyelinating disorders: Comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front Neurol 2022; 13:1011579. [PMID: 36419536 PMCID: PMC9676369 DOI: 10.3389/fneur.2022.1011579] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 07/25/2023] Open
Abstract
Inflammatory myelopathies can manifest with a combination of motor, sensory and autonomic dysfunction of variable severity. Depending on the underlying etiology, the episodes of myelitis can recur, often leading to irreversible spinal cord damage and major long-term disability. Three main demyelinating disorders of the central nervous system, namely multiple sclerosis (MS), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders (AQP4+NMOSD) and myelin oligodendrocyte glycoprotein-IgG associated disease (MOGAD), can induce spinal cord inflammation through different pathogenic mechanisms, resulting in a more or less profound disruption of spinal cord integrity. This ultimately translates into distinctive clinical-MRI features, as well as distinct patterns of disability accrual, with a step-wise worsening of neurological function in MOGAD and AQP4+NMOSD, and progressive disability accrual in MS. Early recognition of the specific etiologies of demyelinating myelitis and initiation of the appropriate treatment is crucial to improve outcome. In this review article we summarize and compare the clinical and imaging features of spinal cord involvement in these three demyelinating disorders, both during the acute phase and over time, and outline the current knowledge on the expected patterns of disability accrual and outcomes. We also discuss the potential implications of these observations for patient management and counseling.
Collapse
Affiliation(s)
- Giulia Fadda
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Eoin P. Flanagan
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Laura Cacciaguerra
- Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Pietro Zara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
He M, Yang F, Wu L, Yin Z, Chen Z, Cheng H, Huang D, Dong Z, Zhang J, Huang X, Yu S. Lower motor neuron involvement in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2022; 59:103544. [DOI: 10.1016/j.msard.2022.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|
5
|
Valencia-Sanchez C, Flanagan EP. Uncommon inflammatory/immune-related myelopathies. J Neuroimmunol 2021; 361:577750. [PMID: 34715593 DOI: 10.1016/j.jneuroim.2021.577750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 01/03/2023]
Abstract
The differential diagnosis for immune-mediated myelopathies is broad. Although clinical manifestations overlap, certain presentations are suggestive of a particular myelopathy etiology. Spine MRI lesion characteristics including the length and location, and the pattern of gadolinium enhancement, help narrow the differential diagnosis and exclude an extrinsic compressive cause. The discovery of specific antibodies that serve as biomarkers of myelitis such as aquaporin-4-IgG and myelin-oligodendrocyte -glycoprotein-IgG (MOG-IgG), has improved our understanding of myelitis pathophysiology and facilitated diagnosis. In this review we will focus on the pathophysiology, clinical presentation, imaging findings and treatment and outcomes of uncommon immune-mediated myelopathies.
Collapse
|
6
|
Huo L, Wang H, Yuan Y, Gao J, Liu X. Positive antithyroid antibody predicts severity of neuromyelitis optica spectrum disorder in children. Mult Scler Relat Disord 2021; 57:103425. [PMID: 34906814 DOI: 10.1016/j.msard.2021.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disease (NMOSD) is a rare autoimmune disease, which can coexist with autoimmune thyroid diseases (AITDS). There has been no report on the clinical characteristics of NMOSD in children with positive anti-thyroid antibodies (ATAbs). The aim of this study is to evaluate thyroid function and detect the difference between ATAbs seropositive and seronegative NMOSD children. METHODS 108 children with a confirmed diagnosis of NMOSD who were admitted to Shengjing Hospital of China Medical University from January 2015 to September 2020 were enrolled and their thyroid functions were evaluated. They were divided into two groups by ATAbs abnormalities. Their demographic characteristics, clinical symptoms, laboratory and MRI scan results of the brain and spinal cord were assessed. RESULTS ATAbs positive rate was higher in children with NMOSD when compared with healthy controls (P < 0.05). Most NMOSD children with positive ATAbs were female (P < 0.01). The expanded disability status scale (EDSS) score was significantly higher in the ATAbs positive group (P < 0.01). There were statistically significant differences for the incidence of bulbar area postrema symptoms, spinal cord symptoms, and fever of unknown origin of the first onset between the ATAbs positive and negative group (P < 0.05). The ANA and MOG antibody positive rate, longitudinally extensive transverse myelitis (LETM), and electroencephalogram (EEG) were significantly higher in ATAbs positive group (P < 0.05). CONCLUSION MOG antibody-positive is a unique marker of aggravation of neurological dysfunction in ATAbs-positive NMOSD children. Monitoring ATAbs may play an important role in predicting the prognosis of NMOSD.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yujun Yuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Neurological Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jian Gao
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Khedr EM, Farweez HM, Abo Elfetoh N, Badawy ER, Hassanein S, Mahmoud DM, Nasreldein A. Area postrema syndrome in neuromyelitis optica spectrum disorder: diagnostic challenges and descriptive patterns. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Although area postrema syndrome (APS) is one of the core clinical features of neuromyelitis optic spectrum disorder (NMOSD), it is frequently misdiagnosed as gastrointestinal or systemic disorders. In this study, we describe the diagnostic challenges in NMOSD patients with APS and their characteristic clinical and radiological features. All patients who attended our university hospitals during the period from March 2019 to August 2020 with a diagnosis of NMOSD according to the latest diagnostic criteria were admitted and evaluated clinically, radiologically with gadolinium-enhanced brain and spinal MRI, measures of serum Anti-Aquaporin 4 (Anti-AQP4) and clinical status using the Expanded Disability Status Scale (EDSS) scores. APS was diagnosed if there was a history of intractable nausea, vomiting, or hiccups (INVH) that had lasted longer than 1 week with the exclusion of other etiologies, or less than 48 h if associated with a lesion in the dorsal medulla on MRI scan.
Results
Twenty out of 90 (22.2%) identified patients with a diagnosis of NMOSD had a history of unexplained intractable nausea, vomiting or hiccoughs lasting an average of 20 days. Seventeen patients were anti-Aquaporin 4 seropositive. Seven patients (35%) presented initially with isolated clinical features of APS and were diagnosed only after subsequent relapse. Patients with APS preceding other core clinical presentations (13 cases, 65%) were diagnosed after development of motor manifestations. All patients developed acute myelitis during the course of illness. Brain and spinal MRI scans showed that 13 had a linear lesion in the dorsal tegmentum of the medulla oblongata adjacent to the fourth ventricle. Otherwise, longitudinally extensive transverse myelitis was found in 80%, while 35% showed extension of the cord lesion to the AP.
Conclusions
APS as a core clinical characteristic of NMOSD is not a rare presentation as was previously thought and can occur in both AQP4-seropositive and seronegative NMOSD.
Collapse
|
8
|
Clarke L, Arnett S, Bukhari W, Khalilidehkordi E, Jimenez Sanchez S, O'Gorman C, Sun J, Prain KM, Woodhall M, Silvestrini R, Bundell CS, Abernethy DA, Bhuta S, Blum S, Boggild M, Boundy K, Brew BJ, Brownlee W, Butzkueven H, Carroll WM, Chen C, Coulthard A, Dale RC, Das C, Fabis-Pedrini MJ, Gillis D, Hawke S, Heard R, Henderson APD, Heshmat S, Hodgkinson S, Kilpatrick TJ, King J, Kneebone C, Kornberg AJ, Lechner-Scott J, Lin MW, Lynch C, Macdonell RAL, Mason DF, McCombe PA, Pereira J, Pollard JD, Ramanathan S, Reddel SW, Shaw CP, Spies JM, Stankovich J, Sutton I, Vucic S, Walsh M, Wong RC, Yiu EM, Barnett MH, Kermode AGK, Marriott MP, Parratt JDE, Slee M, Taylor BV, Willoughby E, Brilot F, Vincent A, Waters P, Broadley SA. MRI Patterns Distinguish AQP4 Antibody Positive Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis. Front Neurol 2021; 12:722237. [PMID: 34566866 PMCID: PMC8458658 DOI: 10.3389/fneur.2021.722237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are inflammatory diseases of the CNS. Overlap in the clinical and MRI features of NMOSD and MS means that distinguishing these conditions can be difficult. With the aim of evaluating the diagnostic utility of MRI features in distinguishing NMOSD from MS, we have conducted a cross-sectional analysis of imaging data and developed predictive models to distinguish the two conditions. NMOSD and MS MRI lesions were identified and defined through a literature search. Aquaporin-4 (AQP4) antibody positive NMOSD cases and age- and sex-matched MS cases were collected. MRI of orbits, brain and spine were reported by at least two blinded reviewers. MRI brain or spine was available for 166/168 (99%) of cases. Longitudinally extensive (OR = 203), "bright spotty" (OR = 93.8), whole (axial; OR = 57.8) or gadolinium (Gd) enhancing (OR = 28.6) spinal cord lesions, bilateral (OR = 31.3) or Gd-enhancing (OR = 15.4) optic nerve lesions, and nucleus tractus solitarius (OR = 19.2), periaqueductal (OR = 16.8) or hypothalamic (OR = 7.2) brain lesions were associated with NMOSD. Ovoid (OR = 0.029), Dawson's fingers (OR = 0.031), pyramidal corpus callosum (OR = 0.058), periventricular (OR = 0.136), temporal lobe (OR = 0.137) and T1 black holes (OR = 0.154) brain lesions were associated with MS. A score-based algorithm and a decision tree determined by machine learning accurately predicted more than 85% of both diagnoses using first available imaging alone. We have confirmed NMOSD and MS specific MRI features and combined these in predictive models that can accurately identify more than 85% of cases as either AQP4 seropositive NMOSD or MS.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Wajih Bukhari
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Elham Khalilidehkordi
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Sofia Jimenez Sanchez
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Cullen O'Gorman
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Jing Sun
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Kerri M Prain
- Department of Immunology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Roger Silvestrini
- Department of Immunopathology, Westmead Hospital, Westmead, NSW, Australia
| | - Christine S Bundell
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | | | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Stefan Blum
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Mike Boggild
- Department of Neurology, Townsville Hospital, Douglas, QLD, Australia
| | - Karyn Boundy
- Department of Neurology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bruce J Brew
- Centre for Applied Medical Research, St. Vincent's Hospital, University of New South Wales, Darlinghurst, NSW, Australia
| | - Wallace Brownlee
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Helmut Butzkueven
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - Cella Chen
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, SA, Australia
| | - Alan Coulthard
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Russell C Dale
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Chandi Das
- Department of Neurology, Canberra Hospital, Garran, ACT, Australia
| | - Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - David Gillis
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Simon Hawke
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Robert Heard
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | | | - Saman Heshmat
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia
| | - Suzanne Hodgkinson
- South Western Sydney Medical School, Liverpool Hospital, University of New South Wales, Liverpool, NSW, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - John King
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | - Andrew J Kornberg
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Ming-Wei Lin
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | | | | | - Deborah F Mason
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - Pamela A McCombe
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Jennifer Pereira
- School of Medicine, University of Auckland, Grafton, New Zealand
| | - John D Pollard
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Sudarshini Ramanathan
- Neuroimmunology Group, Kids Neurosciences Centre, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia.,Department of Neurology, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Stephen W Reddel
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Cameron P Shaw
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Judith M Spies
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - James Stankovich
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Ian Sutton
- Department of Neurology, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Michael Walsh
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Richard C Wong
- School of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, QLD, Australia
| | - Eppie M Yiu
- School of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Allan G K Kermode
- Centre for Neuromuscular and Neurological Disorders, Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, WA, Australia
| | - Mark P Marriott
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - John D E Parratt
- Sydney Medical School, Royal Prince Alfred Hospital, University of Sydney, Camperdown, NSW, Australia
| | - Mark Slee
- Department of Neurology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Bruce V Taylor
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Ernest Willoughby
- Department of Neurology, Auckland City Hospital, Grafton, New Zealand
| | - Fabienne Brilot
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Neuroimmunology Group, Kids Neurosciences Centre, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast, Griffith University, Southport, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
9
|
Clarke L, Arnett S, Lilley K, Liao J, Bhuta S, Broadley SA. Magnetic resonance imaging in neuromyelitis optica spectrum disorder. Clin Exp Immunol 2021; 206:251-265. [PMID: 34080180 DOI: 10.1111/cei.13630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system (CNS) associated with antibodies to aquaporin-4 (AQP4), which has distinct clinical, radiological and pathological features, but also has some overlap with multiple sclerosis and myelin oligodendrocyte glycoprotein (MOG) antibody associated disease. Early recognition of NMOSD is important because of differing responses to both acute and preventive therapy. Magnetic resonance (MR) imaging has proved essential in this process. Key MR imaging clues to the diagnosis of NMOSD are longitudinally extensive lesions of the optic nerve (more than half the length) and spinal cord (three or more vertebral segments), bilateral optic nerve lesions and lesions of the optic chiasm, area postrema, floor of the IV ventricle, periaqueductal grey matter, hypothalamus and walls of the III ventricle. Other NMOSD-specific lesions are denoted by their unique morphology: heterogeneous lesions of the corpus callosum, 'cloud-like' gadolinium (Gd)-enhancing white matter lesions and 'bright spotty' lesions of the spinal cord. Other lesions described in NMOSD, including linear periventricular peri-ependymal lesions and patch subcortical white matter lesions, may be less specific. The use of advanced MR imaging techniques is yielding further useful information regarding focal degeneration of the thalamus and optic radiation in NMOSD and suggests that paramagnetic rim patterns and changes in normal appearing white matter are specific to MS. MR imaging is crucial in the early recognition of NMOSD and in directing testing for AQP4 antibodies and guiding immediate acute treatment decisions. Increasingly, MR imaging is playing a role in diagnosing seronegative cases of NMOSD.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Kate Lilley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Jacky Liao
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia
| | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Radiology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
10
|
Ferilli MAN, Valeriani M, Papi C, Papetti L, Ruscitto C, Figà Talamanca L, Ursitti F, Moavero R, Vigevano F, Iorio R. Clinical and neuroimaging characteristics of MOG autoimmunity in children with acquired demyelinating syndromes. Mult Scler Relat Disord 2021; 50:102837. [PMID: 33636614 DOI: 10.1016/j.msard.2021.102837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Background Myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) have been recently reevaluated as a biomarker of acquired demyelinating syndromes (ADS) of the central nervous system (CNS). Here, we describe the clinical and neuroimaging features, and the long-term outcome of children with ADS of the CNS associated with MOG-IgG. Methods All patients underwent brain and spinal cord magnetic resonance imaging (MRI), lumbar puncture for cerebrospinal fluid (CSF) analysis and MOG-IgG and aquaporin-4 IgG (AQP4-IgG) testing. Results Forty-eight pediatric patients were recruited. MOG-IgG were detected in 11/48 (25%) patients with the following clinical presentations: encephalomyelitis (EM), 8/11 (73%); optic neuritis (ON), 2/11 (18%); transverse myelitis (TM), 1/11 (9%). Patients negative for MOG-IgG were diagnosed with Multiple Sclerosis (MS) (n=15), EM (n=7), ON (n=7), neuromyelitis optica spectrum disorders (NMOSD) (n=5), TM (n=2) and encephalitis (n=1). MOG-IgG positive patients were younger at disease onset and they more frequently experienced encephalopathy and epileptic seizures compared with negative patients. EM and inflammatory lesions involving optic nerves on MRI imaging were more frequent in MOG-IgG positive patients. None of the patients with MOG-IgG became persistently seronegative during the follow-up, although a decrease in MOG-IgG titer was observed. Patients with MOG-IgG showed a good response to therapy and only two patients presented relapses during follow-up. Conclusion This study supports the distinction of MOG autoimmune oligodendrocytopathy as a unique disease entity, with clinical features different from those of MS and AQP4-IgG-positive NMOSD.
Collapse
Affiliation(s)
| | - Massimiliano Valeriani
- Neuroscience Department, Bambino Gesù Children's Hospital IRCCS, Rome 00165, Italy; Center for Sensory-Motor Interaction, Aalborg University, Aalborg DK-9220, Denmark.
| | - Claudia Papi
- Neuroscience Department, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Laura Papetti
- Neuroscience Department, Bambino Gesù Children's Hospital IRCCS, Rome 00165, Italy
| | - Claudia Ruscitto
- Child Neurology Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, Rome 00133, Italy
| | | | - Fabiana Ursitti
- Neuroscience Department, Bambino Gesù Children's Hospital IRCCS, Rome 00165, Italy
| | - Romina Moavero
- Neuroscience Department, Bambino Gesù Children's Hospital IRCCS, Rome 00165, Italy; Child Neurology Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, Rome 00133, Italy
| | - Federico Vigevano
- Neuroscience Department, Bambino Gesù Children's Hospital IRCCS, Rome 00165, Italy
| | - Raffaele Iorio
- Neuroscience Department, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| |
Collapse
|
11
|
Cacciaguerra L, Valsasina P, Mesaros S, Martinelli V, Drulovic J, Filippi M, Rocca MA. Spinal Cord Atrophy in Neuromyelitis Optica Spectrum Disorders Is Spatially Related to Cord Lesions and Disability. Radiology 2020; 297:154-163. [PMID: 32720869 DOI: 10.1148/radiol.2020192664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The spinal cord is commonly involved in patients with neuromyelitis optica spectrum disorders (NMOSDs). However, the relationship between inflammation and atrophy remains unclear. Purpose To characterize the spatial distribution of T1-hypointense lesions in the spinal cord at MRI, its association with cord atrophy, and its correlation with disability in participants with NMOSDs. Materials and Methods This prospective study evaluated three-dimensional T1-weighted spinal cord MRI scans in seropositive participants with NMOSDs and in age-matched healthy control participants acquired between February 2010 and July 2018. Binary masks of T1-hypointense lesions and lesion probability maps were produced. Cross-sectional area of the cervical and upper thoracic cord (down to T3 level) was calculated with the active-surface method. Full factorial models were used to assess cord atrophy in participants with NMOSDs. Correlations between cord atrophy and clinical and brain MRI measures were investigated with multiple regression models. Results A total of 52 participants with NMOSDs (mean age ± standard deviation, 44 years ± 15; 45 women) and 28 age-matched healthy control participants (mean age, 44 years ± 13; 16 women) were evaluated. Thirty-eight of 52 (73%) participants with NMOSDs had T1-hypointense cord lesions. No cord lesions were detected in the healthy control participants. Lesion probability maps showed a predominant involvement of the upper cervical (C2-C4) and upper thoracic (T1-T3 level) cord. The greater involvement of C1-C4 survived Bonferroni correction (P value range, .007-.04), with a higher percentage lesion extent in the gray matter (P < .001). Atrophy colocalized with focal cord lesions and correlated with pyramidal subscore (r ranging from -0.53 to -0.40; P < .001) and sensitive subscore (r ranging from -0.48 to -0.46; P = .001) of the Expanded Disability Status Scale. Participants without cord lesions had no cord atrophy. Conclusion In participants with neuromyelitis optica spectrum disorders, focal areas of spinal cord atrophy at MRI were topographically associated with lesions and correlated to motor and sensory disability. Participants without visible cord lesions had no atrophy. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (L.C., P.V., M.F., M.A.R.) and Neurology Unit (L.C., V.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy (L.C., M.F.); and Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (S.M., J.D.)
| | - Paola Valsasina
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (L.C., P.V., M.F., M.A.R.) and Neurology Unit (L.C., V.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy (L.C., M.F.); and Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (S.M., J.D.)
| | - Sarlota Mesaros
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (L.C., P.V., M.F., M.A.R.) and Neurology Unit (L.C., V.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy (L.C., M.F.); and Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (S.M., J.D.)
| | - Vittorio Martinelli
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (L.C., P.V., M.F., M.A.R.) and Neurology Unit (L.C., V.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy (L.C., M.F.); and Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (S.M., J.D.)
| | - Jelena Drulovic
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (L.C., P.V., M.F., M.A.R.) and Neurology Unit (L.C., V.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy (L.C., M.F.); and Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (S.M., J.D.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (L.C., P.V., M.F., M.A.R.) and Neurology Unit (L.C., V.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy (L.C., M.F.); and Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (S.M., J.D.)
| | - Maria A Rocca
- From the Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience (L.C., P.V., M.F., M.A.R.) and Neurology Unit (L.C., V.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy (L.C., M.F.); and Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (S.M., J.D.)
| |
Collapse
|
12
|
Ismail II, Ahmed SF, Al-Hashel JY, Abdelnabi EA, Alroughani R. Radiological characteristics of neuromyelitis optica spectrum disorder in Kuwait. Clin Neurol Neurosurg 2020; 196:106047. [PMID: 32604036 DOI: 10.1016/j.clineuro.2020.106047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system that predominantly targets optic nerves and spinal cord. Studies of NMOSD are scarce in the Middle East. OBJECTIVE To evaluate the MRI characteristics of NMOSD patients in Kuwait. PATIENT AND METHODS This is an observational, retrospective study on NMOSD patients who attended the MS clinic. Patients who fulfilled the 2015 diagnostic criteria of NMOSD were included. Patients` clinical, radiological and serological data were extracted from the medical records. The radiological variables were compared according to gender and AQP4 serostatus. RESULTS Forty-two patients fulfilling the NMOSD diagnostic criteria. The mean age and mean age of onset were 32.6 ± 11.4 and 28.9 ± 9.8 years respectively. Females represented 83.3 % of the cohort with female-to-male ratio of 5:1. Thirty-one patients (73.8 %) tested positive for AQP4 antibody. Nineteen patients (45.2 %) had bilateral optic nerve involvement, while chiasmal involvement was seen in 8 (19.0 %) patients. Spinal cord was involved in 36 (85.7 %) patients; of whom 27 (64.3 %) had LETM. The most common spinal segment involved was the cervical (72.2 %) followed by the dorsal (25.0 %) regions. The brain was involved in 39 (92.8 %) patients and the periventricular region around fourth and lateral ventricles was the most commonly involved site (n = 35; 83.3 %), along with periaqueductal (n = 25; 61.9 %) and corpus callosal (n = 24; 57.1 %) regions. Isolated area postrema involvement was observed in 9 (21.4 %) patients. CONCLUSION This is the first study describing the radiological characteristics of NMOSD in Kuwait. Although our data is comparable with the previous international studies, a higher percentage of bilateral optic nerve, brain, and callosal involvement was observed. Further multicenter studies with a larger cohort are needed to confirm our results.
Collapse
Affiliation(s)
| | - Samar Farouk Ahmed
- Department of Neurology, Ibn Sina Hospital, Kuwait; Department of Neurology and Psychiatry, Minia University, Egypt.
| | - Jasem Y Al-Hashel
- Department of Neurology, Ibn Sina Hospital, Kuwait; Health Sciences Centre, Kuwait University, Department of Medicine, Kuwait.
| | | | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq, Kuwait.
| |
Collapse
|
13
|
Marrodan M, Gaitán MI, Correale J. Spinal Cord Involvement in MS and Other Demyelinating Diseases. Biomedicines 2020; 8:E130. [PMID: 32455910 PMCID: PMC7277673 DOI: 10.3390/biomedicines8050130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diagnostic accuracy is poor in demyelinating myelopathies, and therefore a challenge for neurologists in daily practice, mainly because of the multiple underlying pathophysiologic mechanisms involved in each subtype. A systematic diagnostic approach combining data from the clinical setting and presentation with magnetic resonance imaging (MRI) lesion patterns, cerebrospinal fluid (CSF) findings, and autoantibody markers can help to better distinguish between subtypes. In this review, we describe spinal cord involvement, and summarize clinical findings, MRI and diagnostic characteristics, as well as treatment options and prognostic implications in different demyelinating disorders including: multiple sclerosis (MS), neuromyelitis optica spectrum disorder, acute disseminated encephalomyelitis, anti-myelin oligodendrocyte glycoprotein antibody-associated disease, and glial fibrillary acidic protein IgG-associated disease. Thorough understanding of individual case etiology is crucial, not only to provide valuable prognostic information on whether the disorder is likely to relapse, but also to make therapeutic decision-making easier and reduce treatment failures which may lead to new relapses and long-term disability. Identifying patients with monophasic disease who may only require acute management, symptomatic treatment, and subsequent rehabilitation, rather than immunosuppression, is also important.
Collapse
Affiliation(s)
| | | | - Jorge Correale
- Neurology Department, Fleni, C1428AQK Buenos Aires, Argentina; (M.M.); (M.I.G.)
| |
Collapse
|
14
|
Flanagan EP. Neuromyelitis Optica Spectrum Disorder and Other Non-Multiple Sclerosis Central Nervous System Inflammatory Diseases. Continuum (Minneap Minn) 2019; 25:815-844. [PMID: 31162318 DOI: 10.1212/con.0000000000000742] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This article reviews the clinical features, diagnostic approach, treatment, and prognosis of central nervous system inflammatory diseases that mimic multiple sclerosis (MS), including those defined by recently discovered autoantibody biomarkers. RECENT FINDINGS The discovery of autoantibody biomarkers of inflammatory demyelinating diseases of the central nervous system (aquaporin-4 IgG and myelin oligodendrocyte glycoprotein IgG) and the recognition that, despite some overlap, their clinical phenotypes are distinct from MS have revolutionized this field of neurology. These autoantibody biomarkers assist in diagnosis and have improved our understanding of the underlying disease pathogenesis. This has allowed targeted treatments to be translated into clinical trials, three of which are now under way in aquaporin-4 IgG-seropositive neuromyelitis optica (NMO) spectrum disorder. SUMMARY Knowledge of the clinical attributes, MRI findings, CSF parameters, and accompanying autoantibody biomarkers can help neurologists distinguish MS from its inflammatory mimics. These antibody biomarkers provide critical diagnostic and prognostic information and guide treatment decisions. Better recognition of the clinical, radiologic, and laboratory features of other inflammatory MS mimics that lack autoantibody biomarkers has allowed us to diagnose these disorders faster and initiate disease-specific treatments more expeditiously.
Collapse
|
15
|
Liao W, Li C, Tang Y, Huang F, Kuang H, Liang S, Yang Y. Aquaporin-4 antibody positive short transverse myelitis associated with breast cancer. Mult Scler Relat Disord 2019; 30:119-122. [DOI: 10.1016/j.msard.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/15/2023]
|
16
|
Golub D, Williams F, Wong T, Iyengar N, Jolley H, Sabadiah S, Rhee D, Gold-von Simson G. A Longitudinally Extensive Spinal Cord Lesion Restricted to Gray Matter in an Adolescent Male. Front Neurol 2019; 10:270. [PMID: 30949125 PMCID: PMC6435483 DOI: 10.3389/fneur.2019.00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Longitudinally extensive spinal cord lesions (LECL) restricted to gray matter are poorly understood as are their neurodevelopmental repercussions in children. We herein report the critical case of a 13-year-old male presenting with progressive quadriparesis found to have cervical LECL restricted to the anterior horns. Challenged with a rare diagnostic dilemma, the clinical team systematically worked through potential vascular, genetic, infectious, rheumatologic, and paraneoplastic diagnoses before assigning a working diagnosis of acute inflammatory myelopathy. Nuanced consideration of and workup for both potential ischemic causes (arterial dissection, fibrocartilaginous embolism, vascular malformation) and specific inflammatory conditions including Transverse Myelitis, Neuromyelitis Optica Spectrum Disorders (NMOSD), Multiple Sclerosis (MS), Acute Disseminated Encephalomyelitis (ADEM), and Acute Flaccid Myelitis (AFM) is explained in the context of a comprehensive systematic review of the literature on previous reports of gray matter-restricted longitudinally extensive cord lesions in children. Treatment strategy was ultimately based on additional literature review of treatment-refractory acute inflammatory neurological syndromes in children. A combination of high-dose steroids and plasmapheresis was employed with significant improvement in functional outcome, suggesting a potential benefit of combination immune-modulatory treatment in these patients. This case furthermore highlights quality clinical reasoning with respect to the elusive nature of diagnosis, nuances in neuroimaging, and multifocal treatment strategies in pediatric LECL.
Collapse
Affiliation(s)
- Danielle Golub
- New York University School of Medicine, New York, NY, United States
| | - Faith Williams
- School of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Taylor Wong
- New York University School of Medicine, New York, NY, United States
| | - Nishanth Iyengar
- New York University School of Medicine, New York, NY, United States
| | - Hannah Jolley
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Sakinah Sabadiah
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - David Rhee
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Gabrielle Gold-von Simson
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States.,Health and Hospitals, Clinical Translational Science Institute, New York University, New York, NY, United States
| |
Collapse
|
17
|
Alves Do Rego C, Collongues N. Neuromyelitis optica spectrum disorders: Features of aquaporin-4, myelin oligodendrocyte glycoprotein and double-seronegative-mediated subtypes. Rev Neurol (Paris) 2018; 174:458-470. [PMID: 29685427 DOI: 10.1016/j.neurol.2018.02.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023]
Abstract
The new diagnostic classification of neuromyelitis optica spectrum disorder (NMOSD) in 2015 highlights the central role of biomarkers, such as antibodies against aquaporin-4 (AQP4-Ab), in diagnosis. Also, in approximately 20-25% of patients without AQP4-Ab (NMOSDAQP4-) the presence of an antibody directed against myelin oligodendrocyte glycoprotein (MOG) characterizes a specific population of NMOSD patients (NMOSDMOG+), according to their demographic and clinical data and prognoses. While double-seronegative cases (NMOSDNEG) have not been fully described, they may correspond to the very first patients with opticospinal demyelination reported by Devic and Gault in 1894. The present report reviews the current knowledge of the pathophysiology and clinical features of NMOSDAQP4+, NMOSDMOG+ and NMOSDNEG patients, and also discusses the relationship between the extended spectrum of MOG disease and NMOSDMOG+. Finally, the current treatments for acute relapses and relapse prevention are described, with a focus on serological-based therapeutic responses and the promising new therapeutic targets.
Collapse
Affiliation(s)
- C Alves Do Rego
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - N Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France; Clinical Investigation Center, INSERM U1434, University Hospital of Strasbourg, Strasbourg, France; Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, INSERM U1119, University Hospital of Strasbourg, Strasbourg, France.
| |
Collapse
|
18
|
Zeiner PS, Brandhofe A, Müller-Eschner M, Steinmetz H, Pfeilschifter W. Area postrema syndrome as frequent feature of Bickerstaff brainstem encephalitis. Ann Clin Transl Neurol 2018; 5:1534-1542. [PMID: 30564620 PMCID: PMC6292382 DOI: 10.1002/acn3.666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
Objective Area postrema (AP) syndrome (defined as: nausea and/or emesis and/or singultus at onset of brainstem dysfunction) comprises complex pathophysiologic mechanisms triggered by different entities. The first objective was to assess the frequency of AP syndrome as a clinical feature in brainstem encephalitis (BE). Finding an especially high prevalence of AP syndrome in Bickerstaff brainstem encephalitis (BBE), we also analyzed the frequency of AP syndrome in other autoimmune diseases with anti-ganglioside antibodies (Guillain-Barré syndrome (GBS) and its variants). Methods We systematically evaluated the prevalence of AP syndrome in BE in all patients treated at our university hospital during a 15-year period. In a second step, BBE patients were compared to GBS and Miller Fisher syndrome (MFS) patients as clinical subtypes of a disease continuum without brainstem dysfunction. Results We found AP syndrome in 8 of 21 BE patients, including 3 of 7 BBE and in 4 of 112 GBS/MFS patients. AP syndrome was as a frequent but under-recognized feature of BE with a significant impact on patients' well being. Interpretation Manifestation of AP syndrome in BBE but also in GBS and its subtypes point toward a role of autoimmune antibodies that should be investigated in future studies. Considerable misdiagnosis or nonrecognition complicates diagnostic and therapeutic management. Therefore, AP syndrome should be considered in any episode of otherwise unexplained nausea, emesis, or singultus.
Collapse
Affiliation(s)
- Pia S Zeiner
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany.,Dr. Senckenberg Institute of Neurooncology University Hospital/Goethe University Frankfurt Heinrich-Hoffmann-Strasse 7 Frankfurt/Main 60528 Germany
| | - Annemarie Brandhofe
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| | - Monika Müller-Eschner
- Institute of Neuroradiology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| | - Helmuth Steinmetz
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| | - Waltraud Pfeilschifter
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| |
Collapse
|
19
|
Jin S, Long Z, Wang W, Jiang B. Hyponatremia in neuromyelitis optica spectrum disorders: Literature review. Acta Neurol Scand 2018; 138:4-11. [PMID: 29654708 DOI: 10.1111/ane.12938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 02/03/2023]
Abstract
Hyponatremia is a potentially serious electrolyte abnormality observed in neuromyelitis optica spectrum disorders (NMOSDs), and its most common cause is syndrome of inappropriate antidiuretic hormone secretion (SIADH). Another potential cause of hyponatremia is cerebral salt-wasting syndrome (CSWS), although CSWS has not previously been reported in NMOSDs. Accurate and early differentiation between SIADH and CSWS is difficult. However, the two conditions have important implications for the selection of therapy. Here, we describe two patients with aquaporin-4 antibody (AQP4-Ab)-positive NMOSDs who developed hyponatremia as a result of CSWS and SIADH, respectively. Additionally, we review all previously reported studies of hyponatremia in patients with NMOSDs and propose several potential pathophysiological mechanisms of hyponatremia. In conclusion, NMOSDs accompanied by hyponatremia are not actually rare, but have previously been given little attention. Furthermore, SIADH should not be the only consideration, before the exclusion of rare but significant CSWS.
Collapse
Affiliation(s)
- S. Jin
- Department of Neurology; The Second Xiangya Hospital; Central South University; Changsha China
| | - Z. Long
- Department of Neurology; The Second Xiangya Hospital; Central South University; Changsha China
| | - W. Wang
- Department of Neurology; The Second Xiangya Hospital; Central South University; Changsha China
| | - B. Jiang
- Department of Neurology; The Second Xiangya Hospital; Central South University; Changsha China
| |
Collapse
|
20
|
Geraldes R, Ciccarelli O, Barkhof F, De Stefano N, Enzinger C, Filippi M, Hofer M, Paul F, Preziosa P, Rovira A, DeLuca GC, Kappos L, Yousry T, Fazekas F, Frederiksen J, Gasperini C, Sastre-Garriga J, Evangelou N, Palace J. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol 2018. [DOI: 10.1038/nrneurol.2018.14] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Iorio R, Damato V, Evoli A, Gessi M, Gaudino S, Di Lazzaro V, Spagni G, Sluijs JA, Hol EM. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry 2018; 89:138-146. [PMID: 28951498 DOI: 10.1136/jnnp-2017-316583] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To report the clinical and immunological characteristics of 22 new patients with glial fibrillar acidic protein (GFAP) autoantibodies. METHODS From January 2012 to March 2017, we recruited 451 patients with suspected neurological autoimmune disease at the Catholic University of Rome. Patients' serum and cerebrospinal fluid (CSF) samples were tested for neural autoantibodies by immunohistochemistry on mouse and rat brain sections, by cell-based assays (CBA) and immunoblot. GFAP autoantibodies were detected by immunohistochemistry and their specificity confirmed by CBA using cells expressing human GFAPα and GFAPδ proteins, by immunoblot and immunohistochemistry on GFAP-/- mouse brain sections. RESULTS Serum and/or CSF IgG of 22/451 (5%) patients bound to human GFAP, of which 22/22 bound to GFAPα, 14/22 to both GFAPα and GFAPδ and none to the GFAPδ isoform only. The neurological presentation was: meningoencephalomyelitis or encephalitis in 10, movement disorder (choreoathetosis or myoclonus) in 3, anti-epileptic drugs (AED)-resistant epilepsy in 3, cerebellar ataxia in 3, myelitis in 2, optic neuritis in 1 patient. Coexisting neural autoantibodies were detected in five patients. Six patients had other autoimmune diseases. Tumours were found in 3/22 patients (breast carcinoma, 1; ovarian carcinoma, 1; thymoma, 1). Nineteen patients were treated with immunotherapy and 16 patients (84%) improved. Histopathology analysis of the leptomeningeal biopsy specimen from one patient revealed a mononuclear infiltrate with macrophages and CD8+ T cells. CONCLUSIONS GFAP autoimmunity is not rare. The clinical spectrum encompasses meningoencephalitis, myelitis, movement disorders, epilepsy and cerebellar ataxia. Coexisting neurological and systemic autoimmunity are relatively common. Immunotherapy is beneficial in most cases.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Damato
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Amelia Evoli
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Gessi
- Institute of Pathology, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Gaudino
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio.Medico di Roma, Rome, Italy
| | - Gregorio Spagni
- Department of Neuroscience, Istituto di Neurologia, Fondazione Policlinico Universitario 'Agostino Gemelli', Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands.,Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The discovery of aquaporin-4 (AQP4) antibodies with high specificity for neuromyelitis optica spectrum disorder (NMOSD) has induced tremendous changes in the approach and management of central nervous system (CNS) neuroinflammatory disorders. Owing to the increasing availability of the AQP4 antibody assay and evolution of diagnostic criteria for multiple sclerosis and NMOSD, recent studies have reevaluated CNS neuroinflammatory disorders. This review describes recent advances in the understanding of CNS neuroinflammatory disorders in Asian/Pacific regions. RECENT FINDINGS Although multiple sclerosis prevalence is lower in Asian countries than in Western countries, the overall clinical features of multiple sclerosis are comparable between these countries. Hospital-based studies have reported that the frequency of NMOSD is higher in Asian populations (22-42%) than in white populations (2-26%). Despite improvements in the AQP4 antibody assay, AQP4 antibodies are not detected in certain patients with NMOSD. Recently, myelin oligodendrocyte glycoprotein (MOG) antibodies have been identified in AQP4 antibody-negative patients with the NMOSD phenotype, and the clinical features differ slightly between MOG antibody-positive patients and AQP4 antibody-positive patients. SUMMARY The understanding of CNS neuroinflammatory disorders in Asian/Pacific regions continues to evolve owing to the discovery of new biological markers and recognition of broader clinical phenotypes.
Collapse
|
23
|
Zabad RK, Stewart R, Healey KM. Pattern Recognition of the Multiple Sclerosis Syndrome. Brain Sci 2017; 7:brainsci7100138. [PMID: 29064441 PMCID: PMC5664065 DOI: 10.3390/brainsci7100138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
During recent decades, the autoimmune disease neuromyelitis optica spectrum disorder (NMOSD), once broadly classified under the umbrella of multiple sclerosis (MS), has been extended to include autoimmune inflammatory conditions of the central nervous system (CNS), which are now diagnosable with serum serological tests. These antibody-mediated inflammatory diseases of the CNS share a clinical presentation to MS. A number of practical learning points emerge in this review, which is geared toward the pattern recognition of optic neuritis, transverse myelitis, brainstem/cerebellar and hemispheric tumefactive demyelinating lesion (TDL)-associated MS, aquaporin-4-antibody and myelin oligodendrocyte glycoprotein (MOG)-antibody NMOSD, overlap syndrome, and some yet-to-be-defined/classified demyelinating disease, all unspecifically labeled under MS syndrome. The goal of this review is to increase clinicians’ awareness of the clinical nuances of the autoimmune conditions for MS and NMSOD, and to highlight highly suggestive patterns of clinical, paraclinical or imaging presentations in order to improve differentiation. With overlay in clinical manifestations between MS and NMOSD, magnetic resonance imaging (MRI) of the brain, orbits and spinal cord, serology, and most importantly, high index of suspicion based on pattern recognition, will help lead to the final diagnosis.
Collapse
Affiliation(s)
- Rana K Zabad
- Department of Neurological Sciences, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198-8440, USA.
| | - Renee Stewart
- University of Nebraska Medical Center College of Nursing, Omaha, NE 68198-5330, USA.
| | - Kathleen M Healey
- Department of Neurological Sciences, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198-8440, USA.
| |
Collapse
|
24
|
Sepúlveda M, Sola-Valls N, Escudero D, Rojc B, Barón M, Hernández-Echebarría L, Gómez B, Dalmau J, Saiz A, Graus F. Clinical profile of patients with paraneoplastic neuromyelitis optica spectrum disorder and aquaporin-4 antibodies. Mult Scler 2017; 24:1753-1759. [PMID: 28920766 DOI: 10.1177/1352458517731914] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In a minority of patients with neuromyelitis optica spectrum disorder (NMOSD) and aquaporin-4 antibodies (AQP4-IgG), the disease has a paraneoplastic origin. It is unknown whether these patients have distinctive clinical features. OBJECTIVE To report the clinical features of a series of patients with paraneoplastic NMOSD and AQP4-IgG and to review previously reported cases. METHODS Retrospective analysis of clinical records of 156 patients with NMOSD and AQP4-IgG and review of previously reported patients with paraneoplastic NMOSD and AQP4-IgG. Paraneoplastic patients were defined as those with cancer identified within 2 years of the diagnosis of NMOSD. RESULTS Five (3.2%) of 156 patients had paraneoplastic NMOSD, and 12 previously reported patients were identified. The most common tumors were adenocarcinoma of the lung (five patients) and breast (five). Compared with the 151 non-paraneoplastic NMOSD patients, the 17 (5 current cases and 12 previously reported) were older at symptom onset (median age = 55 (range: 17-87) vs 40 (range: 10-77) years; p = 0.006), more frequently male (29.4% vs 6.6%; p = 0.009), and presented with severe nausea and vomiting (41.2% vs 6.6%; p < 0.001). The frequency of longitudinal extensive transverse myelitis (LETM) as heralding symptom was similar in both groups, but patients with paraneoplastic NMOSD were older than those with non-paraneoplastic NMOSD (median age: 63 (range: 48-73) vs 43 (range: 14-74) years; p = 0.001). CONCLUSION Patients, predominantly male, with NMOSD and AQP4-IgG should be investigated for an underlying cancer if they present with nausea and vomiting, or LETM after 45 years of age.
Collapse
Affiliation(s)
- Maria Sepúlveda
- Service of Neurology, Hospital Clinic, University of Barcelona, Barcelona, Spain Neuroimmunology Program, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Sola-Valls
- Service of Neurology, Hospital Clinic, University of Barcelona, Barcelona, Spain Neuroimmunology Program, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Domingo Escudero
- Service of Neurology, Hospital Clinic, University of Barcelona, Barcelona, Spain Neuroimmunology Program, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bojan Rojc
- Service of Neurology, General Hospital Izola, Izola, Slovenia
| | - Manuel Barón
- Service of Neurology, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | | | - Begoña Gómez
- Service of Neurology, Hospital Universitario Puerto Real, Cádiz, Spain
| | - Josep Dalmau
- Neuroimmunology Program, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain/Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain/Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Albert Saiz
- Service of Neurology, Hospital Clinic, University of Barcelona, Barcelona, Spain Neuroimmunology Program, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Graus
- Service of Neurology, Hospital Clinic, University of Barcelona, Barcelona, Spain Neuroimmunology Program, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
25
|
Long spinal cord lesions in a patient with pathologically proven multiple sclerosis. J Clin Neurosci 2017; 42:106-108. [DOI: 10.1016/j.jocn.2017.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 11/19/2022]
|
26
|
Orman G, Wang KY, Pekcevik Y, Thompson CB, Mealy M, Levy M, Izbudak I. Enhancing Brain Lesions during Acute Optic Neuritis and/or Longitudinally Extensive Transverse Myelitis May Portend a Higher Relapse Rate in Neuromyelitis Optica Spectrum Disorders. AJNR Am J Neuroradiol 2017; 38:949-953. [PMID: 28302609 DOI: 10.3174/ajnr.a5141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Neuromyelitis optica spectrum disorders are inflammatory demyelinating disorders with optic neuritis and/or longitudinally extensive transverse myelitis episodes. We now know that neuromyelitis optica spectrum disorders are associated with antibodies to aquaporin-4, which are highly concentrated on astrocytic end-feet at the blood-brain barrier. Immune-mediated disruption of the blood-brain barrier may manifest as contrast enhancement on brain MR imaging. We aimed to delineate the extent and frequency of contrast enhancement on brain MR imaging within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and to correlate contrast enhancement with outcome measures. MATERIALS AND METHODS Brain MRIs of patients with neuromyelitis optica spectrum disorders were evaluated for patterns of contrast enhancement (periependymal, cloudlike, leptomeningeal, and so forth). The Fisher exact test was used to evaluate differences between the proportion of contrast enhancement in patients who were seropositive and seronegative for aquaporin-4 antibodies. The Mann-Whitney test was used to compare the annualized relapse rate and disease duration between patients with and without contrast enhancement and with and without seropositivity. RESULTS Brain MRIs of 77 patients were evaluated; 59 patients (10 males, 49 females) were scanned within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and were included in the analysis. Forty-eight patients were seropositive, 9 were seronegative, and 2 were not tested for aquaporin-4 antibodies. Having brain contrast enhancement of any type during an acute attack was significantly associated with higher annualized relapse rates (P = .03) and marginally associated with shorter disease duration (P = .05). Having periependymal contrast enhancement was significantly associated with higher annualized relapse rates (P = .03). CONCLUSIONS Brain MRIs of patients with neuromyelitis optica spectrum disorders with contrast enhancement during an acute relapse of optic neuritis and/or longitudinally extensive transverse myelitis are associated with increased annual relapse rates.
Collapse
Affiliation(s)
- G Orman
- From the Division of Neuroradiology (G.O., Y.P., I.I.), Russell H. Morgan Department of Radiology
| | - K Y Wang
- Department of Radiology (K.Y.W.), Baylor College of Medicine, Houston, Texas
| | - Y Pekcevik
- From the Division of Neuroradiology (G.O., Y.P., I.I.), Russell H. Morgan Department of Radiology
| | - C B Thompson
- Biostatistics Center (C.B.T.), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - M Mealy
- Department of Neurology (M.M., M.L.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Levy
- Department of Neurology (M.M., M.L.), The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - I Izbudak
- From the Division of Neuroradiology (G.O., Y.P., I.I.), Russell H. Morgan Department of Radiology
| |
Collapse
|
27
|
What's new in neuromyelitis optica? A short review for the clinical neurologist. J Neurol 2017; 264:2330-2344. [PMID: 28289845 DOI: 10.1007/s00415-017-8445-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
The evolution of neuromyelitis optica spectrum disorder (NMOSD) from a rare, incurable and misunderstood disease with almost universally poor outcomes to its present state in just over a decade is unprecedented in neurology and possibly in medicine. Our knowledge of NMOSD biology has led to the recognition of wider phenotypes, new disease mechanisms, and thus clinical trials of new and effective treatments. This article aims to update readers on the recent developments in NMOSD with particular emphasis on clinical advances, the 2015 diagnostic criteria, biomarkers, imaging, and therapeutic interventions.
Collapse
|
28
|
Zalewski NL, Morris PP, Weinshenker BG, Lucchinetti CF, Guo Y, Pittock SJ, Krecke KN, Kaufmann TJ, Wingerchuk DM, Kumar N, Flanagan EP. Ring-enhancing spinal cord lesions in neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry 2017; 88:218-225. [PMID: 27913626 DOI: 10.1136/jnnp-2016-314738] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We assessed the frequency and characteristics of ring-enhancing spinal cord lesions in neuromyelitis optica spectrum disorder (NMOSD) myelitis and myelitis of other cause. METHODS We reviewed spinal cord MRIs for ring-enhancing lesions from 284 aquaporin-4 (AQP4)-IgG seropositive patients at Mayo Clinic from 1996 to 2014. Inclusion criteria were as follows: (1) AQP4-IgG seropositivity, (2) myelitis attack and (3) MRI spinal cord demonstrating ring-enhancement. We identified two groups of control patients with: (1) longitudinally extensive myelopathy of other cause (n=66) and (2) myelitis in the context of a concurrent or subsequent diagnosis of multiple sclerosis (MS) from a population-based cohort (n=30). RESULTS Ring-enhancement was detected in 50 of 156 (32%) myelitis episodes in 41 patients (83% single; 17% multiple attacks). Ring-enhancement was noted on sagittal and axial images in 36 of 43 (84%) ring enhancing myelitis episodes and extended a median of two vertebral segments (range, 1-12); in 21 of 48 (44%) ring enhancing myelitis episodes, the ring extended greater than or equal to three vertebrae. Ring-enhancement was accompanied by longitudinally extensive (greater than or equal to three vertebral segments) T2-hyperintensity in 44 of 50 (88%) ring enhancing myelitis episodes. One case of a spinal cord biopsy during ring-enhancing myelitis revealed tissue vacuolation and loss of AQP4 immunoreactivity with preserved axons. The clinical characteristics of ring-enhancing myelitis episodes did not differ from non-ring-enhancing episodes. Ring-enhancing spinal cord lesions were more common in NMOSD than other causes of longitudinally extensive myelopathy (50/156 (32%) vs 0/66 (0%); p≤0.001) but did not differ between NMOSD and MS (50/156 (32%) vs 6/30 (20%); p=0.20). CONCLUSIONS Spinal cord ring-enhancement accompanies one-third of NMOSD myelitis episodes and distinguishes NMOSD from other causes of longitudinally extensive myelopathies but not from MS.
Collapse
Affiliation(s)
| | | | | | | | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sean J Pittock
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl N Krecke
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Neeraj Kumar
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
29
|
Olivieri G, Nociti V, Iorio R, Stefanini MC, Losavio FA, Mirabella M, Mariotti P. Rituximab as a first-line treatment in pediatric neuromyelitis optica spectrum disorder. Neurol Sci 2015; 36:2301-2. [PMID: 26292790 DOI: 10.1007/s10072-015-2368-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/12/2015] [Indexed: 01/11/2023]
Affiliation(s)
| | - Viviana Nociti
- Department of Geriatrics, Neurosciences and Orthopedics, Institute of Neurology, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy.
- Don C. Gnocchi Foundation Onlus, Milan, Italy.
| | - Raffaele Iorio
- Department of Geriatrics, Neurosciences and Orthopedics, Institute of Neurology, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy
| | | | - Francesco Antonio Losavio
- Department of Geriatrics, Neurosciences and Orthopedics, Institute of Neurology, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Massimiliano Mirabella
- Department of Geriatrics, Neurosciences and Orthopedics, Institute of Neurology, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Paolo Mariotti
- Unit of Child Neuropsychiatry, Catholic University, Rome, Italy
| |
Collapse
|
30
|
What do we know about brain contrast enhancement patterns in neuromyelitis optica? Clin Imaging 2015; 40:573-80. [PMID: 26615899 DOI: 10.1016/j.clinimag.2015.07.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system that usually presents with acute myelitis and/or optic neuritis. Recently, some brain magnetic resonance imaging findings have been described in NMO that are important in the differential diagnosis. Pencil-thin, leptomeningeal, and cloud-like enhancement may be specific to NMO. These patterns are usually seen during relapses. Recognizing these lesions and enhancement patterns may expedite the diagnosis and allows early effective treatment. The purpose of this article is to review the latest knowledge and to share our experience with the contrast enhancement patterns of NMO brain lesions.
Collapse
|
31
|
Iorio R, Rindi G, Erra C, Damato V, Ferilli M, Sabatelli M. Neuromyelitis optica spectrum disorder as a paraneoplastic manifestation of lung adenocarcinoma expressing aquaporin-4. Mult Scler 2015; 21:791-4. [DOI: 10.1177/1352458515572241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/07/2015] [Indexed: 12/28/2022]
Abstract
Background: The observations of neuromyelitis optica spectrum disorders (NMOSD) occurring in the setting of cancer suggest that aquaporin-4 (AQP4) autoimmunity may in some cases be paraneoplastic. Results: We describe a 72-year-old patient who developed a longitudinally extensive transverse myelitis associated with AQP4 autoantibodies in the setting of a lung adenocarcinoma recurrence. AQP4 expression was demonstrated in tumor cells. IgG in patient’s cerebrospinal fluid bound to tumor cells co-localizing with AQP4 immunoreactivity. Conclusions and relevance: This case expands the spectrum of paraneoplastic AQP4 autoimmunity highlighting the importance of considering an oncological screening in patients with late-onset NMOSD.
Collapse
Affiliation(s)
- Raffaele Iorio
- Institute of Neurology, Catholic University, Rome, Italy
| | - Guido Rindi
- Institute of Anatomic Pathology, Catholic University, Rome, Italy
| | - Carmen Erra
- Institute of Neurology, Catholic University, Rome, Italy
| | | | | | | |
Collapse
|
32
|
Kim HJ, Paul F, Lana-Peixoto MA, Tenembaum S, Asgari N, Palace J, Klawiter EC, Sato DK, de Seze J, Wuerfel J, Banwell BL, Villoslada P, Saiz A, Fujihara K, Kim SH. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology 2015; 84:1165-73. [PMID: 25695963 DOI: 10.1212/wnl.0000000000001367] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Since its initial reports in the 19th century, neuromyelitis optica (NMO) had been thought to involve only the optic nerves and spinal cord. However, the discovery of highly specific anti-aquaporin-4 antibody diagnostic biomarker for NMO enabled recognition of more diverse clinical spectrum of manifestations. Brain MRI abnormalities in patients seropositive for anti-aquaporin-4 antibody are common and some may be relatively unique by virtue of localization and configuration. Some seropositive patients present with brain involvement during their first attack and/or continue to relapse in the same location without optic nerve and spinal cord involvement. Thus, characteristics of brain abnormalities in such patients have become of increased interest. In this regard, MRI has an increasingly important role in the differential diagnosis of NMO and its spectrum disorder (NMOSD), particularly from multiple sclerosis. Differentiating these conditions is of prime importance because early initiation of effective immunosuppressive therapy is the key to preventing attack-related disability in NMOSD, whereas some disease-modifying drugs for multiple sclerosis may exacerbate the disease. Therefore, identifying the MRI features suggestive of NMOSD has diagnostic and prognostic implications. We herein review the brain, optic nerve, and spinal cord MRI findings of NMOSD.
Collapse
Affiliation(s)
- Ho Jin Kim
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Friedemann Paul
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marco A Lana-Peixoto
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Silvia Tenembaum
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nasrin Asgari
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jacqueline Palace
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eric C Klawiter
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Douglas K Sato
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jérôme de Seze
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jens Wuerfel
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Brenda L Banwell
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Pablo Villoslada
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Albert Saiz
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Su-Hyun Kim
- From the Department of Neurology (H.J.K., S.-H.K.), Research Institute and Hospital of National Cancer Center, Goyang, Korea; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center (F.P., J.W.), Department of Neurology, Charité University Medicine, Berlin, Germany; CIEM MS Research Center (M.A.L.-P.), Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil; Department of Neurology (S.T.), National Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina; Neurobiology (N.A.), Institute of Molecular Medicine, University of Southern Denmark; Department of Neurology (N.A.), Vejle Hospital, Denmark; Department of Clinical Neurology (J.P.), John Radcliffe Hospital, Oxford, UK; Department of Neurology, Massachusetts General Hospital (E.C.K.), Harvard Medical School, Boston, MA; Department of Neurology (D.K.S.), Tohoku University School of Medicine, Sendai, Japan; Neurology Department (J.d.S.), Hôpitaux Universitaires de Strasbourg, France; Institute of Neuroradiology (J.W.), University Medicine Goettingen, Germany; Department of Pediatrics (B.L.B.), Division of Neurology, The Children's Hospital of Philadelphia; Department of Neurology (B.L.B.), The University of Pennsylvania; Center of Neuroimmunology (P.V., A.S.), Service of Neurology, Hospital Clinic and Institute of Biomedical Research August Pi Sunyer, Barcelona, Spain; and Department of Multiple Sclerosis Therapeutics (K.F.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
33
|
Hyun JW, Kim SH, Huh SY, Kim W, Yun J, Joung A, Sato DK, Fujihara K, Kim HJ. Idiopathic aquaporin-4 antibody negative longitudinally extensive transverse myelitis. Mult Scler 2014; 21:710-7. [DOI: 10.1177/1352458514551454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
Background: Longitudinally extensive transverse myelitis (LETM) is a characteristic manifestation of neuromyelitis optica (NMO). However, not all patients with LETM are positive for aquaporin-4 (AQP4) antibodies. We evaluated the characteristics of idiopathic isolated LETM negative for AQP4 antibodies. Methods: From the National Cancer Center registry of inflammatory diseases of the central nervous system, patients with LETM as an initial manifestation and follow-up for at least two years were enrolled. Their medical records and MRIs were reviewed retrospectively. AQP4 antibody was confirmed by three different validated methods at least three times. Cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) levels were measured to investigate astrocyte damage. Results: Among 108 patients with first-ever LETM, 55 were positive for AQP4 antibodies (P-LETM) and 53 were consistently negative. Of them, seven were later diagnosed with seronegative NMO, and four were positive for MOG antibodies. The remaining 42 patients (N-LETM) showed several features distinct from P-LETM: male predominance, older age of onset, milder clinical presentation, spinal cord confinement and absence of combined autoimmunity. CSF GFAP levels were not increased in N-LETM but were markedly elevated in P-LETM. Conclusions: Idiopathic isolated N-LETM is not that rare among first-ever LETM, and has many features distinct from P-LETM where astrocytic damage is evident.
Collapse
Affiliation(s)
- Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - So-Young Huh
- Kosin University School of Medicine, Busan, Korea
| | - Woojun Kim
- Catholic University School of Medicine, Seoul, Korea
| | - Junglim Yun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - AeRan Joung
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Douglas Kazutoshi Sato
- Department of Neurology and Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Fujihara
- Department of Neurology and Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| |
Collapse
|
34
|
Comparative clinical characteristics of neuromyelitis optica spectrum disorders with and without medulla oblongata lesions. J Neurol 2014; 261:954-62. [DOI: 10.1007/s00415-014-7298-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
|
35
|
Iorio R, Pittock SJ. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raffaele Iorio
- Department of Geriatrics, Neuroscience and Orthopedics; Institute of Neurology; Catholic University; Rome Italy
| | - Sean J. Pittock
- Department of Neurology; Laboratory Medicine and Pathology; Mayo Clinic College of Medicine; Rochester MN USA
| |
Collapse
|
36
|
Luigetti M, Lo Monaco M, Evoli A, Mirabella M, Damato V, Iorio R. Lower motor neuron involvement in longitudinally extensive transverse myelitis with and without aquaporin-4 antibodies. Clin Neurophysiol 2014; 125:1925-6. [PMID: 24525092 DOI: 10.1016/j.clinph.2013.12.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Marco Luigetti
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy.
| | - Mauro Lo Monaco
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Amelia Evoli
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | | | - Valentina Damato
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Raffaele Iorio
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy.
| |
Collapse
|
37
|
Weber KP, Straumann D. Neuro-ophthalmology update. J Neurol 2013; 261:1251-6. [PMID: 24068370 DOI: 10.1007/s00415-013-7105-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023]
Abstract
This review summarizes the most relevant articles from the field of neuro-ophthalmology published in the Journal of Neurology from January 2012 to July 2013. With the advent of video-oculography, several articles describe new applications for eye movement recordings as a diagnostic tool for a wide range of disorders. In myasthenia gravis, anti-Kv1.4 and anti-Lrp4 have been characterized as promising novel autoantibodies for the diagnosis of hitherto 'seronegative' myasthenia gravis. Several articles address new diagnostic and therapeutic approaches to neuromyelitis optica, which further sharpen its profile as a distinct entity. Additionally, 4-aminopyridine has become a standard therapeutic for patients with cerebellar downbeat nystagmus. Finally, revised diagnostic criteria have been proposed for chronic relapsing inflammatory optic neuropathy based on a careful literature review over the last decade.
Collapse
Affiliation(s)
- Konrad P Weber
- Department of Ophthalmology, University Hospital Zurich, Frauenklinikstrasse 24, 8091, Zurich, Switzerland,
| | | |
Collapse
|