1
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Sharma R, Khan Z, Mehan S, Das Gupta G, Narula AS. Unraveling the multifaceted insights into amyotrophic lateral sclerosis: Genetic underpinnings, pathogenesis, and therapeutic horizons. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108518. [PMID: 39491718 DOI: 10.1016/j.mrrev.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS), a progressive neurodegenerative disease, primarily impairs upper and lower motor neurons, leading to debilitating motor dysfunction and eventually respiratory failure, widely known as Lou Gehrig's disease. ALS presents with diverse symptomatology, including dysarthria, dysphagia, muscle atrophy, and hyperreflexia. The prevalence of ALS varies globally, with incidence rates ranging from 1.5 to 3.8 per 100,000 individuals, significantly affecting populations aged 45-80. A complex interplay of genetic and environmental factors underpins ALS pathogenesis. Key genetic contributors include mutations in chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase type 1 (SOD1), Fusedin sarcoma (FUS), and TAR DNA-binding protein (TARDBP) genes, accounting for a considerable fraction of both familial (fALS) and sporadic (sALS) cases. The disease mechanism encompasses aberrant protein folding, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation, contributing to neuronal death. This review consolidates current insights into ALS's multifaceted etiology, highlighting the roles of environmental exposures (e.g., toxins, heavy metals) and their interaction with genetic predispositions. We emphasize the polygenic nature of ALS, where multiple genetic variations cumulatively influence disease susceptibility and progression. This aspect underscores the challenges in ALS diagnosis, which currently lacks specific biomarkers and relies on symptomatology and familial history. Therapeutic strategies for ALS, still in nascent stages, involve symptomatic management and experimental approaches targeting molecular pathways implicated in ALS pathology. Gene therapy, focusing on specific ALS mutations, and stem cell therapy emerge as promising avenues. However, effective treatments remain elusive, necessitating a deeper understanding of ALS's genetic architecture and the development of targeted therapies based on personalized medicine principles. This review aims to provide a comprehensive understanding of ALS, encouraging further research into its complex genetic underpinnings and the development of innovative, effective treatment modalities.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
3
|
Castro J, Pedrosa T, Alves I, Simão S, Swash M, de Carvalho M. A neurophysiological approach to mirror movements in amyotrophic lateral sclerosis. Clin Neurophysiol 2024; 158:27-34. [PMID: 38142663 DOI: 10.1016/j.clinph.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE To investigate mirror activity in amyotrophic lateral sclerosis (ALS) patients, using a simple paradigm of signal quantification. METHODS Patients were asked to perform a brief isometric maximum contraction of the abductor digiti minimi (ADM) or tibialis anterior (TA) on one side, while relaxing the contralateral side of the body. Both sides were investigated. Signals were stored and analyzed offline, for quantification of electromyographic signal. Clinical signs of upper motor neuron (UMN) dysfunction, transcranial magnetic stimulation (TMS) for the upper (UL) and lower limbs (LL), the ADM ipsilateral cortical silent period (iSP) and the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) cognitive scale were also investigated. RESULTS 42 ALS patients were included. In the 4 investigated muscles the amount of mirror activity was significantly higher than in the matched healthy group. The amount of mirror activity was similar between sides, but significantly higher in UL and LL with abnormal TMS results for ADM (p = 0.005) and TA (p = 0.002), as well as in UL with abnormal iSP values (p = 0.009). No association was found between mirror activity and clinical signs of UMN involvement. CONCLUSIONS Mirror activity is a common phenomenon in ALS. Mirror activity intensity corresponds to the severity of UMN dysfunction, as measured by TMS, and probably derives from the abnormal transcallosal inhibition as mirrored by iSP abnormality. SIGNIFICANCE Mirror activity is increased in ALS and is associated with abnormal transcallosal inhibition and UMN dysfunction.
Collapse
Affiliation(s)
- José Castro
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal.
| | - Tomás Pedrosa
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Alves
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Simão
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Michael Swash
- Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
4
|
Gooijers J, De Luca A, Zivari Adab H, Leemans A, Roebroeck A, Swinnen SP. Indices of callosal axonal density and radius from diffusion MRI relate to upper and lower limb motor performance. Neuroimage 2021; 241:118433. [PMID: 34324975 DOI: 10.1016/j.neuroimage.2021.118433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the relationship between human brain structure and functional outcome is of critical importance in systems neuroscience. Diffusion MRI (dMRI) studies show that fractional anisotropy (FA) is predictive of motor control, underscoring the importance of white matter (WM). However, as FA is a surrogate marker of WM, we aim to shed new light on the structural underpinnings of this relationship by applying a multi-compartment microstructure model providing axonal density/radius indices. Sixteen young adults (7 males / 9 females), performed a hand/foot tapping task and a Multi Limb Reaction Time task. Furthermore, diffusion (STEAM &HARDI) and fMRI (localizer hand/foot activations) data were obtained. Sphere ROIs were placed on activation clusters with highest t value to guide interhemispheric WM tractography. Axonal radius/density indices of callosal parts intersecting with tractography were calculated from STEAM, using the diffusion-time dependent AxCaliber model, and correlated with behavior. Results indicated a possible association between larger apparent axonal radii of callosal motor fibers of the hand and higher tapping scores of both hands, and faster selection-related processing (normalized reaction) times (RTs) on diagonal limb combinations. Additionally, a trend was present for faster selection-related processing (normalized reaction) times for lower limbs being related with higher axonal density of callosal foot motor fibers, and for higher FA values of callosal motor fibers in general being related with better tapping and faster selection-related processing (normalized reaction) times. Whereas FA is sensitive in demonstrating associations with motor behavior, axon radius/density (i.e., fiber geometry) measures are promising to explain the physiological source behind the observed FA changes, contributing to deeper insights into brain-behavior interactions.
Collapse
Affiliation(s)
- J Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven (3000), Belgium; LBI-KU Leuven Brain Institute, Leuven (3000), Belgium.
| | - A De Luca
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands; Neurology Department, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - H Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven (3000), Belgium; LBI-KU Leuven Brain Institute, Leuven (3000), Belgium
| | - A Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, Netherlands
| | - S P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven (3000), Belgium; LBI-KU Leuven Brain Institute, Leuven (3000), Belgium
| |
Collapse
|
5
|
Wittstock M, Wilde N, Grossmann A, Kasper E, Teipel S. Mirror Movements in Amyotrophic Lateral Sclerosis: A Combined Study Using Diffusion Tensor Imaging and Transcranial Magnetic Stimulation. Front Neurol 2020; 11:164. [PMID: 32210909 PMCID: PMC7067896 DOI: 10.3389/fneur.2020.00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder predominantly affecting the motor system. In a number of patients, mirror movements (MMs) suggest involvement of transcallosal fiber tracts in conjunction with upper motor neuron involvement. The aim of the study was to elucidate functional and structural alterations of callosal integrity in ALS patients with MMs. Methods: Nineteen patients with ALS displaying MMs and 20 controls underwent clinical assessment, transcranial magnetic stimulation (TMS), and diffusion tensor imaging (DTI). TBSS (tract based spatial statistics) was performed. We investigated ipsilateral silent period (iSP) as a measure of transcallosal inhibition, and diffusion changes in the corpus callosum and corticospinal tract (CST) as measure of structural integrity. Results: In ALS patients TMS revealed a longer mean iSP latency than controls. Twelve ALS patients (63.2%) showed loss of iSP, but none of the controls. Using region of interest analysis, fractional anisotropy (FA) values of the CST were significantly lower in ALS patients compared with controls, but diffusion parameters of the corpus callosum did not differ between patients and controls. The lack of diffusion changes in the corpus callosum was confirmed in whole brain tract based statistics, assessing FA as well as mean, radial, and axial diffusivity. There was a significant negative correlation between resting motor threshold and FA values of the CST, but not between iSP and FA of the corpus callosum. Conclusion: In conclusion the study failed to show microstructural changes in the corpus callosum in conjunction with MMs. One possible reason may be that functional disturbance of transcallosal pathways precede microstructural changes in the corpus callosum.
Collapse
Affiliation(s)
| | - Nora Wilde
- Department of Neurology, University Medicine Rostock, Rostock, Germany
| | - Annette Grossmann
- Institute of Diagnostic and Interventional Radiology, University Medicine Rostock, Rostock, Germany
| | - Elisabeth Kasper
- DZNE, German Centre for Neurodegenerative Diseases, Rostock, Germany
| | - Stefan Teipel
- DZNE, German Centre for Neurodegenerative Diseases, Rostock, Germany
| |
Collapse
|
6
|
The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 2019; 31:431-438. [PMID: 29750730 DOI: 10.1097/wco.0000000000000569] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging in motor neuron disease (MND) has traditionally been seen as an academic tool with limited direct relevance to individualized patient care. This has changed radically in recent years as computational imaging has emerged as a viable clinical tool with true biomarker potential. This transition is not only fuelled by technological advances but also by important conceptual developments. RECENT FINDINGS The natural history of MND is now evaluated by presymptomatic, postmortem and multi-timepoint longitudinal imaging studies. The anatomical spectrum of MND imaging has also been expanded from an overwhelmingly cerebral focus to innovative spinal and muscle applications. In contrast to the group-comparisons of previous studies, machine-learning and deep-learning approaches are increasingly utilized to model real-life diagnostic dilemmas and aid prognostic classification. The focus from evaluating focal structural changes has shifted to the appraisal of network integrity by connectivity-based approaches. The armamentarium of MND imaging has also been complemented by novel PET-ligands, spinal toolboxes and the availability of magnetoencephalography and high-field magnetic resonance (MR) imaging platforms. SUMMARY In addition to the technological and conceptual advances, collaborative multicentre research efforts have also gained considerable momentum. This opinion-piece reviews emerging trends in MND imaging and their implications to clinical care and drug development.
Collapse
|
7
|
Caiazzo G, Fratello M, Di Nardo F, Trojsi F, Tedeschi G, Esposito F. Structural connectome with high angular resolution diffusion imaging MRI: assessing the impact of diffusion weighting and sampling on graph-theoretic measures. Neuroradiology 2018. [PMID: 29520641 PMCID: PMC5906499 DOI: 10.1007/s00234-018-2003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose Advances in computational network analysis have enabled the characterization of topological properties of human brain networks (connectomics) from high angular resolution diffusion imaging (HARDI) MRI structural measurements. In this study, the effect of changing the diffusion weighting (b value) and sampling (number of gradient directions) was investigated in ten healthy volunteers, with specific focus on graph theoretical network metrics used to characterize the human connectome. Methods Probabilistic tractography based on the Q-ball reconstruction of HARDI MRI measurements was performed and structural connections between all pairs of regions from the automated anatomical labeling (AAL) atlas were estimated, to compare two HARDI schemes: low b value (b = 1000) and low direction number (n = 32) (LBLD); high b value (b = 3000) and high number (n = 54) of directions (HBHD). Results LBLD and HBHD data sets produced connectome images with highly overlapping hub structure. Overall, the HBHD scheme yielded significantly higher connection probabilities between cortical and subcortical sites and allowed detecting more connections. Small worldness and modularity were reduced in HBHD data. The clustering coefficient was significantly higher in HBHD data indicating a higher level of segregation in the resulting connectome for the HBHD scheme. Conclusion Our results demonstrate that the HARDI scheme as an impact on structural connectome measures which is not automatically implied by the tractography outcome. As the number of gradient directions and b values applied may introduce a bias in the assessment of network properties, the choice of a given HARDI protocol must be carefully considered when comparing results across connectomic studies.
Collapse
Affiliation(s)
- Giuseppina Caiazzo
- MRI Research Center SUN-FISM - Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", 80131, Naples, Italy.,Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Magnetic Resonance Imaging Research Center of the Second University of Naples-Italian Foundation for Multiple Sclerosis, Second University of Naples, Naples, Italy
| | - Michele Fratello
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Magnetic Resonance Imaging Research Center of the Second University of Naples-Italian Foundation for Multiple Sclerosis, Second University of Naples, Naples, Italy
| | - Federica Di Nardo
- MRI Research Center SUN-FISM - Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", 80131, Naples, Italy.,Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Magnetic Resonance Imaging Research Center of the Second University of Naples-Italian Foundation for Multiple Sclerosis, Second University of Naples, Naples, Italy
| | - Francesca Trojsi
- MRI Research Center SUN-FISM - Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", 80131, Naples, Italy.,Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Magnetic Resonance Imaging Research Center of the Second University of Naples-Italian Foundation for Multiple Sclerosis, Second University of Naples, Naples, Italy
| | - Gioacchino Tedeschi
- MRI Research Center SUN-FISM - Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", 80131, Naples, Italy.,Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Magnetic Resonance Imaging Research Center of the Second University of Naples-Italian Foundation for Multiple Sclerosis, Second University of Naples, Naples, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy. .,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6201BC, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Trojsi F, Caiazzo G, Di Nardo F, Fratello M, Santangelo G, Siciliano M, Femiano C, Russo A, Monsurrò MR, Cirillo M, Tedeschi G, Esposito F. High angular resolution diffusion imaging abnormalities in the early stages of amyotrophic lateral sclerosis. J Neurol Sci 2017; 380:215-222. [DOI: 10.1016/j.jns.2017.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/07/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
|
9
|
Combined Diffusion Tensor Imaging and Arterial Spin Labeling as Markers of Early Parkinson's disease. Sci Rep 2016; 6:33762. [PMID: 27646647 PMCID: PMC5028727 DOI: 10.1038/srep33762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD.
Collapse
|
10
|
Riva N, Agosta F, Lunetta C, Filippi M, Quattrini A. Recent advances in amyotrophic lateral sclerosis. J Neurol 2016; 263:1241-54. [PMID: 27025851 PMCID: PMC4893385 DOI: 10.1007/s00415-016-8091-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/12/2016] [Indexed: 10/28/2022]
Abstract
ALS is a relentlessly progressive and fatal disease, with no curative therapies available to date. Symptomatic and palliative care, provided in a multidisciplinary context, still remains the cornerstone of ALS management. However, our understanding of the molecular mechanisms underlying the disease has advanced greatly over the past years, giving new hope for the development of novel diagnostic and therapeutic approaches. Here, we have reviewed the most recent studies that have contributed to improving both clinical management and our understanding of ALS pathogenesis.
Collapse
Affiliation(s)
- Nilo Riva
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy.
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Niguarda Ca Granda Hospital, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy
| |
Collapse
|
11
|
Caiazzo G, Trojsi F, Cirillo M, Tedeschi G, Esposito F. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity. Neuroradiology 2015; 58:209-15. [PMID: 26573606 DOI: 10.1007/s00234-015-1616-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. METHODS Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm(2), 54 gradient directions) and low angular resolution (b = 1000 s/mm(2), 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. RESULTS QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5%. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. CONCLUSION Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time.
Collapse
Affiliation(s)
- Giuseppina Caiazzo
- MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Francesca Trojsi
- MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Mario Cirillo
- MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Gioacchino Tedeschi
- MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Fabrizio Esposito
- Department of Medicine and Surgery, University of Salerno, Via Allende, 84081, Baronissi (Salerno), Italy.
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Mueller BA, Lim KO, Hemmy L, Camchong J. Diffusion MRI and its Role in Neuropsychology. Neuropsychol Rev 2015; 25:250-71. [PMID: 26255305 PMCID: PMC4807614 DOI: 10.1007/s11065-015-9291-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.
Collapse
|
13
|
Chiò A, Pagani M, Agosta F, Calvo A, Cistaro A, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 2014; 13:1228-40. [PMID: 25453462 DOI: 10.1016/s1474-4422(14)70167-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the past two decades, structural and functional neuroimaging findings have greatly modified longstanding notions regarding the pathophysiology of amyotrophic lateral sclerosis (ALS). Neuroimaging studies have shown that anatomical and functional lesions spread beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. Both MRI and PET studies have shown early and diffuse loss of inhibitory cortical interneurons in the motor cortex (increased levels of functional connectivity and loss of GABAergic neurons, respectively) and diffuse gliosis in white-matter tracts. In ALS endophenotypes, neuroimaging has also shown a diverse spreading of lesions and a dissimilar impairment of functional and structural connections. A possible role of PET in the diagnosis of ALS has recently been proposed. However, most neuroimaging studies have pitfalls, such as a small number and poor clinical characterisation of patients, absence of adequate controls, and scarcity of longitudinal assessments. Studies involving international collaborations, standardised assessments, and large patient cohorts will overcome these shortcomings and provide further insight into the pathogenesis of ALS.
Collapse
Affiliation(s)
- Adriano Chiò
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy.
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Calvo
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Angelina Cistaro
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Positron Emission Tomography Center IRMET S.p.A, Euromedic Inc, Torino, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|