1
|
Vagias H, Byrne ML, Millist L, White O, Clough M, Fielding J. Visuo-Cognitive Phenotypes in Early Multiple Sclerosis: A Multisystem Model of Visual Processing. J Clin Med 2024; 13:649. [PMID: 38337342 PMCID: PMC10855997 DOI: 10.3390/jcm13030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Cognitive impairment can emerge in the earliest stages of multiple sclerosis (MS), with heterogeneity in cognitive deficits often hindering symptom identification and management. Sensory-motor dysfunction, such as visual processing impairment, is also common in early disease and can impact neuropsychological task performance in MS. However, cognitive phenotype research in MS does not currently consider the relationship between early cognitive changes and visual processing impairment. OBJECTIVES This study explored the relationship between cognition and visual processing in early MS by adopting a three-system model of afferent sensory, central cognitive and efferent ocular motor visual processing to identify distinct visuo-cognitive phenotypes. METHODS Patients with clinically isolated syndrome and relapsing-remitting MS underwent neuro-ophthalmic, ocular motor and neuropsychological evaluation to assess each visual processing system. The factor structure of ocular motor variables was examined using exploratory factor analysis, and phenotypes were identified using latent profile analysis. RESULTS Analyses revealed three ocular-motor constructs (cognitive control, cognitive processing speed and basic visual processing) and four visuo-cognitive phenotypes (early visual changes, efferent-cognitive, cognitive control and afferent-processing speed). While the efferent-cognitive phenotype was present in significantly older patients than was the early visual changes phenotype, there were no other demographic differences between phenotypes. The efferent-cognitive and cognitive control phenotypes had poorer performance on the Symbol Digit Modalities Test compared to that of other phenotypes; however, no other differences in performance were detected. CONCLUSION Our findings suggest that distinct visual processing deficits in early MS may differentially impact cognition, which is not captured using standard neuropsychological evaluation. Further research may facilitate improved symptom identification and intervention in early disease.
Collapse
Affiliation(s)
- Hariklia Vagias
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Melbourne 3800, Australia; (H.V.)
| | - Michelle L. Byrne
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Monash University, Melbourne 3800, Australia; (H.V.)
| | - Lyn Millist
- Department of Neuroscience, Alfred Hospital, Melbourne 3004, Australia
| | - Owen White
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia (J.F.)
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia (J.F.)
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia (J.F.)
| |
Collapse
|
2
|
Simani L, Roozbeh M, Shojaei M, Rostami M, Roozbeh M, Sahraian MA. Cognitive deficits in multiple sclerosis: Auditory and visual attention and inhibitory control. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-8. [PMID: 36972606 DOI: 10.1080/23279095.2023.2192408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND A growing body of evidence has been paid to the cognitive impairment in patients with multiple sclerosis (MS). However, studies concerning cognitive functions in MS have also yielded conflicting results. This study investigates the attention and inhibitory control functions in patients with MS and their relationship with other clinical features, such as depression and fatigue in these patients. METHODS Participants included 80 patients with MS and 60 healthy controls. The attention and inhibitory control, fatigue, and psychiatric screening in all subjects were studied, respectively with the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT), Fatigue Severity Scale (FSS), and the Hospital Anxiety and Depression Scale (HADS). RESULTS Patients with MS performed the IVA-CPT task more poorly than the healthy control group (p < 0.001). However, multiple regression analysis did not show any significant relationship between disease duration, FSS, and HADS on attention and inhibitory control. CONCLUSION Inhibitory control and attention are significantly impaired in patients with MS. Finding the basics of cognitive deficits in MS have potentially important clinical implications for developing better cognitive rehabilitation strategies.
Collapse
Affiliation(s)
- Leila Simani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Mahrooz Roozbeh
- Department of Cognitive Neuroscience, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Maziyar Shojaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami
- Cognitive Sciences Lab, Allameh Tabataba'i University, Tehran, Iran
| | - Mehrdad Roozbeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Trofimov AO, Agarkova DI, Trofimova KA, Lidji-Goryaev K, Bragin DE. Moderate Severity SARS-CoV-2 (COVID-19) Affects Ocular Vergence Indices: Eye Tracking-Based Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1425:325-330. [PMID: 37581806 PMCID: PMC11351317 DOI: 10.1007/978-3-031-31986-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
OBJECTIVE Since the start of the SARS-CoV-2 (COVID-19) pandemic, it has become clear that the brain is one of the main targets for acute and chronic damage. Although neurodegenerative changes have yet to be investigated, there is already a large body of data on damage to its fiber tracts. A mobile eye tracker is possibly one of the best tools to study such damage in a COVID hospital setting. At the same time, the available data indicate that eye tracking parameters, even in healthy volunteers, demonstrate a distinct gender-specific difference.The aim of the work is to evaluate functional and structural impairments of the fiber tracts and to find possible gender-specific dynamics of eye tracking indicators in the acute period of COVID-19 pneumonia (Delta variant) of moderate severity. MATERIALS AND METHODS A single-center non-randomized retrospective study included 84 patients in the acute period of moderate severity SARS-CoV-2 (COVID-19) pneumonia (Delta variant) (Group 1). The mean time from admission was 1.4 ± 1.2 days. M:41, F:43. According to thoracic CT, the lung involvement ranged from CT 1 to CT 2. SpO2 ranged from 95% to 99%. The mean age was 35.5 ± 14.8 years (from 18 to 60). The control group (Group 2) included 158 healthy volunteers without pathology of the vision organs and central nervous system.The eye vergence index (VRx) was determined using eye tracking as a motion correlation coefficient between the angular velocities of the left and right eyeballs and was a measure of the conjugation of horizontal and vertical eye movements.The mobile complex Eye Tracker Low-Speed 20 (BVG LLC, the Netherlands) was used. Eye tracking parameters were assessed by vertical and horizontal eye vergence (VVRx and HVRx).Statistical analysis was done using the methods of parametric and non-parametric statistics. RESULTS Moderate COVID-19 pneumonia resulted in a significant decrease in both VVRx and HVRx compared to controls (0.763 ± 0.127 and 0.856 ± 0.043; p < 0.000001; 0.729 ± 0.018 and 0.776 ± 0.023 p < 0.000001, respectively). VVRx values were significantly higher in men (0.775 ± 0.046 and 0.747 ± 0.091, p = 0.019, respectively), while ХVRx values were significantly higher in women (0.665 ± 0.018 and 0.728 ± 0.024, p < 0.0000001, respectively). CONCLUSIONS SARS-CoV-2 (COVID-19) of moderate severity is accompanied by a significant deterioration in eye tracking performance proving functional and structural impairments (p < 0.05). VVRx was significantly higher in men, and HVRx was substantially greater in women reflecting gender-specific differences.
Collapse
Affiliation(s)
- Alex O Trofimov
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Darya I Agarkova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Kseniia A Trofimova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Kyrill Lidji-Goryaev
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
4
|
Working Memory Phenotypes in Early Multiple Sclerosis: Appraisal of Phenotype Frequency, Progression and Test Sensitivity. J Clin Med 2022; 11:jcm11102936. [PMID: 35629061 PMCID: PMC9148093 DOI: 10.3390/jcm11102936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Working memory (WM) impairments are common and debilitating symptoms of multiple sclerosis (MS), often emerging early in the disease. Predominantly, WM impairments are considered in a binary manner, with patients considered either impaired or not based on a single test. However, WM is comprised of different activated subcomponents depending upon the type of information (auditory, visual) and integration requirements. As such, unique WM impairment phenotypes occur. We aimed to determine the most frequent WM phenotypes in early MS, how they progress and which WM test(s) provide the best measure of WM impairment. A total of 88 participants (63 early relapsing–remitting MS: RRMS, 25 healthy controls) completed five WM tests (visual–spatial, auditory, episodic, executive) as well as the symbol digit modalities test as a measure of processing speed. RRMS patients were followed-up for two years. Factors affecting WM (age/gender/intelligence/mood) and MS factors (disease duration/disability) were also evaluated. Some 61.9% of RRMS patients were impaired on at least one WM subcomponent. The most subcomponents impaired were visual,–spatial and auditory WM. The most common WM phenotypes were; (1) visual–spatial sketchpad + episodic buffer + phonological loop + central executive, (2) visual–spatial sketchpad + central executive. The test of visual–spatial WM provided the best diagnostic accuracy for detecting WM impairment and progression. The SDMT did not achieve diagnostic accuracy greater than chance. Although this may be unsurprising, given that the SDMT is a measure of cognitive processing speed in MS, this does highlight the limitation of the SDMT as a general screening tool for cognitive impairment in early MS.
Collapse
|
5
|
Eye Movement Alterations in Post-COVID-19 Condition: A Proof-of-Concept Study. SENSORS 2022; 22:s22041481. [PMID: 35214383 PMCID: PMC8875414 DOI: 10.3390/s22041481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
There is much evidence pointing out eye movement alterations in several neurological diseases. To the best of our knowledge, this is the first video-oculography study describing potential alterations of eye movements in the post-COVID-19 condition. Visually guided saccades, memory-guided saccades, and antisaccades in horizontal axis were measured. In all visual tests, the stimulus was deployed with a gap condition. The duration of the test was between 5 and 7 min per participant. A group of n=9 patients with the post-COVID-19 condition was included in this study. Values were compared with a group (n=9) of healthy volunteers whom the SARS-CoV-2 virus had not infected. Features such as centripetal and centrifugal latencies, success rates in memory saccades, antisaccades, and blinks were computed. We found that patients with the post-COVID-19 condition had eye movement alterations mainly in centripetal latency in visually guided saccades, the success rate in memory-guided saccade test, latency in antisaccades, and its standard deviation, which suggests the involvement of frontoparietal networks. Further work is required to understand these eye movements' alterations and their functional consequences.
Collapse
|
6
|
Wang W, Clough M, White O, Shuey N, Van Der Walt A, Fielding J. Detecting Cognitive Impairment in Idiopathic Intracranial Hypertension Using Ocular Motor and Neuropsychological Testing. Front Neurol 2021; 12:772513. [PMID: 34867761 PMCID: PMC8635089 DOI: 10.3389/fneur.2021.772513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
Objective: To determine whether cognitive impairments in patients with Idiopathic Intracranial Hypertension (IIH) are correlated with changes in visual processing, weight, waist circumference, mood or headache, and whether they change over time. Methods: Twenty-two newly diagnosed IIH patients participated, with a subset assessed longitudinally at 3 and 6 months. Both conventional and novel ocular motor tests of cognition were included: Symbol Digit Modalities Test (SDMT), Stroop Colour and Word Test (SCWT), Digit Span, California Verbal Learning Test (CVLT), prosaccade (PS) task, antisaccade (AS) task, interleaved antisaccade-prosaccade (AS-PS) task. Patients also completed headache, mood, and visual functioning questionnaires. Results: IIH patients performed more poorly than controls on the SDMT (p< 0.001), SCWT (p = 0.021), Digit Span test (p< 0.001) and CVLT (p = 0.004) at baseline, and generated a higher proportion of AS errors in both the AS (p< 0.001) and AS-PS tasks (p = 0.007). Further, IIH patients exhibited prolonged latencies on the cognitively complex AS-PS task (p = 0.034). While weight, waist circumference, headache and mood did not predict performance on any experimental measure, increased retinal nerve fibre layer (RNFL) was associated with AS error rate on both the block [F(3, 19)=3.22, B = 0.30, p = 0.022] and AS-PS task [F(3, 20) = 2.65, B = 0.363, p = 0.013]. Unlike ocular motor changes, impairments revealed on conventional tests of cognition persisted up to 6 months. Conclusion: We found multi-domain cognitive impairments in IIH patients that were unrelated to clinical characteristics. Marked ocular motor inhibitory control deficits were predicted by RNFL thickness but remained distinct from other cognitive changes, underscoring the significance of visual processing changes in IIH.
Collapse
Affiliation(s)
- Wendy Wang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Owen White
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Neil Shuey
- Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Gromisch ES, Dhari Z. Identifying Early Neuropsychological Indicators of Cognitive Involvement in Multiple Sclerosis. Neuropsychiatr Dis Treat 2021; 17:323-337. [PMID: 33574669 PMCID: PMC7872925 DOI: 10.2147/ndt.s256689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system that is most commonly seen in early to middle adulthood, although it can be diagnosed during childhood or later in life. While cognitive impairment can become more prevalent and severe as the disease progresses, signs of cognitive involvement can be apparent in the early stages of the disease. In this review, we discuss the prevalence and types of cognitive impairment seen in early MS, including the specific measures used to identify them, as well as the challenges in characterizing their frequency and progression. In addition to examining the progression of early cognitive involvement over time, we explore the clinical factors associated with early cognitive involvement, including demographics, level of physical disability, disease modifying therapy use, vocational status, and psychological and physical symptoms. Given the prevalence and functional impact these impairments can have for persons with MS, considerations for clinicians are provided, such as the role of early cognitive screenings and the importance of comprehensive neuropsychological assessments.
Collapse
Affiliation(s)
- Elizabeth S Gromisch
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zaenab Dhari
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
| |
Collapse
|
8
|
Symons GF, Clough M, O’Brien WT, Ernest J, Salberg S, Costello D, Sun M, Brady RD, McDonald SJ, Wright DK, White O, Abel L, O’Brien TJ, Mccullough J, Aniceto R, Lin IH, Agoston DV, Fielding J, Mychasiuk R, Shultz SR. Shortened telomeres and serum protein biomarker abnormalities in collision sport athletes regardless of concussion history and sex. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220975609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mild brain injuries are frequent in athletes engaging in collision sports and have been linked to a range of long-term neurological abnormalities. There is a need to identify how these potential abnormalities manifest using objective measures; determine whether changes are due to concussive and/or sub-concussive injuries; and examine how biological sex affects outcomes. This study investigated cognitive, cellular, and molecular biomarkers in male and female amateur Australian footballers (i.e. Australia’s most participated collision sport). 95 Australian footballers (69 males, 26 females), both with and without a history of concussion, as well as 49 control athletes (28 males, 21 females) with no history of brain trauma or participation in collision sports were recruited to the study. Ocular motor assessment was used to examine cognitive function. Telomere length, a biomarker of cellular senescence and neurological health, was examined in saliva. Serum levels of tau, phosphorylated tau, neurofilament light chain, and 4-hydroxynonenal were used as markers to assess axonal injury and oxidative stress. Australian footballers had reduced telomere length (p = 0.031) and increased serum protein levels of 4-hydroxynonenal (p = 0.001), tau (p = 0.007), and phosphorylated tau (p = 0.036). These findings were independent of concussion history and sex. No significant ocular motor differences were found. Taken together, these findings suggest that engagement in collision sports, regardless of sex or a history of concussion, is associated with shortened telomeres, axonal injury, and oxidative stress. These saliva- and serum-based biomarkers may be useful to monitor neurological injury in collision sport athletes.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, Australia
| | | | - Joel Ernest
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | | | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Owen White
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Larry Abel
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Terence J O’Brien
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jesse Mccullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Joanne Fielding
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Nij Bijvank J, Petzold A, Coric D, Tan H, Uitdehaag B, Balk L, van Rijn L. Saccadic delay in multiple sclerosis: A quantitative description. Vision Res 2020; 168:33-41. [DOI: 10.1016/j.visres.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
|
10
|
Clough M, Dobbing J, Stankovich J, Ternes A, Kolbe S, White OB, Fielding J. Cognitive processing speed deficits in multiple sclerosis: Dissociating sensorial and motor processing changes from cognitive processing speed. Mult Scler Relat Disord 2019; 38:101522. [PMID: 31785491 DOI: 10.1016/j.msard.2019.101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The assessment of cognitive information processing speed (IPS) is complicated in MS, with altered performance on tests such as the Symbol Digit Modalities Test (SDMT) potentially representing changes not only within cognitive networks but in the initial sensorial transmission of information to cognitive networks, and/or efferent transmission of the motor response. OBJECTIVE We aimed to isolate and characterise cognitive IPS deficits in MS using ocular motor tasks; a prosaccade task (used to assess and control for sensorial and motor IPS) which was then used to adjust performance on the Simon task (cognitive IPS). METHODS All participants (22 MS patients with early disease, 22 healthy controls) completed the ocular motor tasks and the SDMT. The Simon task assessed cognitive IPS by manipulating the relationship between a stimulus location and its associated response direction. Two trial types were interleaved: (1) congruent, where stimulus location = response direction; or (2) incongruent, where stimulus location ≠ response direction. RESULTS MS patients did not perform differently to controls on the SDMT. For OM tasks, when sensorial and motor IPS was controlled, MS patients had significantly slower cognitive IPS (incongruent trials only) and poorer conflict resolution. SDMT performance did not correlate with slower cognitive IPS in MS patients, highlighting the limitation of using SDMT performance to interpret cognitive IPS changes in patients with MS. CONCLUSION Cognitive IPS deficits in MS patients are dissociable from changes in other processing stages, manifesting as impaired conflict resolution between automatic and non-automatic processes. Importantly, these results raise concerns about the SDMT as an accurate measure of cognitive IPS in MS.
Collapse
Affiliation(s)
- M Clough
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Centre, Commercial Rd, Melbourne, VIC, 3004, Australia.
| | - J Dobbing
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3050, Australia
| | - J Stankovich
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Centre, Commercial Rd, Melbourne, VIC, 3004, Australia
| | - A Ternes
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - S Kolbe
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Centre, Commercial Rd, Melbourne, VIC, 3004, Australia
| | - O B White
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Centre, Commercial Rd, Melbourne, VIC, 3004, Australia
| | - J Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Centre, Commercial Rd, Melbourne, VIC, 3004, Australia; School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| |
Collapse
|
11
|
Gajamange S, Shelton A, Clough M, White O, Fielding J, Kolbe S. Functional correlates of cognitive dysfunction in clinically isolated syndromes. PLoS One 2019; 14:e0219590. [PMID: 31314815 PMCID: PMC6636738 DOI: 10.1371/journal.pone.0219590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/27/2019] [Indexed: 12/04/2022] Open
Abstract
Cognitive dysfunction can be identified in patients with clinically isolated syndromes suggestive of multiple sclerosis using ocular motor testing. This study aimed to identify the functional neural correlates of cognitive dysfunction in patients with clinically isolated syndrome using MRI. Eighteen patients with clinically isolated syndrome and 17 healthy controls were recruited. Subjects underwent standard neurological and neuropsychological testing. Subjects also underwent functional MRI (fMRI) during a cognitive ocular motor task, involving pro-saccade (direct gaze towards target) and anti-saccade (direct gaze away from target) trials. Ocular motor performance variables (averaged response time and error rate) were calculated for each subject. Patients showed a trend towards a greater rate of anti-saccade errors (p = 0.09) compared to controls. Compared to controls, patients exhibited increased activation in the right postcentral, right supramarginal gyrus, and the right parietal operculum during the anti-saccade>pro-saccade contrast. This study demonstrated that changes in functional organisation of cognitive brain networks is associated with subtle cognitive changes in patients with clinically isolated syndrome.
Collapse
Affiliation(s)
- Sanuji Gajamange
- Department of Medicine and Radiology, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Annie Shelton
- Department of Psychology, MIND Institute, and Center for Mind and Brain, University of California, Davis, Davis, California, United States of America
| | - Meaghan Clough
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen White
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Joanne Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Scott Kolbe
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Kincses B, Hérák BJ, Szabó N, Bozsik B, Faragó P, Király A, Veréb D, Tóth E, Kocsis K, Bencsik K, Vécsei L, Kincses ZT. Gray Matter Atrophy to Explain Subclinical Oculomotor Deficit in Multiple Sclerosis. Front Neurol 2019; 10:589. [PMID: 31214114 PMCID: PMC6558169 DOI: 10.3389/fneur.2019.00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/20/2019] [Indexed: 01/31/2023] Open
Abstract
Eye movement deficits are frequently noted in multiple sclerosis during bedside clinical examination, but subtle dysfunction may remain undetected and might only be identified with advanced approaches. While classical neurology provides insight into the complex functional anatomy of oculomotor functions, little is known about the structural background of this dysfunction in MS. Thirty four clinically stable, treated relapsing-remitting MS patients with mild disability and 34 healthy controls were included in our study. Group difference and correlation with clinical parameters were analyzed in case of the latency, peak-velocity, gain, dysconjugacy index, and performance during a saccade and anti-saccade task. High-resolution T1 weighted, T2 FLAIR, and double inversion recovery images were acquired on 3T to evaluate the correlation between behavioral and MRI parameters, such as T2 lesion and T1 black-hole burden, global brain, gray, and white matter atrophy. VBM style analysis was used to identify the focal gray matter atrophy responsible for oculomotor dysfunction. Significantly increased latency in the prosaccade task and significantly worse performance in the anti-saccade task were found in MS patients. The detailed examination of conjugated eye movements revealed five subclinical internuclear ophthalmoparesis cases. The peak velocity and latency of the anti-saccade movement correlated with the number of black holes, but none of the eye movement parameters were associated with the T2 lesion burden or location. Global gray matter volume correlated with saccade and anti-saccade latency, whereas white matter and total brain volume did not. Local gray matter atrophy in the left inferio-parietal lobule and temporo-occipital junction correlated with anti-saccade peak velocity. Our results show that neurodegeneration-like features of the MRI (black-hole, gray matter atrophy) are the best predictors of eye movement deficit in MS. Concurring with the clinico-radiological paradox, T2 lesion burden cannot explain the behavioral results. Importantly, anti-saccade peak velocity correlates with gray matter atrophy in the left parietal regions, which are frequently implicated in attention tasks.
Collapse
Affiliation(s)
- Bálint Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Benjámin J Hérák
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Bence Bozsik
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztián Kocsis
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,Department of Radiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Ternes AM, Clough M, Foletta P, White O, Fielding J. Executive control deficits correlate with reduced frontal white matter volume in multiple sclerosis. J Clin Exp Neuropsychol 2019; 41:723-729. [DOI: 10.1080/13803395.2019.1614536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anne-Marie Ternes
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | - Meaghan Clough
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia
| | - Paige Foletta
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia
| | - Owen White
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
14
|
Does cognitive reserve play any role in multiple sclerosis? A meta-analytic study. Mult Scler Relat Disord 2019; 30:265-276. [DOI: 10.1016/j.msard.2019.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
|
15
|
Larrazabal A, García Cena C, Martínez C. Video-oculography eye tracking towards clinical applications: A review. Comput Biol Med 2019; 108:57-66. [DOI: 10.1016/j.compbiomed.2019.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/20/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
|
16
|
Yousef A, Devereux M, Gourraud PA, Jonzzon S, Suleiman L, Waubant E, Green A, Graves JS. Subclinical Saccadic Eye Movement Dysfunction in Pediatric Multiple Sclerosis. J Child Neurol 2019; 34:38-43. [PMID: 30463467 DOI: 10.1177/0883073818807787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Efferent visual dysfunction in children could lead to impaired quality of life at home and school. Eye-tracking can detect subtle efferent dysfunction missed on bedside examination but has not been validated in the pediatric multiple sclerosis population. OBJECTIVE We sought to determine the feasibility of eye-tracking in children and associations with multiple sclerosis. METHODS Participants meeting criteria for pediatric multiple sclerosis without acute efferent vision abnormalities and healthy controls were recruited. Multiple sclerosis participants underwent a clinical assessment and saccade and antisaccade testing paradigms. Intraclass correlation coefficients were generated for intertest repeatability. Adjusting for age and intereye correlations, generalized estimating equations compared latencies with case status, Expanded Disability Status Scale and Symbol Digit Modalities Test (SDMT) scores. RESULTS We eye-tracked 15 children with multiple sclerosis (n = 30 eyes, mean age 15.6 ± 2.1, mean disease duration 3.9 years, median Expanded Disability Status Scale 1.5) compared to 6 healthy controls (n = 12 eyes, age 14.3 ± .95). The intraclass correlation coefficient for repeated trials was 0.85. Adjusting for age, saccadic latency was 60 milliseconds (ms) longer for cases than controls (95% confidence interval = 26.4, 93.8; P = .0005). For antisaccadic latency, we observed a similar trend of 60 ms longer for cases than controls ( P = .06). CONCLUSION Eye-tracking is a short noninvasive examination, and high intertest repeatability supports use of eye-tracking technology in pediatric multiple sclerosis. Longer saccadic latencies were seen in children with multiple sclerosis despite short disease duration and low Expanded Disability Status Scale scores.
Collapse
Affiliation(s)
- Andrew Yousef
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Devereux
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Pierre-Antoine Gourraud
- 2 Université de Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, Nantes, France.,3 CHU de Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Soren Jonzzon
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Leena Suleiman
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuelle Waubant
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ari Green
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer S Graves
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,4 Department of Neuroscience, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
17
|
Ternes AM, Clough M, Foletta P, White O, Fielding J. Characterization of inhibitory failure in Multiple Sclerosis: Evidence of impaired conflict resolution. J Clin Exp Neuropsychol 2018; 41:320-329. [PMID: 30526274 DOI: 10.1080/13803395.2018.1552756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Inhibitory control deficits are frequently reported in Multiple Sclerosis (MS), although it is unclear whether these deficits represent a global or process-specific failure. Notably, most models of inhibitory control recognize at least two dissociable processes, the most consistent being: (a) the inhibition of a dominant response: response suppression, and (b) the inhibition of a dominant response and initiation of a nondominant response: executive control. This study aimed to ascertain the processes underlying inhibitory failure in MS. METHOD Twenty-three MS patients and 25 healthy controls completed a battery of commonly used inhibitory tasks, with measures from each task entered into a principal components analysis with orthogonal (varimax) rotation. RESULTS As anticipated, two components emerged, with tasks evaluating response suppression (stop signal, go/no go) loading on a common component, and tasks evaluating executive control (Stroop, antisaccade, endogenously-cued saccade) loading on a separate common component. Composite scores were generated for each component and compared between groups. Unlike response suppression scores, executive control scores were significantly poorer for MS patients. CONCLUSIONS Inhibitory control deficits in MS may reflect poor resolution in the context of competing processes, rather than difficulty in preventing the execution of an inappropriate response.
Collapse
Affiliation(s)
- Anne-Marie Ternes
- a School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences , Monash University , Clayton , Victoria , Australia
| | - Meaghan Clough
- b Department of Neurosciences , Central Clinical School, Monash University, Alfred Hospital , South Yarra , Victoria , Australia
| | - Paige Foletta
- b Department of Neurosciences , Central Clinical School, Monash University, Alfred Hospital , South Yarra , Victoria , Australia
| | - Owen White
- b Department of Neurosciences , Central Clinical School, Monash University, Alfred Hospital , South Yarra , Victoria , Australia
| | - Joanne Fielding
- a School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences , Monash University , Clayton , Victoria , Australia.,b Department of Neurosciences , Central Clinical School, Monash University, Alfred Hospital , South Yarra , Victoria , Australia
| |
Collapse
|
18
|
|
19
|
Coric D, Nij Bijvank JA, van Rijn LJ, Petzold A, Balk LJ. The role of optical coherence tomography and infrared oculography in assessing the visual pathway and CNS in multiple sclerosis. Neurodegener Dis Manag 2018; 8:323-335. [DOI: 10.2217/nmt-2018-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, a current overview is provided of how optical coherence tomography and infrared oculography can aid in assessing the visual system and CNS in multiple sclerosis (MS). Both afferent and efferent visual disorders are common in MS and visual complaints can have a tremendous impact on daily functioning. Optical coherence tomography and infrared oculography can detect and quantify visual disorders with high accuracy, but could also serve as quantitative markers for inflammation, neurodegeneration and network changes including cognitive decline in MS patients. The assessment of the efferent and afferent visual pathways is relevant for monitoring and predicting the disease course, but is also potentially valuable as an outcome measure in therapeutic trials.
Collapse
Affiliation(s)
- Danko Coric
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jenny A Nij Bijvank
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Laurentius J van Rijn
- Department of Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Axel Petzold
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
- Moorfields Eye Hospital & The National Hospital for Neurology & Neurosurgery, London, UK
| | - Lisanne J Balk
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Clough M, Foletta P, Frohman AN, Sears D, Ternes A, White OB, Fielding J. Multiple sclerosis: Executive dysfunction, task switching and the role of attention. Mult Scler J Exp Transl Clin 2018; 4:2055217318771781. [PMID: 29707228 PMCID: PMC5912274 DOI: 10.1177/2055217318771781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/27/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background It has been suggested that switching ability might not be affected in multiple sclerosis (MS) as previously thought; however, whether this is true under more ‘real-world’ conditions when asymmetry in task difficulty is present has not been ascertained. Objective The objective of this paper is to examine the impact of task difficulty asymmetry on task switching ability in MS. Method An ocular motor (OM) paradigm that interleaves the simple task of looking towards a target (prosaccade, PS) with the cognitively more difficult task of looking away from a target (antisaccade, PS) was used. Two switching conditions: (1) PS switch cost, switching to a simple task from a difficult task (PS switch), relative to performing two simple tasks concurrently (PS repeat); (2) AS switch cost, switching to a difficult task from a simple task (AS switch) relative to performing two difficult tasks concurrently (AS repeat). Forty-five relapsing–remitting MS patients and 30 control individuals were compared. Results Controls and patients produced a similar magnitude PS switch cost, suggesting that task difficulty asymmetry does not detrimentally impact MS patients when transitioning from a more difficult task to a simpler task. However, MS patients alone found switching from the simpler PS trial to the more difficult AS trial easier (shorter latency and reduced error) than performing two AS trials consecutively (AS switch benefit). Further, MS patients performed significantly more errors than controls when required to repeat the same trial consecutively. Conclusion MS patients appear to find the maintenance of task-relevant processes difficult not switching per se, with deficits exacerbated under increased attentional demands.
Collapse
Affiliation(s)
- M Clough
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - P Foletta
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - A N Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, USA
| | - D Sears
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, USA
| | - A Ternes
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - O B White
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia
| | - J Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| |
Collapse
|
21
|
Clough M, Mutimer S, Wright DK, Tsang A, Costello DM, Gardner AJ, Stanwell P, Mychasiuk R, Sun M, Brady RD, McDonald SJ, Webster KM, Johnstone MR, Semple BD, Agoston DV, White OB, Frayne R, Fielding J, O'Brien TJ, Shultz SR. Oculomotor Cognitive Control Abnormalities in Australian Rules Football Players with a History of Concussion. J Neurotrauma 2018; 35:730-738. [DOI: 10.1089/neu.2017.5204] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Meaghan Clough
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Steven Mutimer
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - David K. Wright
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Adrian Tsang
- The Department of Radiology, The University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Center, Foothills Medical Center, Calgary, Alberta, Canada
| | - Daniel M. Costello
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J. Gardner
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Peter Stanwell
- School of Health Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Richelle Mychasiuk
- The Department of Psychology, The University of Calgary, Calgary, Alberta, Canada
| | - Mujun Sun
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Rhys D. Brady
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Kyria M. Webster
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison R. Johnstone
- Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Bridgette D. Semple
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V. Agoston
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, Maryland
| | - Owen B. White
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard Frayne
- The Department of Radiology, The University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Center, Foothills Medical Center, Calgary, Alberta, Canada
| | - Joanne Fielding
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Terence J. O'Brien
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R. Shultz
- The Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Ouallet JC, Cubizolle S, Charré-Morin J, Saubusse A, Tourdias T, Dousset V, Brochet B. Preliminary evidence of the cerebellar role on cognitive performances in clinically isolated syndrome. J Neurol Sci 2017; 385:1-6. [PMID: 29406885 DOI: 10.1016/j.jns.2017.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 11/02/2017] [Accepted: 11/29/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cerebellar and cognitive dysfunction can occur early in clinically isolated syndrome (CIS). Eye tracking is a reliable tool for the evaluation of both subtle cerebellar symptoms and cognitive impairment. OBJECTIVES To investigate the early cognitive profile using neuropsychological and ocular motor (OM) testing in CIS with and without cerebellar dysfunction with OM testing compared to healthy subjects (HS). METHODS Twenty-eight patients and 12 HC underwent OM and neuropsychological testing. Cerebellar impairment was defined by the registration of saccadic intrusions and/or at least 10% of dysmetria during ocular motor recording. Visually guided saccade (VGS), memory-guided saccade (MGS) and antisaccade (AS) paradigms were compared to neuropsychological assessments. RESULTS The group of patients with cerebellar dysfunction (n=16) performed worse on MGS latencies and error rates, and had worse working memory, executive function and information processing speed (IPS) z scores than patients without cerebellar dysfunction. IPS was correlated with the AS error rate in all patients and with the VGS error rate and the MGS final eye position ratio in cerebellar patients. CONCLUSION Eye tracking is a sensitive tool to assess cognitive and cerebellar dysfunctions in CIS. In CIS patients, cerebellar impairment is associated with working memory, executive functions and IPS slowness.
Collapse
Affiliation(s)
- Amandine Moroso
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Aurélie Ruet
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Delphine Lamargue-Hamel
- Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Fanny Munsch
- Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Mathilde Deloire
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | | | - Stéphanie Cubizolle
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | - Julie Charré-Morin
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | - Aurore Saubusse
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | - Thomas Tourdias
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Vincent Dousset
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Bruno Brochet
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France.
| |
Collapse
|
23
|
Coe BC, Munoz DP. Mechanisms of saccade suppression revealed in the anti-saccade task. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0192. [PMID: 28242726 DOI: 10.1098/rstb.2016.0192] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2016] [Indexed: 01/03/2023] Open
Abstract
The anti-saccade task has emerged as an important tool for investigating the complex nature of voluntary behaviour. In this task, participants are instructed to suppress the natural response to look at a peripheral visual stimulus and look in the opposite direction instead. Analysis of saccadic reaction times (SRT: the time from stimulus appearance to the first saccade) and the frequency of direction errors (i.e. looking toward the stimulus) provide insight into saccade suppression mechanisms in the brain. Some direction errors are reflexive responses with very short SRTs (express latency saccades), while other direction errors are driven by automated responses and have longer SRTs. These different types of errors reveal that the anti-saccade task requires different forms of suppression, and neurophysiological experiments in macaques have revealed several potential mechanisms. At the start of an anti-saccade trial, pre-emptive top-down inhibition of saccade generating neurons in the frontal eye fields and superior colliculus must be present before the stimulus appears to prevent express latency direction errors. After the stimulus appears, voluntary anti-saccade commands must compete with, and override, automated visually initiated saccade commands to prevent longer latency direction errors. The frequencies of these types of direction errors, as well as SRTs, change throughout the lifespan and reveal time courses for development, maturation, and ageing. Additionally, patients diagnosed with a variety of neurological and/or psychiatric disorders affecting the frontal lobes and/or basal ganglia produce markedly different SRT distributions and types of direction errors, which highlight specific deficits in saccade suppression and inhibitory control. The anti-saccade task therefore provides valuable insight into the neural mechanisms of saccade suppression and is a valuable tool in a clinical setting.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Collapse
Affiliation(s)
- Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7l 3N6
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7l 3N6
| |
Collapse
|
24
|
Lizak N, Clough M, Millist L, Kalincik T, White OB, Fielding J. Impairment of Smooth Pursuit as a Marker of Early Multiple Sclerosis. Front Neurol 2016; 7:206. [PMID: 27917151 PMCID: PMC5116770 DOI: 10.3389/fneur.2016.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a diffuse disease that disrupts wide-ranging cerebral networks. The control of saccades and smooth pursuit are similarly dependent upon widespread networks, with the assessment of pursuit offering an opportunity to examine feedback regulation. We sought to characterize pursuit deficits in MS and to examine their relationship with disease duration. METHODS Twenty healthy controls, 20 patients with a clinically isolated syndrome (CIS), and 40 patients with clinically definite MS (CDMS) participated. Thirty-six trials of Rashbass' step-ramp paradigm of smooth pursuit, evenly split by velocity (8.65°, 17.1°, and 25.9°/s) and ramp direction (left/right), were performed. Four parameters were measured: latency of pursuit onset, closed-loop pursuit gain, number of saccades, and summed saccade amplitudes during pursuit. For CDMS patients, these were correlated with disease duration and Expanded Disability Status Scale (EDSS) score. RESULTS Closed-loop pursuit gain was significantly lower in CIS than controls at all speeds. CDMS gain was lower than controls at medium pursuit velocity. CDMS patients also displayed longer pursuit latency than controls at all velocities. All patients accumulated increased summed saccade amplitudes at slow and medium pursuit speeds, and infrequent high-amplitude saccades at the fast speed. No pursuit variable significantly correlated with EDSS or disease duration in CDMS patients. CONCLUSION Smooth pursuit is significantly compromised in MS from onset. Low pursuit gain and increased saccadic amplitudes may be robust markers of disseminated pathology in CIS and in more advanced MS. Pursuit may be useful in measuring early disease.
Collapse
Affiliation(s)
- Nathaniel Lizak
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Monash School of Medicine, Monash University, Melbourne, VIC, Australia; School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Meaghan Clough
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia
| | - Lynette Millist
- Department of Neurology, Royal Melbourne Hospital , Melbourne, VIC , Australia
| | - Tomas Kalincik
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Owen B White
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joanne Fielding
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Fielding J, Clough M, Beh S, Millist L, Sears D, Frohman AN, Lizak N, Lim J, Kolbe S, Rennaker RL, Frohman TC, White OB, Frohman EM. Ocular motor signatures of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 2015; 11:637-45. [PMID: 26369516 DOI: 10.1038/nrneurol.2015.174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The anatomical and functional overlap between ocular motor command circuitry and the higher-order networks that form the scaffolding for cognition makes for a compelling hypothesis that measures of ocular motility could provide a means to sensitively interrogate cognitive dysfunction in people with multiple sclerosis (MS). Such an approach may ultimately provide objective and reproducible measures of cognitive dysfunction that offer an innovative capability to refine diagnosis, improve prognostication, and more accurately codify disease burden. A further dividend may be the validation and application of biomarkers that can be used in studies aimed at identifying and monitoring preventative, protective and even restorative properties of novel neurotherapeutics in MS. This Review discusses the utility of ocular motor measures in patients with MS to characterize disruption to wide-ranging networks that support cognitive function.
Collapse
Affiliation(s)
- Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia.,Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Meaghan Clough
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Shin Beh
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lynette Millist
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Derek Sears
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley N Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nathaniel Lizak
- Monash School of Medicine, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jayne Lim
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, Medical Building, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert L Rennaker
- Department of Bioengineering and Computer Science, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Teresa C Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Owen B White
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3050, Australia
| | - Elliot M Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Bioengineering and Computer Science, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|