1
|
Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer's disease. Alzheimers Res Ther 2022; 14:201. [PMID: 36587215 PMCID: PMC9805257 DOI: 10.1186/s13195-022-01150-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is considered the main pathophysiological protein component of Lewy bodies in synucleinopathies. α-Syn is an intrinsically disordered protein (IDP), and several types of structural conformations have been reported, depending on environmental factors. Since IDPs may have distinctive functions depending on their structures, α-syn can play different roles and interact with several proteins, including amyloid-beta (Aβ) and tau, in Alzheimer's disease (AD) and other neurodegenerative disorders. MAIN BODY In previous studies, α-syn aggregates in AD brains suggested a close relationship between AD and α-syn. In addition, α-syn directly interacts with Aβ and tau, promoting mutual aggregation and exacerbating the cognitive decline. The interaction of α-syn with Aβ and tau presented different consequences depending on the structural forms of the proteins. In AD, α-syn and tau levels in CSF were both elevated and revealed a high positive correlation. Especially, the CSF α-syn concentration was significantly elevated in the early stages of AD. Therefore, it could be a diagnostic marker of AD and help distinguish AD from other neurodegenerative disorders by incorporating other biomarkers. CONCLUSION The overall physiological and pathophysiological functions, structures, and genetics of α-syn in AD are reviewed and summarized. The numerous associations of α-syn with Aβ and tau suggested the significance of α-syn, as a partner of the pathophysiological roles in AD. Understanding the involvements of α-syn in the pathology of Aβ and tau could help address the unresolved issues of AD. In particular, the current status of the CSF α-syn in AD recommends it as an additional biomarker in the panel for AD diagnosis.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Young Chul Youn
- grid.411651.60000 0004 0647 4960Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seong Soo A. An
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - SangYun Kim
- grid.412480.b0000 0004 0647 3378Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-Si, Gyeonggi-Do Republic of Korea
| |
Collapse
|
2
|
Kong Y, Chen Z, Wang X, Wang W, Zhang J. Diagnostic Utility of Cerebrospinal Fluid α-Synuclein in Creutzfeldt-Jakob Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 89:493-503. [PMID: 35912746 DOI: 10.3233/jad-220425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Creutzfeldt-Jakob disease (CJD) can be difficult to distinguish clinically from some non-prion neurological diseases. Previous studies have reported markedly increased levels of α-synuclein in cerebrospinal fluid (CSF) of CJD patients, indicating that it is a potential diagnostic biomarker. OBJECTIVE The aim of this study was to assess the diagnostic power of CSF α-synuclein in discriminating CJD from non-prion disorders. METHODS The Ovid MEDLINE, Cochrane, and Embase databases were searched for articles published on or before February 25, 2022, using the search term (prion diseases OR Creutzfeldt-Jakob syndrome) AND (synuclein OR α-synuclein). The difference in CSF α-synuclein levels between CJD and non-prion diseases was calculated using random-effects models (I2 > 50%) or fixed-effects models (I2 < 50%) in terms of standardized mean difference (SMD) and 95% confidence interval (CI). The publication bias was estimated using funnel plots and the Egger's test. RESULTS Ten studies were included in this study. The concentrations of CSF α-synuclein were significantly higher in CJD patients compared to total non-prion controls (SMD = 1.98, 95% CI 1.60 to 2.36, p < 0.00001), tauopathies (SMD = 1.34, 95% CI 0.99 to 1.68, p < 0.00001), synucleinopathies (SMD = 1.78, 95% CI 1.11 to 2.44, p < 0.00001), or Alzheimer's (SMD = 1.14, 95% CI 0.95 to 1.33, p < 0.00001). CSF α-synuclein could distinguish CJD from non-prion diseases with overall sensitivity of 89% (95% CI 80-95%), specificity of 92% (95% CI 86-95%), and AUC of 0.96 (95% CI: 0.94-0.97). CONCLUSION CSF α-synuclein has excellent diagnostic value in discriminating CJD from non-prion neurological diseases. Given the high heterogeneity among the included studies, further studies are needed to confirm its clinical utility.
Collapse
Affiliation(s)
- Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xue Wang
- Department of Library, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjiao Wang
- Department of Library, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Emdina A, Hermann P, Varges D, Nuhn S, Goebel S, Bunck T, Maass F, Schmitz M, Llorens F, Kruse N, Lingor P, Mollenhauer B, Zerr I. Baseline Cerebrospinal Fluid α-Synuclein in Parkinson's Disease Is Associated with Disease Progression and Cognitive Decline. Diagnostics (Basel) 2022; 12:diagnostics12051259. [PMID: 35626415 PMCID: PMC9140902 DOI: 10.3390/diagnostics12051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Biomarkers are increasingly recognized as tools in the diagnosis and prognosis of neurodegenerative diseases. No fluid biomarker for Parkinson’s disease (PD) has been established to date, but α-synuclein, a major component of Lewy bodies in PD and dementia with Lewy bodies (DLB), has become a promising candidate. Here, we investigated CSF α-synuclein in patients with PD (n = 28), PDD (n = 8), and DLB (n = 5), applying an electrochemiluminescence immunoassay. Median values were non-significantly (p = 0.430) higher in patients with PDD and DLB (287 pg/mL) than in PD (236 pg/mL). A group of n = 36 primarily non-demented patients with PD and PDD was clinically followed for up to two years. A higher baseline α-synuclein was associated with increases in Hoehn and Yahr classifications (p = 0.019) and Beck Depression Inventory scores (p < 0.001) as well as worse performance in Trail Making Test A (p = 0.017), Trail Making Test B (p = 0.043), and the Boston Naming Test (p = 0.002) at follow-up. Surprisingly, higher levels were associated with a better performance in semantic verbal fluency tests (p = 0.046). In summary, CSF α-synuclein may be a potential prognostic marker for disease progression, affective symptoms, and executive cognitive function in PD. Larger-scaled studies have to validate these findings and the discordant results for single cognitive tests in this exploratory investigation.
Collapse
Affiliation(s)
- Anna Emdina
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Correspondence: ; Tel.: +49-551-398-955
| | - Daniela Varges
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Sabine Nuhn
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Stefan Goebel
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Niels Kruse
- Department of Neuropathology, University Medical Centre Göttingen, 37075 Göttingen, Germany;
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 80333 Munich, Germany;
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.E.); (D.V.); (S.N.); (S.G.); (T.B.); (F.M.); (M.S.); (F.L.); (B.M.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
4
|
Altuna M, Ruiz I, Zelaya MV, Mendioroz M. Role of Biomarkers for the Diagnosis of Prion Diseases: A Narrative Review. Medicina (B Aires) 2022; 58:medicina58040473. [PMID: 35454316 PMCID: PMC9030755 DOI: 10.3390/medicina58040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Prion diseases are progressive and irreversible neurodegenerative disorders with a low incidence (1.5–2 cases per million per year). Genetic (10–15%), acquired (anecdotal) and sporadic (85%) forms of the disease have been described. The clinical spectrum of prion diseases is very varied, although the most common symptoms are rapidly progressive dementia, cerebellar ataxia and myoclonus. Mean life expectancy from the onset of symptoms is 6 months. There are currently diagnostic criteria based on clinical phenotype, as well as neuroimaging biomarkers (magnetic resonance imaging), neurophysiological tests (electroencephalogram and polysomnogram), and cerebrospinal fluid biomarkers (14-3-3 protein and real-time quaking-induced conversion (RT-QuIC)). The sensitivity and specificity of some of these tests (electroencephalogram and 14-3-3 protein) is under debate and the applicability of other tests, such as RT-QuIC, is not universal. However, the usefulness of these biomarkers beyond the most frequent prion disease, sporadic Creutzfeldt–Jakob disease, remains unclear. Therefore, research is being carried out on new, more efficient cerebrospinal fluid biomarkers (total tau, ratio total tau/phosphorylated tau and neurofilament light chain) and potential blood biomarkers (neurofilament light chain, among others) to try to universalize access to early diagnosis in the case of prion diseases.
Collapse
Affiliation(s)
- Miren Altuna
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, 08041 Barcelona, Spain;
- Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- CITA-Alzheimer Foundation, 20009 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +34-935-56-59-86; Fax: +34-935-56-56-02
| | - Iñigo Ruiz
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, 08041 Barcelona, Spain;
| | - María Victoria Zelaya
- Department of Pathological Anatomy, Hospital Universitario de Navarra, 31008 Pamplona, Spain;
| | - Maite Mendioroz
- Department of Neurology, Hospital Universitario de Navarra, 31008 Pamplona, Spain;
- Neuroepigenetics Laboratory-Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), 31006 Pamplona, Spain
| |
Collapse
|
5
|
Wang H, Chen M, Sun Y, Xu L, Li F, Han J. Machine Learning-Assisted Pattern Recognition of Amyloid Beta Aggregates with Fluorescent Conjugated Polymers and Graphite Oxide Electrostatic Complexes. Anal Chem 2022; 94:2757-2763. [PMID: 35084168 DOI: 10.1021/acs.analchem.1c03623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Five fluorescent positively charged poly(para-aryleneethynylene) (P1-P5) were designed to construct electrostatic complexes C1-C5 with negatively charged graphene oxide (GO). The fluorescence of conjugated polymers was quenched by the quencher GO. Three electrostatic complexes were enough to distinguish between 12 proteins with 100% accuracy. Furthermore, using these sensor arrays, we could identify the levels of Aβ40 and Aβ42 aggregates (monomers, oligomers, and fibrils) via employing machine learning algorithms, making it an attractive strategy for early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Yimin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211109, China
| | - Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
6
|
Zerr I, Villar-Piqué A, Schmitz VE, Poleggi A, Pocchiari M, Sánchez-Valle R, Calero M, Calero O, Baldeiras I, Santana I, Kovacs GG, Llorens F, Schmitz M. Evaluation of Human Cerebrospinal Fluid Malate Dehydrogenase 1 as a Marker in Genetic Prion Disease Patients. Biomolecules 2019; 9:biom9120800. [PMID: 31795176 PMCID: PMC6995564 DOI: 10.3390/biom9120800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
The exploration of accurate diagnostic markers for differential diagnosis of neurodegenerative diseases is an ongoing topic. A previous study on cerebrospinal fluid (CSF)-mitochondrial malate dehydrogenase 1 (MDH1) in sporadic Creutzfeldt–Jakob disease (sCJD) patients revealed a highly significant upregulation of MDH1. Here, we measured the CSF levels of MDH1 via enzyme-linked immunosorbent assay in a cohort of rare genetic prion disease cases, such as genetic CJD (gCJD) cases, exhibiting the E200K, V210I, P102L (Gerstmann–Sträussler–Scheinker syndrome (GSS)), or D178N (fatal familial insomnia (FFI)) mutations in the PRNP. Interestingly, we observed enhanced levels of CSF-MDH1 in all genetic prion disease patients compared to neurological controls (without neurodegeneration). While E200K and V210I carriers showed highest levels of MDH1 with diagnostic discrimination from controls of 0.87 and 0.85 area under the curve (AUC), FFI and GSS patients exhibited only moderately higher CSF-MDH1 levels than controls. An impact of the PRNP codon 129 methionine/valine (MV) genotype on the amount of MDH1 could be excluded. A correlation study of MDH1 levels with other neurodegenerative marker proteins revealed a significant positive correlation between CSF-MDH1 concentration with total tau (tau) but not with 14-3-3 in E200K, as well as in V210I patients. In conclusion, our study indicated the potential use of MDH1 as marker for gCJD patients which may complement the current panel of diagnostic biomarkers.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE)—Göttingen campus, 37075 Göttingen, Germany
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| | - Anna Villar-Piqué
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| | - Vanda Edit Schmitz
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Anna Poleggi
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (M.P.)
| | - Maurizio Pocchiari
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (M.P.)
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain;
| | - Miguel Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
- Research Program on Digital Health, Chronicity and Healthcare Services (CROSADIS-UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Olga Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. Faculty of Medicine, University of Coimbra, 3004-517 Coimbra, Portugal; (I.B.); (I.S.)
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. Faculty of Medicine, University of Coimbra, 3004-517 Coimbra, Portugal; (I.B.); (I.S.)
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
- University of Toronto, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON M5S 3H2, Canada
| | - Franc Llorens
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE)—Göttingen campus, 37075 Göttingen, Germany
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| |
Collapse
|
7
|
Cerebrospinal Fluid Total and Phosphorylated α-Synuclein in Patients with Creutzfeldt-Jakob Disease and Synucleinopathy. Mol Neurobiol 2018; 56:3476-3483. [PMID: 30136097 DOI: 10.1007/s12035-018-1313-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022]
Abstract
High levels of total α-synuclein (t-α-synuclein) in the cerebrospinal fluid (CSF) were reported in sporadic Creutzfeldt-Jakob disease (sCJD). The potential use of t-α-synuclein in the discrimination of Lewy body dementias (i.e., Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB)) is still under investigation. In addition, phospho-serine-129 α-synuclein (p-α-synuclein) has been described to be slightly increased in the CSF of synucleinopathies. Here, we analyzed t-α-synuclein and p-α-synuclein concentrations and their ratio in the context of differential diagnosis of neurodegenerative diseases. We quantified the levels of CSF t-α-synuclein and p-α-synuclein in a cohort of samples composed of neurological controls (NC), sCJD, PDD, and DLB by means of newly developed specific enzyme-linked immunosorbent assays. T-α-synuclein and p-α-synuclein were specifically elevated in sCJD compared to other disease groups. The area under the curve (AUC) values for t-α-synuclein were higher for the discrimination of sCJD from dementias associated to Lewy bodies as compared to the use of p-α-synuclein. A combination of both markers even increased the diagnostic accuracy. An inverse correlation was observed in CSF between t-α-synuclein and p-α-synuclein, especially in the DLB group, indicating a disease-relevant association between both markers. In conclusion, our data confirm t-α-synuclein and p-α-synuclein as robust biomarkers for sCJD and indicate the potential use of colorimetric t-α-synuclein ELISAs for differential diagnosis of dementia types.
Collapse
|
8
|
Kruse N, Heslegrave A, Gupta V, Foiani M, Villar-Piqué A, Schmitz M, Lehmann S, Teunissen C, Blennow K, Zetterberg H, Mollenhauer B, Zerr I, Llorens F. Interlaboratory validation of cerebrospinal fluid α-synuclein quantification in the diagnosis of sporadic Creutzfeldt-Jakob disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2018; 10:461-470. [PMID: 30294658 PMCID: PMC6171371 DOI: 10.1016/j.dadm.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cerebrospinal fluid α-synuclein level is increased in sporadic Creutzfeldt-Jakob disease cases. However, the clinical value of this biomarker remains to be established. In this study, we have addressed the clinical validation parameters and the interlaboratory reproducibility by using an electrochemiluminescent assay. METHODS Cerebrospinal fluid α-synuclein was quantified in a total of 188 sporadic Creutzfeldt-Jakob disease and non-Creutzfeldt-Jakob-disease cases to determine sensitivity and specificity values and lot-to-lot variability. Two round robin tests with 70 additional cases were performed in six independent laboratories. RESULTS A sensitivity of 93% and a specificity of 96% were achieved in discriminating sporadic Creutzfeldt-Jakob disease. No differences were detected between lots. The mean interlaboratory coefficient of variation was 23%, and the intralaboratory coefficient of variations ranged 2.70%-11.39%. Overall, 97% of samples were correctly diagnosed. DISCUSSION The herein validated α-synuclein assay is robust, accurate, and reproducible in identifying Creutzfeldt-Jakob disease cases. Thus, it is ready for implementation in the clinical practice to support the diagnosis of Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- Niels Kruse
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Vandana Gupta
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Martha Foiani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Anna Villar-Piqué
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sylvain Lehmann
- Université de Montpellier, CHU de Montpellier, Laboratoire de Biochimie Protéomique Clinique, INSERM U1183, Montpellier, France
| | - Charlotte Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
| | - Brit Mollenhauer
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
- Paracelsus-Elena Klinik, Center for Parkinsonism and Movement Disorders, Kassel, Germany
| | - Inga Zerr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Franc Llorens
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Institute Carlos III, Ministry of Health, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
9
|
Biomarkers in cerebrospinal fluid for synucleinopathies, tauopathies, and other neurodegenerative disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:99-113. [DOI: 10.1016/b978-0-12-804279-3.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Zerr I, Zafar S, Schmitz M, Llorens F. Cerebrospinal fluid in Creutzfeldt–Jakob disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:115-124. [DOI: 10.1016/b978-0-12-804279-3.00008-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Fialova L, Bartos A, Svarcova J. Neurofilaments and tau proteins in cerebrospinal fluid and serum in dementias and neuroinflammation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:286-295. [DOI: 10.5507/bp.2017.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
|
12
|
Llorens F, Schmitz M, Knipper T, Schmidt C, Lange P, Fischer A, Hermann P, Zerr I. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Show Different but Partially Overlapping Profile Compared to Vascular Dementia. Front Aging Neurosci 2017; 9:289. [PMID: 28955218 PMCID: PMC5601075 DOI: 10.3389/fnagi.2017.00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/18/2017] [Indexed: 11/13/2022] Open
Abstract
Vascular factors increase the risks of developing Alzheimer's disease (AD) and they contribute to AD pathology. Since amyloid beta (Aβ) deposits can be observed in both diseases, there is an overlap which impedes a clear discrimination and difficult clinical diagnosis. In the present study, we compared cerebrospinal fluid (CSF) profiles of neurodegenerative and inflammatory biomarkers in a patient cohort of controls (n = 50), AD (n = 65) and vascular dementia (VaD) (n = 31) cases. Main results were validated in a second cohort composed of AD (n = 26), rapidly progressive AD (rpAD) (n = 15), VaD (n = 21), and cognitively unimpaired patients with vascular encephalopathy (VE) (n = 25) cases. In the study, cohort significant differences were detected in tau, p-tau, and Aβ1-42 (Aβ42) levels between AD and VaD patients, but not for the neuron-specific enolase (NSE), S100B protein, 14-3-3 and YKL-40. Differential tau, p-tau, and Aβ42 levels between AD and VaD were confirmed in the validation cohort, which additionally showed no differences between AD and rpAD, nor between VaD and VE. The evaluation of the biomarker performance in discrimination between AD and VaD patients revealed that the best diagnostic accuracy could be obtained when tau, p-tau, and Aβ42 were combined in form of Aβ42/p-tau (AUC 0.84-0.90, sensitivity 77-81%, specificity 80-93%) and (tau × p-tau)/Aβ42 ratio (AUC 0.83-0.87, sensitivity 73-81%, specificity 78-87%). Altogether, our studies provided neurodegenerative biomarker profiles in two cohorts of AD and VaD patients favoring the combination of CSF biomarker to differentiate between diseases.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, Universitätsmedizin GöttingenGöttingen, Germany
- Center for Networked Biomedical Research on Neurodegenerative DiseasesBarcelona, Spain
| | - Matthias Schmitz
- Department of Neurology, Universitätsmedizin GöttingenGöttingen, Germany
- German Center for Neurodegenerative Diseases–DZNE Site GöttingenBonn, Germany
| | - Tobias Knipper
- Department of Neurology, Universitätsmedizin GöttingenGöttingen, Germany
| | - Christian Schmidt
- Department of Neurology, Universitätsmedizin GöttingenGöttingen, Germany
| | - Peter Lange
- Department of Neurology, Universitätsmedizin GöttingenGöttingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases–DZNE Site GöttingenBonn, Germany
| | - Peter Hermann
- Department of Neurology, Universitätsmedizin GöttingenGöttingen, Germany
- German Center for Neurodegenerative Diseases–DZNE Site GöttingenBonn, Germany
| | - Inga Zerr
- Department of Neurology, Universitätsmedizin GöttingenGöttingen, Germany
- German Center for Neurodegenerative Diseases–DZNE Site GöttingenBonn, Germany
| |
Collapse
|
13
|
Llorens F, Kruse N, Karch A, Schmitz M, Zafar S, Gotzmann N, Sun T, Köchy S, Knipper T, Cramm M, Golanska E, Sikorska B, Liberski PP, Sánchez-Valle R, Fischer A, Mollenhauer B, Zerr I. Validation of α-Synuclein as a CSF Biomarker for Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:2249-2257. [PMID: 28321768 PMCID: PMC5840235 DOI: 10.1007/s12035-017-0479-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
The analysis of cerebrospinal fluid (CSF) biomarkers gains importance in the differential diagnosis of prion diseases. However, no single diagnostic tool or combination of them can unequivocally confirm prion disease diagnosis. Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve high diagnostic accuracy in a variety of sample types due to their high sensitivity and dynamic range. Quantification of CSF α-synuclein (a-syn) by an in-house ECL-based ELISA assay has been recently reported as an excellent approach for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD), the most prevalent form of human prion disease. In the present study, we validated a commercially available ECL-based a-syn ELISA platform as a diagnostic test for correct classification of sCJD cases. CSF a-syn was analysed in 203 sCJD cases with definite diagnosis and in 445 non-CJD cases. We investigated reproducibility and stability of CSF a-syn and made recommendations for its analysis in the sCJD diagnostic workup. A sensitivity of 98% and a specificity of 97% were achieved when using an optimal cut-off of 820 pg/mL a-syn. Moreover, we were able to show a negative correlation between a-syn levels and disease duration suggesting that CSF a-syn may be a good prognostic marker for sCJD patients. The present study validates the use of a-syn as a CSF biomarker of sCJD and establishes the clinical and pre-analytical parameters for its use in differential diagnosis in clinical routine. Additionally, the current test presents some advantages compared to other diagnostic approaches: it is fast, economic, requires minimal amount of CSF and a-syn levels are stable along disease progression.
Collapse
Affiliation(s)
- Franc Llorens
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.
| | - Niels Kruse
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - André Karch
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Schmitz
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Saima Zafar
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Nadine Gotzmann
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Ting Sun
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Silja Köchy
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Tobias Knipper
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Maria Cramm
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Raquel Sánchez-Valle
- Creutzfeldt-Jakob disease unit. Alzheimer's disease and other cognitive disorders unit. Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| | - Brit Mollenhauer
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena Klinik, Center for Parkinsonism and Movement Disorders, Kassel, Germany.,Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center, Department of Neurology, University Medical Center Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Robert Koch Stasse 40, 37075, Göttingen, Germany
| |
Collapse
|
14
|
Llorens F, Kruse N, Schmitz M, Gotzmann N, Golanska E, Thüne K, Zejneli O, Kanata E, Knipper T, Cramm M, Lange P, Zafar S, Sikorska B, Liberski PP, Mitrova E, Varges D, Schmidt C, Sklaviadis T, Mollenhauer B, Zerr I. Evaluation of α‐synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases. Alzheimers Dement 2016; 13:710-719. [DOI: 10.1016/j.jalz.2016.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Franc Llorens
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Niels Kruse
- Institute for Neuropathology University Medical Center Göttingen Göttingen Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Nadine Gotzmann
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Katrin Thüne
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Orgeta Zejneli
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Tobias Knipper
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Maria Cramm
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Peter Lange
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Pawel P. Liberski
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Eva Mitrova
- Department of Prion Diseases Slovak Medical University Bratislava Bratislava Slovakia
| | - Daniela Varges
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Christian Schmidt
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Brit Mollenhauer
- Institute for Neuropathology University Medical Center Göttingen Göttingen Germany
- Paracelsus‐Elena Klinik Center for Parkinsonism and Movement Disorders Kassel Germany
- Department of Neurosurgery University Medical Center Göttingen Göttingen Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| |
Collapse
|
15
|
Schmitz M, Llorens F, Pracht A, Thom T, Correia Â, Zafar S, Ferrer I, Zerr I. Regulation of human cerebrospinal fluid malate dehydrogenase 1 in sporadic Creutzfeldt-Jakob disease patients. Aging (Albany NY) 2016; 8:2927-2935. [PMID: 27852982 PMCID: PMC5191879 DOI: 10.18632/aging.101101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 12/03/2022]
Abstract
The identification of reliable diagnostic biomarkers in differential diagnosis of neurodegenerative diseases is an ongoing topic. A previous two-dimensional proteomic study on cerebrospinal fluid (CSF) revealed an elevated level of an enzyme, mitochondrial malate dehydrogenase 1 (MDH1), in sporadic Creutzfeldt-Jakob disease (sCJD) patients. Here, we could demonstrate the expression of MDH1 in neurons as well as in the neuropil. Its levels are lower in sCJD brains than in control brains. An examination of CSF-MDH1 in sCJD patients by ELISA revealed a significant elevation of CSF-MDH1 levels in sCJD patients (independently from the PRNP codon 129 MV genotype or the prion protein scrapie (PrPSc) type) in comparison to controls. In combination with total tau (tau), CSF-MDH1 detection exhibited a high diagnostic accuracy for sCJD diagnosis with a sensitivity of 97.5% and a specificity of 95.6%. A correlation study of MDH1 level in CSF with other neurodegenerative marker proteins revealed a significant positive correlation between MDH1 concentration with tau, 14-3-3 and neuron specific enolase level. In conclusion, our study indicated the potential of MDH1 in combination with tau as an additional biomarker in sCJD improving diagnostic accuracy of tau markedly.
Collapse
Affiliation(s)
- Matthias Schmitz
- From the Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) – Göttingen Campus, Göttingen, Germany
| | - Franc Llorens
- From the Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) – Göttingen Campus, Göttingen, Germany
| | - Alexander Pracht
- From the Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Thom
- From the Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ângela Correia
- From the Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Saima Zafar
- From the Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) – Göttingen Campus, Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- From the Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) – Göttingen Campus, Göttingen, Germany
| |
Collapse
|
16
|
Schmitz M, Cramm M, Llorens F, Müller-Cramm D, Collins S, Atarashi R, Satoh K, Orrù CD, Groveman BR, Zafar S, Schulz-Schaeffer WJ, Caughey B, Zerr I. The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat Protoc 2016; 11:2233-2242. [PMID: 27735933 DOI: 10.1038/nprot.2016.120] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022]
Abstract
The development and adaption of in vitro misfolded protein amplification systems has been a major innovation in the detection of abnormally folded prion protein scrapie (PrPSc) in human brain and cerebrospinal fluid (CSF) samples. Herein, we describe a fast and efficient protein amplification technique, real-time quaking-induced conversion (RT-QuIC), for the detection of a PrPSc seed in human brain and CSF. In contrast to other in vitro misfolded protein amplification assays-such as protein misfolding cyclic amplification (PMCA)-which are based on sonication, the RT-QuIC technique is based on prion seed-induced misfolding and aggregation of recombinant prion protein substrate, accelerated by alternating cycles of shaking and rest in fluorescence plate readers. A single RT-QuIC assay typically analyzes up to 32 samples in triplicate, using a 96-well-plate format. From sample preparation to analysis of results, the protocol takes ∼87 h to complete. In addition to diagnostics, this technique has substantial generic analytical applications, including drug screening, prion strain discrimination, biohazard screening (e.g., to reduce transmission risk related to prion diseases) and the study of protein misfolding; in addition, it can potentially be used for the investigation of other protein misfolding diseases such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dominik Müller-Cramm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Steven Collins
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Ryuichiro Atarashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Christina D Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Walter J Schulz-Schaeffer
- Department of Neuropathology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, USA
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
17
|
Cerebrospinal α-synuclein in α-synuclein aggregation disorders: tau/α-synuclein ratio as potential biomarker for dementia with Lewy bodies. J Neurol 2016; 263:2271-2277. [DOI: 10.1007/s00415-016-8259-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
|
18
|
Oeckl P, Metzger F, Nagl M, von Arnim CAF, Halbgebauer S, Steinacker P, Ludolph AC, Otto M. Alpha-, Beta-, and Gamma-synuclein Quantification in Cerebrospinal Fluid by Multiple Reaction Monitoring Reveals Increased Concentrations in Alzheimer's and Creutzfeldt-Jakob Disease but No Alteration in Synucleinopathies. Mol Cell Proteomics 2016; 15:3126-3138. [PMID: 27507836 DOI: 10.1074/mcp.m116.059915] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/09/2023] Open
Abstract
α-Synuclein (αSyn) is a major constituent of proteinaceous aggregates in neurodegenerative diseases such as Parkinson's disease (PD) and a potential biomarker candidate for diagnosis and treatment effects. However, studies about αSyn in cerebrospinal fluid (CSF) in diseases are inconsistent and mainly based on immunological assays. Quantitative information about β-synuclein (βSyn) and γ-synuclein (γSyn) in CSF is not available.Here, we present an alternative method for the simultaneous quantification of αSyn, βSyn and γSyn in CSF by multiple reaction monitoring (MRM) with a high sequence coverage (70%) of αSyn to validate previous, ELISA-based results and characterize synucleins in CSF in more detail.The MRM has high sensitivity in the low pg/ml range (3-30pg/ml full-length αSyn) using 200 μl CSF. A high portion of CSF αSyn is present in the N-terminally acetylated form and the concentration of unmodified peptides in the nonamyloid component region is about 40% lower than in the N-terminal region. Synuclein concentrations show a high correlation with each other in CSF (r>0.80) and in contrast to αSyn and γSyn, βSyn is not affected by blood contamination. CSF αSyn, βSyn and γSyn concentrations were increased in Alzheimer's and Creutzfeldt-Jakob disease but not altered in PD, PD dementia (PDD), Lewy body dementia and atypical parkinsonian syndromes. The ratio βSyn/αSyn was increased in PDD (1.49 ± 0.38, p < 0.05) compared with PD (1.11 ± 0.26) and controls (1.15 ± 0.28). βSyn shows a high correlation with CSF tau concentrations (r = 0.86, p < 0.0001, n = 125).In conclusion, we could not confirm previous observations of reduced αSyn in PD and our results indicate that CSF synuclein concentrations are rather general markers of synaptic degeneration than specific for synucleinopathies. βsyn is an attractive biomarker candidate that might be used as an alternative to or in combination with tau in AD and CJD diagnosis and in combination with αSyn it is a biomarker candidate for PDD.
Collapse
Affiliation(s)
- Patrick Oeckl
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Fabian Metzger
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Magdalena Nagl
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Christine A F von Arnim
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Steffen Halbgebauer
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Petra Steinacker
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Albert C Ludolph
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Markus Otto
- From the ‡Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
19
|
CSF biomarkers in neurodegenerative and vascular dementias. Prog Neurobiol 2016; 138-140:36-53. [DOI: 10.1016/j.pneurobio.2016.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
|