1
|
Cioffi E, Coppola G, Musumeci O, Gallone S, Silvestri G, Rossi S, Piemonte F, D'Amico J, Tessa A, Santorelli FM, Casali C. Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature. Neurogenetics 2024; 25:51-67. [PMID: 38334933 PMCID: PMC11076336 DOI: 10.1007/s10048-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Olimpia Musumeci
- Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Salvatore Gallone
- Department of Neuroscience and Mental Health, Neurologia 1, A.O.U. Città Della Salute E Della Scienza, 10126, Turin, Italy
| | - Gabriella Silvestri
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Neuroscienze, Organi Di Senso E Torace, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Rossi
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Jessica D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
2
|
Cores Bartolomé C, Rubio Nazábal E, Sobrido MJ, Pérez Sousa C. SPG46 spastic paraplegia due to GBA2 variation: description of the first case in Spain. Neurologia 2023:S2173-5808(23)00011-1. [PMID: 37031796 DOI: 10.1016/j.nrleng.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 04/11/2023] Open
Affiliation(s)
- C Cores Bartolomé
- Servicio de Neurología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Coruña, Spain.
| | - E Rubio Nazábal
- Servicio de Neurología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Coruña, Spain
| | - M J Sobrido
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servicio Galego de Saúde, Coruña, Spain
| | - C Pérez Sousa
- Servicio de Neurología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Coruña, Spain
| |
Collapse
|
3
|
Paraparesia espástica SPG-46 por mutación de GBA2: a propósito del primer caso descrito en España. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Gatti M, Magri S, Di Bella D, Sarto E, Taroni F, Mariotti C, Nanetti L. Spastic paraplegia type 46: novel and recurrent GBA2 gene variants in a compound heterozygous Italian patient with spastic ataxia phenotype. Neurol Sci 2021; 42:4741-4745. [PMID: 34251556 DOI: 10.1007/s10072-021-05463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Spastic paraplegia type 46 (SPG46) is a rare autosomal recessive hereditary spastic paraplegia, caused by mutations in the non-lysosomal glucosylceramidase β2 (GBA2) gene. Worldwide, approximately twenty SPG46 families have been identified so far. CASE REPORT We describe a compound heterozygous Italian patient carrying a novel (p.Arg879Gln) and a recurrent (p.Arg399 *) GBA2 gene variant. The patient presented unsteady gait at age 2, and progressively manifested spastic-ataxia, scoliosis, mild intellectual decline, and bilateral cataract. DISCUSSION Clinical manifestations associated with GBA2 gene variants encompass a spectrum of overlapping phenotypes including cerebellar ataxia, spastic paraplegia, and Marinesco-Sjogren-like syndrome. We review previously reported cases of SPG46 and discuss possible genetic differential diagnosis.
Collapse
Affiliation(s)
- Marta Gatti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy.
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| |
Collapse
|
5
|
Sultana S, Stewart J, van der Spoel AC. Truncated mutants of beta-glucosidase 2 (GBA2) are localized in the mitochondrial matrix and cause mitochondrial fragmentation. PLoS One 2020; 15:e0233856. [PMID: 32492073 PMCID: PMC7269613 DOI: 10.1371/journal.pone.0233856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
The enzyme β-glucosidase 2 (GBA2) is clinically relevant because it is targeted by the drug miglustat (Zavesca®) and because it is involved in inherited diseases. Mutations in the GBA2 gene are associated with two neurological diseases on the ataxia-spasticity spectrum, hereditary spastic paraplegia 46 (SPG46) and Marinesco-Sjögren-like syndrome (MSS). To establish how GBA2 mutations give rise to neurological pathology, we have begun to investigate mutant forms of GBA2 encoded by disease-associated GBA2 alleles. Previously, we found that five GBA2 missense mutants and five C-terminally truncated mutants lacked enzyme activity. Here we have examined the cellular locations of wild-type (WT) and mutant forms of GBA2 by confocal and electron microscopy, using transfected cells. Similar to GBA2-WT, the D594H and M510Vfs*17 GBA2 mutants were located at the plasma membrane, whereas the C-terminally truncated mutants terminating after amino acids 233 and 339 (GBA2-233 and -339) were present in the mitochondrial matrix, induced mitochondrial fragmentation and loss of mitochondrial transmembrane potential. Deletional mutagenesis indicated that residues 161–200 are critical for the mitochondrial fragmentation of GBA2-233 and -339. Considering that the mitochondrial fragmentation induced by GBA2-233 and -339 is consistently accompanied by their localization to the mitochondrial matrix, our deletional analysis raises the possibility that that GBA2 residues 161–200 harbor an internal targeting sequence for transport to the mitochondrial matrix. Altogether, our work provides new insights into the behaviour of GBA2-WT and disease-associated forms of GBA2.
Collapse
Affiliation(s)
- Saki Sultana
- The Atlantic Research Centre, Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacklyn Stewart
- Biomedical Sciences Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aarnoud C. van der Spoel
- The Atlantic Research Centre, Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- The Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
6
|
Nakamura-Shindo K, Ono K, Koh K, Ishiura H, Tsuji S, Takiyama Y, Yamada M. A novel mutation in the GBA2 gene in a Japanese patient with SPG46: A case report. eNeurologicalSci 2020; 19:100238. [PMID: 32280793 PMCID: PMC7139103 DOI: 10.1016/j.ensci.2020.100238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/30/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder characterized by pyramidal weakness and spasticity of the lower limbs. SPG46, one of autosomal recessive HSP, is clinically characterized by spasticity and pyramidal weakness of the lower limbs, mental retardation, congenital bilateral cataract, thin corpus callosum, and hypogonadism in males. Mutations in the nonlysosomal glucosylceramidase β2 (GBA2) gene have been identified in patients with SPG46. A Japanese woman was identified with bilateral cataracts when she was in an elementary school. She felt falling easily, speaking unclearness, and difficulty in walking and raising her left leg in her 30s. Her neurological examination at the age of 44 revealed dysarthria, spasticity in the upper and lower extremities, increased jaw jerk and tendon reflexes in the extremities, bilateral extensor plantar reflexes, ataxia, and pollakiuria. Magnetic resonance imaging showed thinning of the corpus callosum body as well as atrophy in the pons and cerebellum. A novel homozygous c.1838A > G (p.D613G) missense mutation was detected at exon 12 in GBA2. We diagnosed her illness as an autosomal-recessive form of hereditary SPG46. The clinical features matched previously reported phenotype of SPG46. This is the first report of a Japanese patient with SPG46 with a novel mutation in GBA2. We presume that the novel GBA2 missense mutation found in our patient would cause loss of GBA2 activity, resulting in the neurological manifestations of SPG46. SPG46 is a rare autosomal recessive hereditary spastic paraplegia. In Japan, clinical cases of SPG46 have never been reported. We report a case of a Japanese patient with SPG46 with a novel mutation in GBA2. She showed cataracts, mild cognitive impairment, spasticity, and cerebellar ataxia.
Collapse
Affiliation(s)
- Keiko Nakamura-Shindo
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Japan.,Division of Neurology, Department of Internal Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuou-city, Yamanashi, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, 4-3 Kozunomori, Narita-city, Chiba, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuou-city, Yamanashi, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Japan
| |
Collapse
|
7
|
Algahtani H, Shirah B, Ullah I, Al-Qahtani MH, Abdulkareem AA, Naseer MI. Autosomal recessive cerebellar ataxia with spasticity due to a rare mutation in GBA2 gene in a large consanguineous Saudi family. Genes Dis 2019; 8:110-114. [PMID: 33569519 PMCID: PMC7859417 DOI: 10.1016/j.gendis.2019.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 11/04/2022] Open
Abstract
The nonlysosomal glucosylceramidase β2 (GBA2) gene encode an enzyme that catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the GBA2 gene have been reported to cause hereditary spastic paraplegia, autosomal recessive cerebellar ataxia with spasticity, and Marinescu-Sjögren-Like Syndrome. In this study, we report the clinical features and genetic diagnosis of autosomal recessive cerebellar ataxia with spasticity due to a rare mutation in GBA2 gene in a large consanguineous Saudi family. We included a large consanguineous Saudi family with a presumptive clinical diagnosis of ataxia at King Abdulaziz Medical City in Jeddah, Saudi Arabia. The family included six affected individuals and four unaffected in addition to the parents. Whole exome sequencing (WES) was performed for the proband IV-5, and Sanger sequencing was used to confirm the variant in other family members. Segregation study was performed using DNA from the parents and siblings of the proband. Sequence analysis identified a homozygous variant c.2618G>A, p.(Arg873His) in GBA2 gene. The homozygous variant was identified in affected members of the family while the parents and the other four siblings were heterozygous carriers of the variant. One sibling was not available for genetic testing. The variant identified in our patients is classified as pathogenic considering the current evidence of the variant. Autosomal recessive cerebellar ataxia with spasticity is an extremely rare genetic disorder with very few cases reported in the literature. We conclude that the c.2617G>A mutation in GBA2 gene causes the loss of function with abolishment of the enzymatic activity that causes the disease. This report adds further evidence to support the pathogenicity of this variant. The patients had the classical clinical phenotype of cerebellar ataxia and spasticity consistent with previous reports in the literature.
Collapse
Affiliation(s)
- Hussein Algahtani
- King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Bader Shirah
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Mohammad H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Wei Q, Dong HL, Pan LY, Chen CX, Yan YT, Wang RM, Li HF, Liu ZJ, Tao QQ, Wu ZY. Clinical features and genetic spectrum in Chinese patients with recessive hereditary spastic paraplegia. Transl Neurodegener 2019; 8:19. [PMID: 31289639 PMCID: PMC6593507 DOI: 10.1186/s40035-019-0157-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Although many causative genes of hereditary spastic paraplegia (HSP) have been uncovered in recent years, there are still approximately 50% of HSP patients without genetically diagnosis, especially in autosomal recessive (AR) HSP patients. Rare studies have been performed to determine the genetic spectrum and clinical profiles of recessive HSP patients in the Chinese population. METHODS In this study, we investigated 24 Chinese index AR/sporadic patients by targeted next-generation sequencing (NGS), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). Further functional studies were performed to identify pathogenicity of those uncertain significance variants. RESULTS We identified 11 mutations in HSP related genes including 7 novel mutations, including two (p.V1979_L1980delinsX, p.F2343 fs) in SPG11, two (p.T55 M, p.S308 T) in AP5Z1, one (p.S242 N) in ALDH18A1, one (p.D597fs) in GBA2, and one (p.Q486X) in ATP13A2 in 8 index patients and their family members. Mutations in ALDH18A1, AP5Z1, CAPN1 and ATP13A2 genes were firstly reported in the Chinese population. Furthermore, the clinical phenotypes of the patients carrying mutations were described in detail. The mutation (p.S242 N) in ALDH18A1 decreased enzyme activity of P5CS and mutations (p.T55 M, p.S308 T) in AP5Z1 induced lysosomal dysfunction. CONCLUSION Our results expanded the genetic spectrum and clinical profiles of AR-HSP patients and further demonstrated the efficiency and reliability of targeted NGS diagnosing suspected HSP patients.
Collapse
Affiliation(s)
- Qiao Wei
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Li-Ying Pan
- Longyan First Hospital, Fujian Medical University, Longyan, China
| | - Cong-Xin Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Yang-Tian Yan
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Rou-Min Wang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Zhi-Jun Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 China
- Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Dodge JC. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front Mol Neurosci 2017; 10:356. [PMID: 29163032 PMCID: PMC5675881 DOI: 10.3389/fnmol.2017.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Collapse
Affiliation(s)
- James C Dodge
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA, United States
| |
Collapse
|
10
|
Du J, Hu YC, Tang BS, Jiang H, Shen L. Identification of novel SPG11 mutations in a cohort of Chinese families with hereditary spastic paraplegia. Int J Neurosci 2017; 128:146-150. [PMID: 28933964 DOI: 10.1080/00207454.2017.1378878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Cen Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
11
|
Long-term follow-up in spastic paraplegia due to SPG56/CYP2U1: age-dependency rather than genetic variability? J Neurol 2017; 264:586-588. [DOI: 10.1007/s00415-017-8393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|