1
|
Borges CR, Poyares DLR, Studart-Neto A, Coutinho AM, Cassimiro L, Avolio I, Piovezan R, Trés ES, Teixeira TBM, Barbosa BJAP, Tufik S, Brucki SMD. Amyloid profile is associated with sleep quality in preclinical but not in prodromal Alzheimer's disease older adults. Sleep Med 2024; 121:359-364. [PMID: 39079370 DOI: 10.1016/j.sleep.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Few studies have assessed whether neuropathological markers of AD in the preclinical and prodromal stages are associated with polysomnographic changes and obstructive sleep apnea (OSA). METHODS This was a cross-sectional, case-control study of older adults (≥60 years) without relevant clinical and psychiatric comorbidities selected randomly from a cohort of individuals without dementia in a tertiary university hospital in São Paulo, Brazil. They underwent neuropsychological evaluation for clinical diagnosis and were allocated into two samples: cognitively unimpaired (CU) and mild cognitive impairment (MCI). Also, they underwent PET-PiB to determine the amyloid profile and all-night in-lab polysomnography. For each sample, we compared polysomnographic parameters according to the amyloid profile (A+ vs A-). RESULTS We allocated 67 participants (mean age 73 years, SD 10,1), 70 % females, 14 ± 5 years of education, into two samples: CU (n = 28, 42.4 %) and MCI (n = 39, 57.6 %). In the CU sample, the group A+ (n = 9) showed worse sleep parameters than A- (n = 19) (lower total sleep time (p = 0.007), and sleep efficiency (p = 0.005); higher sleep onset latency (p = 0.025), wake time after sleep onset (p = 0.011), and arousal index (AI) (p = 0.007)), and changes in sleep structure: higher %N1 (p = 0.005), and lower %REM (p = 0.006). In the MCI sample, MCI A-had higher AI (p = 0.013), respiratory disturbance index (p = 0.025, controlled for age), and higher rates of severe OSA than A+. DISCUSSION The amyloid profile was associated with polysomnographic markers of worse sleep quality in individuals with preclinical AD but not with prodromal AD, probably due to the higher frequencies of severe OSA.
Collapse
Affiliation(s)
- Conrado Regis Borges
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil.
| | - Dalva L R Poyares
- Universidade Federal de São Paulo - Escola Paulista de Medicina, R. Botucatu, 862, São Paulo (SP), Brazil
| | - Adalberto Studart-Neto
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Artur M Coutinho
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Luciana Cassimiro
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Isabela Avolio
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Ronaldo Piovezan
- Universidade Federal de São Paulo - Escola Paulista de Medicina, R. Botucatu, 862, São Paulo (SP), Brazil
| | - Eduardo S Trés
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Thiago B M Teixeira
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Breno J A P Barbosa
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| | - Sergio Tufik
- Universidade Federal de São Paulo - Escola Paulista de Medicina, R. Botucatu, 862, São Paulo (SP), Brazil
| | - Sonia M D Brucki
- Universidade de São Paulo - Faculdade de Medicina, R. Dr.Enéas de Carvalho Aguiar, 255, São Paulo (SP), Brazil
| |
Collapse
|
2
|
Li YY, Yu KY, Cui YJ, Wang ZJ, Cai HY, Cao JM, Wu MN. Orexin-A aggravates cognitive deficits in 3xTg-AD mice by exacerbating synaptic plasticity impairment and affecting amyloid β metabolism. Neurobiol Aging 2023; 124:71-84. [PMID: 36758468 DOI: 10.1016/j.neurobiolaging.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Dementia is the main clinical feature of Alzheimer's disease (AD). Orexin has recently been linked to AD pathogenesis, and exogenous orexin-A (OXA) aggravates spatial memory impairment in APP/PS1 mice. However, the effects of OXA on other types of cognitive deficits, especially in 3xTg-AD mice exhibiting both plaque and tangle pathologies, have not been reported. Furthermore, the potential electrophysiological mechanism by which OXA affects cognitive deficits and the molecular mechanism by which OXA increases amyloid β (Aβ) levels are unknown. In the present study, the effects of OXA on cognitive functions, synaptic plasticity, Aβ levels, tau hyperphosphorylation, BACE1 and NEP expression, and circadian locomotor rhythm were evaluated. The results showed that OXA aggravated memory impairments and circadian rhythm disturbance, exacerbated hippocampal LTP depression, and increased Aβ and tau pathologies in 3xTg-AD mice by affecting BACE1 and NEP expression. These results indicated that OXA aggravates cognitive deficits and hippocampal synaptic plasticity impairment in 3xTg-AD mice by increasing Aβ production and decreasing Aβ clearance through disruption of the circadian rhythm and sleep-wake cycle.
Collapse
Affiliation(s)
- Yi-Ying Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu-Jia Cui
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong-Yan Cai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Min Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Gao WR, Hu XH, Yu KY, Cai HY, Wang ZJ, Wang L, Wu MN. Selective orexin 1 receptor antagonist SB-334867 aggravated cognitive dysfunction in 3xTg-AD mice. Behav Brain Res 2023; 438:114171. [PMID: 36280008 DOI: 10.1016/j.bbr.2022.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Cognitive dysfunction is the main clinical manifestation of Alzheimer's disease (AD). Previous research found that elevated orexin level in the cerebrospinal fluid was closely related to the course of AD, and orexin-A treatment could increase amyloid β protein (Aβ) deposition and aggravate spatial memory impairment in APP/PS1 mice. Furthermore, recent research found that dual orexin receptor (OXR) antagonist might affect Aβ level and cognitive dysfunction in AD, but the effects of OX1R or OX2R alone is unreported until now. Considering that OX1R is highly expressed in the hippocampus and plays important roles in learning and memory, the effects of OX1R in AD cognitive dysfunction and its possible mechanism should be investigated. In the present study, selective OX1R antagonist SB-334867 was used to block OX1R. Then, different behavioral tests were performed to observe the effects of OX1R blockade on cognitive function of 3xTg-AD mice exhibited both Aβ and tau pathology, in vivo electrophysiological recording and western blot were used to investigate the potential mechanism. The results showed that chronic OX1R blockade aggravated the impairments of short-term working memory, long-term spatial memory and synaptic plasticity in 9-month-old female 3xTg-AD mice, increased levels of soluble Aβ oligomers and p-tau, and decreased PSD-95 expression in the hippocampus of 3xTg-AD mice. These results indicate that the detrimental effects of SB-334867 on cognitive behaviors in 3xTg-AD mice are closely related to the decrease of PSD-95 and depression of in vivo long-term potentiation (LTP) caused by increased Aβ oligomers and p-tau.
Collapse
Affiliation(s)
- Wen-Rui Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Lei Wang
- Department of Geriatrics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
4
|
Casagrande M, Forte G, Favieri F, Corbo I. Sleep Quality and Aging: A Systematic Review on Healthy Older People, Mild Cognitive Impairment and Alzheimer’s Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148457. [PMID: 35886309 PMCID: PMC9325170 DOI: 10.3390/ijerph19148457] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Abstract
Aging is characterized by changes in the structure and quality of sleep. When the alterations in sleep become substantial, they can generate or accelerate cognitive decline, even in the absence of overt pathology. In fact, impaired sleep represents one of the earliest symptoms of Alzheimer’s disease (AD). This systematic review aimed to analyze the studies on sleep quality in aging, also considering mild cognitive impairment (MCI) and AD. The review process was conducted according to the PRISMA statement. A total of 71 studies were included, and the whole sample had a mean age that ranged from 58.3 to 93.7 years (62.8–93.7 healthy participants and 61.8–86.7 pathological populations). Of these selected studies, 33 adopt subjective measurements, 31 adopt objective measures, and 10 studies used both. Pathological aging showed a worse impoverishment of sleep than older adults, in both subjective and objective measurements. The most common aspect compromised in AD and MCI were REM sleep, sleep efficiency, sleep latency, and sleep duration. These results underline that sleep alterations are associated with cognitive impairment. In conclusion, the frequency and severity of sleep disturbance appear to follow the evolution of cognitive impairment. The overall results of objective measures seem more consistent than those highlighted by subjective measurements.
Collapse
Affiliation(s)
- Maria Casagrande
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Correspondence: (M.C.); (I.C.)
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
| | - Francesca Favieri
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Ilaria Corbo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
- Correspondence: (M.C.); (I.C.)
| |
Collapse
|
5
|
Liu X, Yu T, Zhao X, Yu P, Lv R, Wang C, Ai L, Wang Q. Risk Factors and Brain Metabolic Mechanism of Sleep Disorders in Autoimmune Encephalitis. Front Immunol 2021; 12:738097. [PMID: 34899696 PMCID: PMC8652207 DOI: 10.3389/fimmu.2021.738097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023] Open
Abstract
Background Sleep disorders (SDs) in autoimmune encephalitis (AE) have received little attention and are poorly understood. We investigated the clinical characteristics, risk factors, and cerebral metabolic mechanism of SD in AE. Methods Clinical, laboratory, and imaging data were retrospectively reviewed in 121 consecutively patients with definite AE. The risk factors for SD in AE were estimated by logistic regression analysis. Group comparisons based on 18F-fluorodeoxy-glucose positron emission tomography (18F-FDG-PET) data were made between patients with and without SD, to further analyze potential brain metabolic mechanism of SD in AE. Results A total of 52.9% patients (64/121) with SD were identified. The multivariate logistic model analysis showed that smoking [odds ratio (OR), 6.774 (95% CI, 1.238-37.082); p = 0.027], increased Hamilton Depression scale (HAMD) score [OR, 1.074 (95% CI, 1.002-1.152); p = 0.045], hyperhomocysteinemia [OR, 2.815 (95% CI, 1.057-7.496); p = 0.038], elevated neuron-specific enolase (NSE) level [OR, 1.069 (95% CI, 1.007-1.135); p = 0.03] were independently correlated with higher risk of SD in AE patients. Contrastingly, high MoCA score [OR, 0.821 (95% CI, 0.752-0.896); p < 0.001] was associated with lower risk of SD in AE subjects. Compared to controls, AE patients had less total sleep time, less sleep efficiency, longer sleep latency, more wake, higher percent of stage N1, lower percent of stage N3 and rapid eye movement, and more arousal index in non-rapid eye movement sleep (p < 0.05 for all). Voxel-based group comparison analysis showed that, compared to patients without SD, patients with SD had increased metabolism in the basal ganglia, cerebellum, brainstem, median temporal lobe, thalamus, and hypothalamus [p < 0.05, false discovery rate (FDR) corrected]; decreased metabolism in superior frontal gyrus, medial frontal gyrus, and posterior cingulate cortex (p < 0.001, uncorrected). These results were confirmed by region of interest-based analysis between PET and sleep quality. Conclusion Smoking, increased HAMD score, hyperhomocysteinemia, and elevated NSE level were correlated with higher risk of SD. High MoCA score was associated with lower risk of SD in AE subjects. Moreover, a widespread metabolic network dysfunction may be involved in the pathological mechanism of SD in AE.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tingting Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ping Yu
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Lv
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chunxue Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lin Ai
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
7
|
Gao F, Liu T, Tuo M, Chi S. The role of orexin in Alzheimer disease: From sleep-wake disturbance to therapeutic target. Neurosci Lett 2021; 765:136247. [PMID: 34530113 DOI: 10.1016/j.neulet.2021.136247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that sleep disturbance is a common symptom in Alzheimer's disease (AD), which is regarded as a modifiable risk factor for AD. Orexin is a key modulator of the sleep-wake cycle and has been found to be dysregulated in AD patients. The increased orexin in cerebrospinal fluid (CSF) is associated with decreased sleep efficiency and REM sleep, as well as cognitive impairment in AD patients. The orexin system has profuse projections to brain regions that are implicated in arousal and cognition and has been found to participate in the progression of AD pathology. Conversely the orexin receptor antagonists are able to consolidate sleep and reduce AD pathology. Therefore, improved understanding of the mechanisms linking orexin system, sleep disturbance and AD could make orexin receptor antagonists a promising target for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Fan Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miao Tuo
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Kuang H, Zhu YG, Zhou ZF, Yang MW, Hong FF, Yang SL. Sleep disorders in Alzheimer's disease: the predictive roles and potential mechanisms. Neural Regen Res 2021; 16:1965-1972. [PMID: 33642368 PMCID: PMC8343328 DOI: 10.4103/1673-5374.308071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are common in patients with Alzheimer's disease, and can even occur in patients with amnestic mild cognitive impairment, which appears before Alzheimer's disease. Sleep disorders further impair cognitive function and accelerate the accumulation of amyloid-β and tau in patients with Alzheimer's disease. At present, sleep disorders are considered as a risk factor for, and may be a predictor of, Alzheimer's disease development. Given that sleep disorders are encountered in other types of dementia and psychiatric conditions, sleep-related biomarkers to predict Alzheimer's disease need to have high specificity and sensitivity. Here, we summarize the major Alzheimer's disease-specific sleep changes, including abnormal non-rapid eye movement sleep, sleep fragmentation, and sleep-disordered breathing, and describe their ability to predict the onset of Alzheimer's disease at its earliest stages. Understanding the mechanisms underlying these sleep changes is also crucial if we are to clarify the role of sleep in Alzheimer's disease. This paper therefore explores some potential mechanisms that may contribute to sleep disorders, including dysregulation of the orexinergic, glutamatergic, and γ-aminobutyric acid systems and the circadian rhythm, together with amyloid-β accumulation. This review could provide a theoretical basis for the development of drugs to treat Alzheimer's disease based on sleep disorders in future work.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang, Jiangxi Province, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
9
|
Chen Y, Dang M, Zhang Z. Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer's disease: a systematic review of symptom-general and -specific lesion patterns. Mol Neurodegener 2021; 16:38. [PMID: 34099005 PMCID: PMC8186099 DOI: 10.1186/s13024-021-00456-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropsychiatric symptoms (NPSs) are common in patients with Alzheimer's disease (AD) and are associated with accelerated cognitive impairment and earlier deaths. This review aims to explore the neural pathogenesis of NPSs in AD and its association with the progression of AD. We first provide a literature overview on the onset times of NPSs. Different NPSs occur in different disease stages of AD, but most symptoms appear in the preclinical AD or mild cognitive impairment stage and develop progressively. Next, we describe symptom-general and -specific patterns of brain lesions. Generally, the anterior cingulate cortex is a commonly damaged region across all symptoms, and the prefrontal cortex, especially the orbitofrontal cortex, is also a critical region associated with most NPSs. In contrast, the anterior cingulate-subcortical circuit is specifically related to apathy in AD, the frontal-limbic circuit is related to depression, and the amygdala circuit is related to anxiety. Finally, we elucidate the associations between the NPSs and AD by combining the onset time with the neural basis of NPSs.
Collapse
Affiliation(s)
- Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
- BABRI Centre, Beijing Normal University, Beijing, 100875 China
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
- BABRI Centre, Beijing Normal University, Beijing, 100875 China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
- BABRI Centre, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
10
|
Liguori C, Spanetta M, Izzi F, Franchini F, Nuccetelli M, Sancesario GM, Di Santo S, Bernardini S, Mercuri NB, Placidi F. Sleep-Wake Cycle in Alzheimer's Disease Is Associated with Tau Pathology and Orexin Dysregulation. J Alzheimers Dis 2021; 74:501-508. [PMID: 32065791 DOI: 10.3233/jad-191124] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia. It is mainly characterized by a progressive deterioration of cognition, but sleep-wake cycle disturbances frequently occur. Irregular sleep-wake cycle, insomnia, and daytime napping usually occur in patients with AD in the course of the disease. OBJECTIVE The aim of the present study was to verify the sleep-wake cycle in mild to moderate AD patients compared to controls, and to evaluate the relationship between the sleep-wake cycle impairment and the neuropsychological testing, CSF AD biomarkers, and CSF orexin concentrations. METHODS Mild to moderate AD patients were enrolled and underwent 14-day actigraphic recording, sleep diary, neuropsychological testing, and CSF biomarkers analysis. All patients were compared to controls. RESULTS Eighteen AD patients were compared to ten controls. AD patients showed the alteration of the sleep-wake cycle, featured by sleep dysregulation and daytime wake fragmentation, with respect to controls. Considering the correlation analysis, we documented the correlation between tau proteins and orexin CSF levels and sleep-wake cycle dysregulation. CONCLUSION This study confirmed the dysregulation of sleep-wake cycle in AD patients, as reflected by the daytime wake fragmentation, irregular sleep-wake rhythm, and nocturnal sleep impairment. This sleep-wake cycle disorder correlates with AD neuropathological in vivo features and brain orexin activity. Hence, we suppose that a more marked AD pathology coupled with orexinergic system dysregulation may promote sleep-wake cycle impairment in AD patients.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy.,Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | | | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| |
Collapse
|
11
|
Kent BA, Feldman HH, Nygaard HB. Sleep and its regulation: An emerging pathogenic and treatment frontier in Alzheimer's disease. Prog Neurobiol 2021; 197:101902. [PMID: 32877742 PMCID: PMC7855222 DOI: 10.1016/j.pneurobio.2020.101902] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/19/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
A majority of patients with Alzheimer's disease (AD) experience some form of sleep disruption, including nocturnal sleep fragmentation, increased daytime napping, decreased slow-wave sleep (SWS, stage N3), and decreased rapid-eye-movement sleep (REM). Clinical studies are investigating whether such sleep disturbances are a consequence of the underlying disease, and whether they also contribute to the clinical and pathological manifestations of AD. Emerging research has provided a direct link between several of these sleep disruptions and AD pathophysiology, suggesting that treating sleep disorders in this population may target basic mechanisms of the disease. Here, we provide a comprehensive review of sleep disturbances associated with the spectrum of AD, ranging from the preclinical stages through dementia. We discuss how sleep interacts with AD pathophysiology and, critically, whether sleep impairments can be targeted to modify the disease course in a subgroup of affected AD patients. Ultimately, larger studies that fully utilize new diagnostic and experimental tools will be required to better define the most relevant sleep disturbance to target in AD, the interventions that best modulate this target symptom, and whether successful early intervention can modify AD risk and prevent dementia.
Collapse
Affiliation(s)
- Brianne A Kent
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Division of Neurology, University of British Columbia, Vancouver, Canada.
| | - Howard H Feldman
- Division of Neurology, University of British Columbia, Vancouver, Canada; Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - Haakon B Nygaard
- Division of Neurology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Keenan RJ, Oberrauch S, Bron R, Nowell CJ, Challis LM, Hoyer D, Jacobson LH. Decreased Orexin Receptor 1 mRNA Expression in the Locus Coeruleus in Both Tau Transgenic rTg4510 and Tau Knockout Mice and Accompanying Ascending Arousal System Tau Invasion in rTg4510. J Alzheimers Dis 2021; 79:693-708. [PMID: 33361602 DOI: 10.3233/jad-201177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sleep/wake disturbances (e.g., insomnia and sleep fragmentation) are common in neurodegenerative disorders, especially Alzheimer's disease (AD) and frontotemporal dementia (FTD). These symptoms are somewhat reminiscent of narcolepsy with cataplexy, caused by the loss of orexin-producing neurons. A bidirectional relationship between sleep disturbance and disease pathology suggests a detrimental cycle that accelerates disease progression and cognitive decline. The accumulation of brain tau fibrils is a core pathology of AD and FTD-tau and clinical evidence supports that tau may impair the orexin system in AD/FTD. This hypothesis was investigated using tau mutant mice. OBJECTIVE To characterize orexin receptor mRNA expression in sleep/wake regulatory brain centers and quantify noradrenergic locus coeruleus (LC) and orexinergic lateral hypothalamus (LH) neurons, in tau transgenic rTg4510 and tau-/- mice. METHODS We used i n situ hybridization and immunohistochemistry (IHC) in rTg4510 and tau-/- mice. RESULTS rTg4510 and tau-/- mice exhibited a similar decrease in orexin receptor 1 (OX1R) mRNA expression in the LC compared with wildtype controls. IHC data indicated this was not due to decreased numbers of LC tyrosine hydroxylase-positive (TH) or orexin neurons and demonstrated that tau invades TH LC and orexinergic LH neurons in rTg4510 mice. In contrast, orexin receptor 2 (OX2R) mRNA levels were unaffected in either model. CONCLUSION The LC is strongly implicated in the regulation of sleep/wakefulness and expresses high levels of OX1R. These findings raise interesting questions regarding the effects of altered tau on the orexin system, specifically LC OX1Rs, and emphasize a potential mechanism which may help explain sleep/wake disturbances in AD and FTD.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Romke Bron
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Leesa M Challis
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, University of Melbourne, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Overeem S, van Litsenburg RRL, Reading PJ. Sleep disorders and the hypothalamus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:369-385. [PMID: 34266606 DOI: 10.1016/b978-0-12-819973-2.00025-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As early as the 1920s, pathological studies of encephalitis lethargica allowed Von Economo to correctly identify hypothalamic damage as crucial for the profound associated sleep-related symptoms that helped define the condition. Only over the last 3 decades, however, has the key role of the hypothalamus in sleep-wake regulation become increasingly recognized. As a consequence, a close relation between abnormal sleep symptomatology and hypothalamic pathology is now widely accepted for a variety of medical disorders. Narcolepsy is discussed in some detail as the cardinal primary sleep disorder that is caused directly and specifically by hypothalamic pathology, most notably destruction of hypocretin (orexin)-containing neurons. Thereafter, various conditions are described that most likely result from hypothalamic damage, in part at least, producing a clinical picture resembling (symptomatic) narcolepsy. Kleine-Levin syndrome is a rare primary sleep disorder with intermittent symptoms, highly suggestive of hypothalamic involvement but probably reflecting a wider pathophysiology. ROHHAD (rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation) and Prader-Willi syndrome are also covered as hypothalamic syndromes with prominent sleep-related symptoms. Finally, sleep issues in several endocrine disorders are briefly discussed.
Collapse
Affiliation(s)
- Sebastiaan Overeem
- Center for Sleep Medicine, Kempenhaeghe, Heeze, The Netherlands; Biomedical Diagnostics Laboratory, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Raphaële R L van Litsenburg
- Psychooncology Group, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Pedicatric Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Paul J Reading
- Department of Neurology, James Cook University Hospital, Middlesbrough, United Kingdom
| |
Collapse
|
14
|
Liu YS, Wang YM, Zha DJ. Brain Functional and Structural Changes in Alzheimer's Disease With Sleep Disorders: A Systematic Review. Front Psychiatry 2021; 12:772068. [PMID: 34790139 PMCID: PMC8591034 DOI: 10.3389/fpsyt.2021.772068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Sleep disorders (SLD) are supposed to be associated with increased risk and development of Alzheimer's disease (AD), and patients with AD are more likely to show SLD. However, neurobiological performance of patients with both AD and SLD in previous studies is inconsistent, and identifying specific patterns of the brain functional network and structural characteristics in this kind of comorbidity is warranted for understanding how AD and SLD symptoms interact with each other as well as finding effective clinical intervention. Thus, the aims of this systematic review were to summarize the relevant findings and their limitations and provide future research directions. Methods: A systematic search on brain functional and structural changes in patients with both AD and SLD was conducted from PubMed, Web of Science, and EMBASE databases. Results: Nine original articles published between 2009 and 2021 were included with a total of 328 patients with comorbid AD and SLD, 367 patients with only AD, and 294 healthy controls. One single-photon emission computed tomography study and one multislice spiral computed tomography perfusion imaging study investigated changes of cerebral blood flow; four structural magnetic resonance imaging (MRI) studies investigated brain structural changes, two of them used whole brain analysis, and another two used regions of interest; two resting-state functional MRI studies investigated brain functional changes, and one 2-deoxy-2-(18F)fluoro-d-glucose positron emission tomography (18F-FDG-PET) investigated 18F-FDG-PET uptake in patients with comorbid AD and SLD. Findings were inconsistent, ranging from default mode network to sensorimotor cortex, hippocampus, brain stem, and pineal gland, which may be due to different imaging techniques, measurements of sleep disorder and subtypes of AD and SLD. Conclusions: Our review provides a systematic summary and promising implication of specific neuroimaging dysfunction underlying co-occurrence of AD and SLD. However, limited and inconsistent findings still restrict its neurobiological explanation. Further studies should use unified standards and comprehensive brain indices to investigate the pathophysiological basis of interaction between AD and SLD symptoms in the development of the disease spectrums.
Collapse
Affiliation(s)
- Yong-Shou Liu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yong-Ming Wang
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ding-Jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
15
|
Berteotti C, Liguori C, Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders. Eur J Neurosci 2020; 53:1136-1154. [PMID: 33290595 DOI: 10.1111/ejn.15077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
16
|
Clement A, Wiborg O, Asuni AA. Steps Towards Developing Effective Treatments for Neuropsychiatric Disturbances in Alzheimer's Disease: Insights From Preclinical Models, Clinical Data, and Future Directions. Front Aging Neurosci 2020; 12:56. [PMID: 32210790 PMCID: PMC7068814 DOI: 10.3389/fnagi.2020.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. It is mostly known for its devastating effect on memory and learning but behavioral alterations commonly known as neuropsychiatric disturbances (NPDs) are also characteristics of the disease. These include apathy, depression-like behavior, and sleep disturbances, and they all contribute to an increased caregiver burden and earlier institutionalization. The interaction between NPDs and AD pathology is not well understood, but the consensus is that they contribute to disease progression and faster decline. Consequently, recognizing and treating NPDs might improve AD pathology and increase the quality of life for both patients and caregivers. In this review article, we examine previous and current literature on apathy, depressive symptoms, and sleep disturbances in AD patients and preclinical AD mechanistic models. We hypothesize that tau accumulation, beta-amyloid (Aβ) aggregation, neuroinflammation, mitochondrial damage, and loss of the locus coeruleus (LC)-norepinephrine (NE) system all collectively impact the development of NPDs and contribute synergistically to AD pathology. Targeting more than one of these processes might provide the most optimal strategy for treating NPDs and AD. The development of such clinical approaches would be preceded by preclinical studies, for which robust and reliable mechanistic models of NPD-like behavior are needed. Thus, developing effective preclinical research models represents an important step towards a better understanding of NPDs in AD.
Collapse
Affiliation(s)
- Amalie Clement
- Laboratory of Neurobiology, Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Physiology and Symptoms, H. Lundbeck A/S, Copenhagen, Denmark
| | - Ove Wiborg
- Laboratory of Neurobiology, Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ayodeji A. Asuni
- Department of Physiology and Symptoms, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
17
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
18
|
Herring WJ, Ceesay P, Snyder E, Bliwise D, Budd K, Hutzelmann J, Stevens J, Lines C, Michelson D. Polysomnographic assessment of suvorexant in patients with probable Alzheimer's disease dementia and insomnia: a randomized trial. Alzheimers Dement 2020; 16:541-551. [PMID: 31944580 PMCID: PMC7984350 DOI: 10.1002/alz.12035] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/08/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Introduction We evaluated the clinical profile of the orexin receptor antagonist suvorexant for treating insomnia in patients with mild‐to‐moderate probable Alzheimer's disease (AD) dementia. Methods Randomized, double‐blind, 4‐week trial of suvorexant 10 mg (could be increased to 20 mg based on clinical response) or placebo in patients who met clinical diagnostic criteria for both probable AD dementia and insomnia. Sleep was assessed by overnight polysomnography in a sleep laboratory. The primary endpoint was change‐from‐baseline in polysomnography‐derived total sleep time (TST) at week 4. Results Of 285 participants randomized (suvorexant, N = 142; placebo, N = 143), 277 (97%) completed the trial (suvorexant, N = 136; placebo, N = 141). At week 4, the model‐based least squares mean improvement‐from‐baseline in TST was 73 minutes for suvorexant and 45 minutes for placebo; (difference = 28 minutes [95% confidence interval 11‐45], p < 0.01). Somnolence was reported in 4.2% of suvorexant‐treated patients and 1.4% of placebo‐treated patients. Discussion Suvorexant improved TST in patients with probable AD dementia and insomnia.
Collapse
Affiliation(s)
| | | | | | - Donald Bliwise
- Sleep Center, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry Budd
- Merck & Co., Inc., Kenilworth, New Jersey
| | | | | | | | | |
Collapse
|
19
|
Liguori C, Placidi F, Izzi F, Spanetta M, Mercuri NB, Di Pucchio A. Sleep dysregulation, memory impairment, and CSF biomarkers during different levels of neurocognitive functioning in Alzheimer's disease course. ALZHEIMERS RESEARCH & THERAPY 2020; 12:5. [PMID: 31901236 PMCID: PMC6942389 DOI: 10.1186/s13195-019-0571-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Background Alzheimer's disease (AD) is frequently accompanied by sleep impairment, which can induce AD-related neurodegeneration. We herein investigated the sleep architecture, cognition, and cerebrospinal fluid (CSF) biomarkers (tau proteins and β-amyloid42) during AD progression from subjective cognitive impairment (SCI) to mild cognitive impairment (MCI) and eventually to AD dementia, and compared the results with cognitively normal (CN) subjects. Methods We included patients affected by SCI, MCI, mild AD, and moderate-to-severe AD in our study along with CN subjects as controls. All the subjects underwent nocturnal polysomnography to investigate sleep, neuropsychological testing to evaluate cognition, and lumbar puncture for CSF AD biomarkers assessment. Results Sleep (both rapid eye movement (REM) and non-REM sleep) and memory function are both progressively impaired during the course of AD from SCI to mild and subsequently to moderate AD. Further, sleep dysregulation appears earlier than cognitive deterioration, with a reduction of CSF β-amyloid42 level. Conclusion Sleep, memory, and CSF AD biomarkers are closely interrelated in AD progression from the earliest asymptomatic and preclinical stages of the disease related in AD since the earliest and preclinical stages of the disease.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy. .,Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Viale Oxford, 81 00133, Rome, Italy.
| | - Fabio Placidi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome 'Tor Vergata", Viale Oxford, 81 00133, Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Alessandra Di Pucchio
- Training Office, Italian National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| |
Collapse
|
20
|
Showraki A, Murari G, Ismail Z, Barfett JJ, Fornazzari L, Munoz DG, Schweizer TA, Fischer CE. Cerebrospinal Fluid Correlates of Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease/Mild Cognitive Impairment: A Systematic Review. J Alzheimers Dis 2019; 71:477-501. [DOI: 10.3233/jad-190365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alireza Showraki
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Geetanjali Murari
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Zahinoor Ismail
- Departments of Psychiatry and Neurology, Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Joseph J. Barfett
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medical Imaging, St. Michael’s Hospital, Toronto, ON, Canada
| | - Luis Fornazzari
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Division of Neurology, St. Michaels Hospital, University of Toronto, Toronto, ON, Canada
| | - David G. Munoz
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Pathology, St. Michael’s Hospital, Toronto, ON, Canada
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, ON, Canada
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, ON, Canada
| | - Corinne E. Fischer
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Cariulo C, Martufi P, Verani M, Azzollini L, Bruni G, Weiss A, Deguire SM, Lashuel HA, Scaricamazza E, Sancesario GM, Schirinzi T, Mercuri NB, Sancesario G, Caricasole A, Petricca L. Phospho-S129 Alpha-Synuclein Is Present in Human Plasma but Not in Cerebrospinal Fluid as Determined by an Ultrasensitive Immunoassay. Front Neurosci 2019; 13:889. [PMID: 31507364 PMCID: PMC6714598 DOI: 10.3389/fnins.2019.00889] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Accumulation and aggregation of misfolded alpha-synuclein is believed to be a cause of Parkinson’s disease (PD). Phosphorylation of alpha-synuclein at S129 is known to be associated with the pathological misfolding process, but efforts to investigate the relevance of this post-translational modification for pathology have been frustrated by difficulties in detecting and quantifying it in relevant samples. We report novel, ultrasensitive immunoassays based on single-molecule counting technology, useful for detecting alpha-synuclein and its S129 phosphorylated form in clinical samples in the low pg/ml range. Using human CSF and plasma samples, we find levels of alpha-synuclein comparable to those previously reported. However, while alpha-synuclein phosphorylated on S129 could easily be detected in human plasma, where its detection is extremely sensitive to protein phosphatases, its levels in CSF were undetectable, with a possible influence of a matrix effect. In plasma samples from a small test cohort comprising 5 PD individuals and five age-matched control individuals we find that pS129 alpha-synuclein levels are increased in PD plasma samples, in line with previous reports. We conclude that pS129 alpha-synuclein is not detectable in CSF and recommend the addition of phosphatase inhibitors to plasma samples at the time of collection. Moreover, the findings obtained on the small cohort of clinical plasma samples point to plasma pS129 alpha-synuclein levels as a candidate diagnostic biomarker in PD.
Collapse
Affiliation(s)
| | - Paola Martufi
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| | | | | | | | | | - Sean M Deguire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eugenia Scaricamazza
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Tommaso Schirinzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sancesario
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Lara Petricca
- Department of Neuroscience, IRBM S.p.A., Rome, Italy
| |
Collapse
|
22
|
Song J. Pineal gland dysfunction in Alzheimer's disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegener 2019; 14:28. [PMID: 31296240 PMCID: PMC6624939 DOI: 10.1186/s13024-019-0330-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a globally common neurodegenerative disease, which is accompanied by alterations to various lifestyle patterns, such as sleep disturbance. The pineal gland is the primary endocrine organ that secretes hormones, such as melatonin, and controls the circadian rhythms. The decrease in pineal gland volume and pineal calcification leads to the reduction of melatonin production. Melatonin has been reported to have multiple roles in the central nervous system (CNS), including improving neurogenesis and synaptic plasticity, suppressing neuroinflammation, enhancing memory function, and protecting against oxidative stress. Recently, reduced pineal gland volume and pineal calcification, accompanied by cognitive decline and sleep disturbances have been observed in AD patients. Here, I review current significant evidence of the contribution of pineal dysfunction in AD to the progress of AD neuropathology. I suggest new insights to understanding the relationship between AD pathogenesis and pineal gland function.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
23
|
Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci 2019; 11:493. [PMID: 30687008 PMCID: PMC6336706 DOI: 10.3389/fnmol.2018.00493] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits and neuronal loss. Deposition of beta-amyloid peptide (Aβ) causes neurotoxicity through the formation of plaques in brains of Alzheimer's disease. Numerous studies have indicated that the neuropeptides including ghrelin, neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y, substance P and orexin are closely related to the pathophysiology of Alzheimer's disease. The levels of neuropeptides and their receptors change in Alzheimer's disease. These neuropeptides exert neuroprotective roles mainly through preventing Aβ accumulation, increasing neuronal glucose transport, increasing the production of neurotrophins, inhibiting endoplasmic reticulum stress and autophagy, modulating potassium channel activity and hippocampal long-term potentiation. Therefore, the neuropeptides may function as potential drug targets in the prevention and cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China.,Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yi-Feng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Kimura A, Sugimoto T, Niida S, Toba K, Sakurai T. Association Between Appetite and Sarcopenia in Patients With Mild Cognitive Impairment and Early-Stage Alzheimer's Disease: A Case-Control Study. Front Nutr 2019; 5:128. [PMID: 30619874 PMCID: PMC6305366 DOI: 10.3389/fnut.2018.00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Sarcopenia is frequently seen in patients with mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). While appetite loss and physical inactivity, which are also frequently seen in dementia, appear to contribute to sarcopenia, to date, no study has investigated this association. Objective: The aim of this study was to examine factors associated with sarcopenia, including appetite and physical activity, in patients with MCI and early-stage AD. Methods: The study subjects comprised 205 outpatients (MCI, n = 151; early-stage AD, n = 54) who were being treated at the Memory Clinic, National Center for Geriatrics, and Gerontology and had a Mini-Mental State Examination (MMSE) score of 21 or higher. All subjects were assessed for appetite by using the Council on Nutrition Appetite Questionnaire (CNAQ). Confounding variables assessed included physical activity, activities of daily living, mood, body mass index (BMI), nutritional status, and medications. Sarcopenia was defined as low muscle mass and low handgrip strength or slow gait speed. Multivariate logistic regression analyses were performed with adjustment for age, gender, education, and confounding variables to examine the association of sarcopenia with physical activity and appetite. Furthermore, sub-analyses were also conducted to clarify the relationship between CNAQ sub-items and sarcopenia. Results: The prevalence of sarcopenia among the subjects was 14.6% (n = 30). Patients with sarcopenia had lower CNAQ scores (those with sarcopenia, 26.7 ± 3.5; those without, 29.1 ± 2.5). Multivariate analysis showed that BMI (odds ratio [OR], 0.675; 95% confidence interval [CI], 0.534-0.853), polypharmacy (OR, 4.489; 95% CI, 1.315-15.320), and CNAQ (OR, 0.774; 95% CI, 0.630-0.952) were shown to be associated with sarcopenia. Physical activity was not associated with sarcopenia. Of the sub-items of the CNAQ, appetite (OR, 0.353; 95% CI, 0.155-0.805), feeling full (OR, 0.320; 95% CI = 0.135-0.761), and food tastes compared to when younger (OR, 0.299; 95% CI, 0.109-0.818) were shown to be associated with sarcopenia. Conclusions: These results suggest that appetite could be a modifiable risk factor for sarcopenia in patients with MCI and early-stage AD. A comprehensive approach to improving appetite may prove effective in preventing sarcopenia.
Collapse
Affiliation(s)
- Ai Kimura
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan.,Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Cognitive and Behavioral Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taiki Sugimoto
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan.,Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Community Health Sciences, Graduate School of Health Sciences, Kobe University, Kobe, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Toba
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Cognitive and Behavioral Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Hiller AJ, Ishii M. Disorders of Body Weight, Sleep and Circadian Rhythm as Manifestations of Hypothalamic Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2018; 12:471. [PMID: 30568576 PMCID: PMC6289975 DOI: 10.3389/fncel.2018.00471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
While cognitive decline and memory loss are the major clinical manifestations of Alzheimer’s disease (AD), they are now recognized as late features of the disease. Recent failures in clinical drug trials highlight the importance of evaluating and treating patients with AD as early as possible and the difficulties in developing effective therapies once the disease progresses. Since the pathological hallmarks of AD including the abnormal aggregation of amyloid-beta (Aβ) and tau can occur decades before any significant cognitive decline in the preclinical stage of AD, it is important to identify the earliest clinical manifestations of AD and elucidate their underlying cellular and molecular mechanisms. Importantly, metabolic and non-cognitive manifestations of AD such as weight loss and alterations of peripheral metabolic signals can occur before the onset of cognitive symptoms and worsen with disease progression. Accumulating evidence suggests that the major culprit behind these early metabolic and non-cognitive manifestations of AD is AD pathology causing dysfunction of the hypothalamus, a brain region critical for integrating peripheral signals with essential homeostatic physiological functions. Here, we aim to highlight recent developments that address the role of AD pathology in the development of hypothalamic dysfunction associated with metabolic and non-cognitive manifestations seen in AD. Understanding the mechanisms underlying hypothalamic dysfunction in AD could give key new insights into the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Abigail J Hiller
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Makoto Ishii
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
26
|
Liguori C, Mercuri NB, Nuccetelli M, Izzi F, Bernardini S, Placidi F. Cerebrospinal Fluid Orexin Levels and Nocturnal Sleep Disruption in Alzheimer’s Disease Patients Showing Neuropsychiatric Symptoms. J Alzheimers Dis 2018; 66:993-999. [DOI: 10.3233/jad-180769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Claudio Liguori
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine, Neurology Unit, University of Rome “Tor Vergata”, Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
27
|
Heywood WE, Hallqvist J, Heslegrave AJ, Zetterberg H, Fenoglio C, Scarpini E, Rohrer JD, Galimberti D, Mills K. CSF pro-orexin and amyloid-β38 expression in Alzheimer's disease and frontotemporal dementia. Neurobiol Aging 2018; 72:171-176. [PMID: 30292090 PMCID: PMC6221294 DOI: 10.1016/j.neurobiolaging.2018.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/02/2022]
Abstract
There is an unmet need for markers that can stratify different forms and subtypes of dementia. Because of similarities in clinical presentation, it can be difficult to distinguish between Alzheimer's disease (AD) and frontotemporal dementia (FTD). Using a multiplex targeted proteomic LC-MS/MS platform, we aimed to identify cerebrospinal fluid proteins differentially expressed between patients with AD and FTD. Furthermore analysis of 2 confirmed FTD genetic subtypes carrying progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72) mutations was performed to give an insight into the differing pathologies of these forms of FTD. Patients with AD (n = 13) demonstrated a significant (p < 0.007) 1.24-fold increase in pro-orexin compared to FTD (n = 32). Amyloid beta-38 levels in patients with AD were unaltered but demonstrated a >2-fold reduction (p < 0.0001) in the FTD group compared to controls and a similar 1.83-fold reduction compared to the AD group (p < 0.001). Soluble TREM2 was elevated in both dementia groups but did not show any difference between AD and FTD. A further analysis comparing FTD subgroups revealed slightly lower levels of proteins apolipoprotein E, CD166, osteopontin, transthyretin, and cystatin C in the GRN group (n = 9) compared to the C9orf72 group (n = 7). These proteins imply GRN FTD elicits an altered inflammatory response to C9orf72 FTD.
Collapse
Affiliation(s)
- Wendy E Heywood
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jenny Hallqvist
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amanda J Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Salhgrenska Academy at the University of Gothenburg, Sweden
| | - Chiara Fenoglio
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Daniela Galimberti
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Kevin Mills
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
28
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|