1
|
Pang H, Yu Z, Yu H, Li X, Bu S, Liu Y, Wang J, Zhao M, Fan G. Advanced Cognitive Patterns in Multiple System Atrophy Compared to Parkinson's Disease: An Individual Diffusion Tensor Imaging Study. Acad Radiol 2024; 31:2897-2909. [PMID: 38220569 DOI: 10.1016/j.acra.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
RATIONALE AND OBJECTIVES Although both Multiple system atrophy (MSA) and Parkinson's disease (PD) belong to alpha-synucleinopathy, they have divergent clinical courses and prognoses. The degeneration of white matter has a considerable impact on cognitive performance, yet it is uncertain how PD and MSA affect its functioning in a similar or different manner. METHODS In this study, a total of 116 individuals (37 PD with mild cognitive impairment (PD-MCI), 37 MSA (parkinsonian variant) with mild cognitive impairment (MSA-MCI), and 42 healthy controls) underwent diffusion tensor imaging (DTI) and cognitive assessment. Utilizing probabilistic fiber tracking, association fibers, projection fibers, and thalamic fibers were reconstructed. Subsequently, regression, support vector machine, and SHAP (Shapley Addictive exPlanations) analyzes were conducted to evaluate the association between microstructural diffusion metrics and multiple cognitive domains, thus determining the white matter predictors of MCI. RESULTS MSA-MCI patients exhibited distinct white matter impairment extending to the middle cerebellar peduncle, corticospinal tract, and cingulum bundle. Furthermore, the fractional anisotropy (FA) and mean diffusivity (MD)values of the right anterior thalamic radiation were significantly associated with global efficiency (FA: B = 0.69, P < 0.001, VIF = 1.31; MD: B = -0.53, P = 0.02, VIF = 2.50). The diffusion metrics of white matter between PD-MCI and MSA-MCI proved to be an effective predictor of the MCI, with an accuracy of 0.73 (P < 0.01), and the most predictive factor being the MD of the anterior thalamic radiation. CONCLUSIONS Our results demonstrated that MSA-MCI had a more noticeable deterioration in white matter, which potentially linked to various cognitive domain connections. Diffusion MRI could be a useful tool in comprehending the neurological basis of cognitive impairment in Parkinsonian disorders.
Collapse
Affiliation(s)
- Huize Pang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.)
| | - Ziyang Yu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.)
| | - Hongmei Yu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.Y.)
| | - Xiaolu Li
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.)
| | - Shuting Bu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.)
| | - Yu Liu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.)
| | - Juzhou Wang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.)
| | - Mengwan Zhao
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.)
| | - Guoguang Fan
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China (H.P., Z.Y., X.L., S.B., Y.L., J.W., M.Z., G.F.).
| |
Collapse
|
2
|
Jellinger KA. Mild cognitive impairment in multiple system atrophy: a brain network disorder. J Neural Transm (Vienna) 2023; 130:1231-1240. [PMID: 37581647 DOI: 10.1007/s00702-023-02682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Cognitive impairment (CI), previously considered as a non-supporting feature of multiple system atrophy (MSA), according to the second consensus criteria, is not uncommon in this neurodegenerative disorder that is clinically characterized by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, motor and cerebellar signs. Mild cognitive impairment (MCI), a risk factor for dementia, has been reported in up to 44% of MSA patients, with predominant impairment of executive functions/attention, visuospatial and verbal deficits, and a variety of non-cognitive and neuropsychiatric symptoms. Despite changing concept of CI in this synucleinopathy, the underlying pathophysiological mechanisms remain controversial. Recent neuroimaging studies revealed volume reduction in the left temporal gyrus, and in the dopaminergic nucleus accumbens, while other morphometric studies did not find any gray matter atrophy, in particular in the frontal cortex. Functional analyses detected decreased functional connectivity in the left parietal lobe, bilateral cuneus, left precuneus, limbic structures, and cerebello-cerebral circuit, suggesting that structural and functional changes in the subcortical limbic structures and disrupted cerebello-cerebral networks may be associated with early cognitive decline in MSA. Whereas moderate to severe CI in MSA in addition to prefrontal-striatal degeneration is frequently associated with cortical Alzheimer and Lewy co-pathologies, neuropathological studies of the MCI stage of MSA are unfortunately not available. In view of the limited structural and functional findings in MSA cases with MCI, further neuroimaging and neuropathological studies are warranted in order to better elucidate its pathophysiological mechanisms and to develop validated biomarkers as basis for early diagnosis and future adequate treatment modalities in order to prevent progression of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
3
|
Jellinger KA. Morphological differences between the two major subtypes of multiple system atrophy with cognitive impairment. Parkinsonism Relat Disord 2023; 107:105273. [PMID: 36603328 DOI: 10.1016/j.parkreldis.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To compare the neuropathology between two types of multiple system atrophy - parkinsonism-predominant (MSA-P) and cerebellar ataxia-predominant (MSA-C) with cognitive impairment. MATERIAL & METHODS 35 cases of MSA-P (mean age at death 60.5 ± 7.8 years) and 15 cases of MSA-C (mean age at death 61.3 ± 6.8 years), 35.% of which associated with mild to moderate cognitive impairment and one with severe dementia, were examined neuropathologically with semiquantitative evaluation of both α-synuclein and Alzheimer pathologies, including cerebral amyloid angiopathy (CAA) and other co-pathologies. RESULTS While the mean age at death of both MSA subgroups was similar, the age at onset and duration of disease were slightly higher in the MSA-C group. In line with the classification, the αSyn pathology glial and neuronal inclusions in both the cortex and brainstem were significantly higher in the MSA-P group. With regard to the Alzheimer disease pathology, tau load in cases with mild to moderate cognitive impairment was slightly but not significantly higher in the MSA-P group, one with severe dementia showing fully developed Alzheimer co-pathology, while the amyloid-β (Aβ) load including the CAA was higher in the MSA-C group. The presence of Lewy co-pathology in this series (20%), being similar to that of other MSA cohorts, was more frequent in MSA cases with mild to severe cognitive impairment, but did not differ between the two subgroups and seems not essentially important for MCI in MSA. CONCLUSIONS In agreement with previous clinical studies that reported more severe cognitive dysfunction in patients with MSA-P, the present neuropathological study showed increased tau pathology in MSA-P and one with severe Alzheimer co-pathology, but only slightly increased amyloid pathology in the MSA-C group. Lewy co-pathology was more frequent in MSA-P cases with cognitive decline. In view of the limited data about the pathobiological basis of cognitive impairment in MSA, further studies to elucidate the differences between the two phenotypes are urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria.
| |
Collapse
|
4
|
Association between Cognitive Impairment and Hippocampal Subfield Volumes in Multiple System Atrophy. PARKINSON'S DISEASE 2023; 2023:8888255. [PMID: 36923711 PMCID: PMC10010875 DOI: 10.1155/2023/8888255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
This study aimed to explore morphological changes of hippocampal subfields in patients with multiple system atrophy (MSA) with and without cognitive impairment using FreeSurfer-automated segmentation of hippocampal subfield techniques and their relationship with cognitive function. We enrolled 75 patients with MSA classified as cognitively impaired MSA (MSA-CI, n = 40) and cognitively preserved MSA (MSA-CP, n = 35), as well as 68 healthy controls. All participants underwent three-dimensional volume T1-weighted magnetic resonance imaging. The hippocampal subfield volume was measured using FreeSurfer version 7.2 and compared among groups. Regression analyses were performed between the hippocampal subfield volumes and cognitive variables. Compared with healthy controls, the volume of the right cornu ammonis (CA) 2/3 was significantly lower in the MSA-CI group (P=0.029) and that of the left fimbria was significantly higher in the MSA-CP group (P=0.046). Results of linear regression analysis showed that the right CA2/3 volume was significantly correlated with the Frontal Assessment Battery score in patients with MSA (adjusted R 2 = 0.282, β = 0.227, and P=0.041). The hippocampal subfield volume decreased in patients with MSA-CI, even at the early disease stages. Specific structural changes in the hippocampus might be associated with cognitive deficits in MSA.
Collapse
|
5
|
Cui Y, Cao S, Li F, Feng T. Prevalence and Clinical Characteristics of Dementia and Cognitive Impairment in Multiple System Atrophy: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2383-2395. [PMID: 36336940 DOI: 10.3233/jpd-223444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cognitive impairment is a clinical feature of multiple system atrophy (MSA). However, the prevalence and factors influencing the prevalence of cognitive impairment and dementia in MSA patients remain unclear. OBJECTIVE We aim to provide an estimate of the prevalence of cognitive impairment and dementia in patients with MSA and to evaluate the possible effect of demographic, clinical and methodological factors on the prevalence. METHODS We systematically searched the PubMed, Embase, and Web of science databases to identify studies that report the prevalence of cognitive impairment or dementia in MSA published up to February 2022. We computed the estimates of the pooled prevalence using random-effects models. Heterogeneity was investigated by subgroup analyses and meta-regression. Differences between MSA patients with and without cognitive impairment in demographic and clinical features were explored. RESULTS A total of 23 studies comprising 2064 MSA patients were included in meta-analysis. The pooled prevalence of cognitive impairment in MSA patients was 37% (95% CI: 29% -45%), the prevalence of dementia was 11% (95% CI: 7% -15%). The subgroup analyses showed the prevalence of dementia in pathologically-confirmed MSA was 7% (95% CI: 0% -12%), in clinically diagnosed MSA was 14% (95% CI: 10% -18%). Cognitive impairment in MSA patients was associated with older age, lower education, longer disease duration and more severe motor symptoms. CONCLUSION Cognitive impairment is a common non-motor symptom in MSA. Dementia can develop in a few patients with MSA as well, but usually in the late stage.
Collapse
Affiliation(s)
- Yusha Cui
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuangshuang Cao
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fangfei Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Pasquini J, Firbank MJ, Ceravolo R, Silani V, Pavese N. Diffusion Magnetic Resonance Imaging Microstructural Abnormalities in Multiple System Atrophy: A Comprehensive Review. Mov Disord 2022; 37:1963-1984. [PMID: 36036378 DOI: 10.1002/mds.29195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease characterized by autonomic failure, ataxia, and/or parkinsonism. Its prominent pathological alterations can be investigated using diffusion magnetic resonance imaging (dMRI), a technique that exploits the characteristics of water random motion inside brain tissue. The aim of this report was to review currently available literature on the application of dMRI in MSA and to describe microstructural abnormalities, diagnostic applications, and pathophysiological correlates. Sixty-four published studies involving microstructural investigation using dMRI in MSA were included. Widespread microstructural abnormalities of white matter were described, especially in the middle cerebellar peduncle, corticospinal tract, and hemispheric fibers. Gray matter degeneration was identified as well, with diffuse involvement of subcortical structures, especially in the putamina. Diagnostic applications of dMRI were mostly explored for the differential diagnosis between MSA parkinsonism and Parkinson's disease. Recently, machine learning algorithms for image processing and disease classification have demonstrated high diagnostic accuracy, showing potential for translation into clinical practice. To a lesser extent, clinical correlates of microstructural abnormalities have also been investigated, and abnormalities related to motor, ocular, and cognitive impairments were described. dMRI in MSA has contributed to in vivo identification of known pathological abnormalities. Translation into clinical practice of the latest advancements for the differential diagnosis between MSA and other forms of parkinsonism seems feasible. Current limitations involve the possibility of correctly diagnosing MSA in the very early stages, when the clinical diagnosis is most uncertain. Furthermore, pathophysiological correlates of microstructural abnormalities remain understudied. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michael J Firbank
- Positron Emission Tomography Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Zhang M, He T, Wang Q. Effects of Non-invasive Brain Stimulation on Multiple System Atrophy: A Systematic Review. Front Neurosci 2021; 15:771090. [PMID: 34966257 PMCID: PMC8710715 DOI: 10.3389/fnins.2021.771090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background/Objective: Multiple system atrophy (MSA) refers to a progressive neurodegenerative disease characterized by autonomic dysfunction, parkinsonism, cerebellar ataxia, as well as cognitive deficits. Non-invasive brain stimulation (NIBS) has recently served as a therapeutic technique for MSA by personalized stimulation. The primary aim of this systematic review is to assess the effects of NIBS on two subtypes of MSA: parkinsonian-type MSA (MSA-P) and cerebellar-type MSA (MSA-C). Methods: A literature search for English articles was conducted from PubMed, Embase, Web of Science, Cochrane Library, CENTRAL, CINAHL, and PsycINFO up to August 2021. Original articles investigating the therapeutics application of NIBS in MSA were screened and analyzed by two independent reviewers. Moreover, a customized form was adopted to extract data, and the quality of articles was assessed based on the PEDro scale for clinical articles. Results: On the whole, nine articles were included, i.e., five for repetitive transcranial magnetic stimulation (rTMS), two for transcranial direct current stimulation (tDCS), one for paired associative stimulation, with 123 patients recruited. The mentioned articles comprised three randomized controlled trials, two controlled trials, two non-controlled trials, and two case reports which assessed NIBS effects on motor function, cognitive function, and brain modulatory effects. The majority of articles demonstrated significant motor symptoms improvement and increased cerebellar activation in the short term after active rTMS. Furthermore, short-term and long-term effects on improvement of motor performance were significant for tDCS. As opposed to the mentioned, no significant change of motor cortical excitability was reported after paired associative stimulation. Conclusion: NIBS can serve as a useful neurorehabilitation strategy to improve motor and cognitive function in MSA-P and MSA-C patients. However, further high-quality articles are required to examine the underlying mechanisms and standardized protocol of rTMS as well as its long-term effect. Furthermore, the effects of other NIBS subtypes on MSA still need further investigation.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| | - Ting He
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| | - Quan Wang
- Department of Occupational Therapy, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.,Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Sugiyama A, Cooper G, Hirano S, Yokota H, Mori M, Shimizu K, Yakiyama M, Finke C, Brandt AU, Paul F, Kuwabara S. Cognitive Impairment in Multiple System Atrophy Is Related to White Matter Damage Detected by the T1-Weighted/T2-Weighted Ratio. Eur Neurol 2021; 84:435-443. [PMID: 34284398 DOI: 10.1159/000517360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aimed to use a novel MRI contrast, the standardized T1-weighted/T2-weighted (sT1w/T2w) ratio, to assess damage of the white matter and gray matter in multiple system atrophy (MSA). Furthermore, this study investigated whether the sT1w/T2w ratio was associated with cognitive impairment in MSA. METHODS The white matter and gray matter sT1w/T2w ratio of 37 MSA patients and 19 healthy controls were measured. Correlation analyses were used to evaluate the relationship between sT1w/T2w ratio values and clinical variables, and a multivariate analysis was used to identify independent factors associated with cognitive impairment in MSA. RESULTS MSA patients showed a higher white matter sT1w/T2w ratio value than controls (p < 0.001), and the white matter sT1w/T2w ratio value was significantly correlated with the International Cooperative Ataxia Rating Scale score (r = 0.377, p = 0.021) and the Addenbrooke's cognitive examination III score (r = -0.438, p = 0.007). Cognitively impaired MSA patients had a significantly higher white matter sT1w/T2w ratio value than cognitively preserved MSA patients (p = 0.010), and the multiple logistic regression analysis revealed that the median white matter sT1w/T2w ratio value was independently associated with cognitive impairment in MSA. CONCLUSION The sT1w/T2w ratio is sensitive to degenerative changes in the white matter that is associated with cognitive ability in MSA patients.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Graham Cooper
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Department of Experimental Neurology and Center for Stroke Research, Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Center for Dementia, Chiba University Hospital, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Shimizu
- Medical Center for Dementia, Chiba University Hospital, Chiba, Japan
| | | | - Carsten Finke
- Einstein Center for Neurosciences, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, California, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Center for Dementia, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
10
|
Shen C, Chen L, Ge JJ, Lu JY, Chen QS, He SJ, Li XY, Zhao J, Sun YM, Wu P, Wu JJ, Liu FT, Wang J. Cerebral Metabolism Related to Cognitive Impairments in Multiple System Atrophy. Front Neurol 2021; 12:652059. [PMID: 33868154 PMCID: PMC8047308 DOI: 10.3389/fneur.2021.652059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: We aimed to characterize the cognitive profiles in multiple system atrophy (MSA) and explore the cerebral metabolism related to the cognitive decline in MSA using 18F-fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET). Methods: In this study, 105 MSA patients were included for cognitive assessment and 84 of them were enrolled for 18F-FDG PET analysis. The comprehensive neuropsychological tests covered five main domains including execution, attention, memory, language, and visuospatial function. The cognitive statuses were classified to MSA with normal cognition (MSA-NC) and MSA with cognitive impairment (MSA-CI), including dementia (MSA-D), and mild cognitive impairment (MSA-MCI). With 18F-FDG PET imaging, the cerebral metabolism differences among different cognitive statuses were analyzed using statistical parametric mapping and post-hoc analysis. Results: Among 84 MSA patients, 52 patients were found with MSA-CI, including 36 patients as MSA-MCI and 16 patients as MSA-D. In detail, the cognitive impairments were observed in all the five domains, primarily in attention, executive function and memory. In 18F-FDG PET imaging, MSA-D and MSA-MCI patients exhibited hypometabolism in left middle and superior frontal lobe compared with MSA-NC (p < 0.001). The normalized regional cerebral metabolic rate of glucose (rCMRglc) in left middle frontal lobe showed relative accuracy in discriminating MSA-CI and MSA-NC [areas under the curve (AUC) = 0.750; 95%CI = 0.6391–0.8609]. Conclusions: Cognitive impairments were not rare in MSA, and the hypometabolism in frontal lobe may contribute to such impairments.
Collapse
Affiliation(s)
- Cong Shen
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-Jie Ge
- Positron emission tomography (PET) Center at Huashan Hospital, Institute of Functional and Molecular Medical Imaging, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- Positron emission tomography (PET) Center at Huashan Hospital, Institute of Functional and Molecular Medical Imaging, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qi-Si Chen
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shu-Jin He
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yi Li
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Positron emission tomography (PET) Center at Huashan Hospital, Institute of Functional and Molecular Medical Imaging, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
A study on the characteristics of cognitive function in patients with multiple system atrophy in China. Sci Rep 2021; 11:4995. [PMID: 33654145 PMCID: PMC7925668 DOI: 10.1038/s41598-021-84393-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Nonmotor symptoms in patients with multiple system atrophy (MSA) have received an increasing amount of attention in recent years, but no research on MSA patients' cognitive characteristics has been conducted in China. To evaluate the cognitive function of MSA patients in China. Using a case–control study design, 256 MSA patients and 64 controls were evaluated by the Montreal cognitive assessment (MoCA) scale to characterize their cognitive function. Like the controls, 60.5% of the patients with MSA had cognitive impairment, but the characteristics of cognitive impairment between the two groups were different. The cognitive impairment in MSA patients was prominent in the cognitive domains of visuospatial/executive functions, naming, attention, and orientation; particularly, the visuospatial/executive functions were the most significantly impaired, while impairment in language function was mainly seen in the controls. Besides, impairments in visuospatial/executive functions, attention, language, and orientation were more prominent in MSA-P (MSA with predominant Parkinsonism) patients than in MSA-C (MSA with predominant cerebellar ataxia). The cognitive impairments were more severe in patients with probable MSA than in patients with possible MSA. In addition, the results showed that the level of cognitive function was negatively correlated with the severity of MSA. This study, which characterized the cognitive function of MSA patients with the largest sample size known so far in China, found that patients with MSA do have cognitive impairment and display specific characteristics. Therefore, the cognitive impairment of MSA should be paid more attention. The study has been registered in the Chinese Clinical Trial Registry (ChiCTR) (Registration No: ChiCTR1900022462).
Collapse
|
12
|
Del Campo N, Phillips O, Ory‐Magne F, Brefel‐Courbon C, Galitzky M, Thalamas C, Narr KL, Joshi S, Singh MK, Péran P, Pavy‐LeTraon A, Rascol O. Broad white matter impairment in multiple system atrophy. Hum Brain Mapp 2021; 42:357-366. [PMID: 33064319 PMCID: PMC7776008 DOI: 10.1002/hbm.25227] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 11/11/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disorder characterized by the widespread aberrant accumulation of α-synuclein (α-syn). MSA differs from other synucleinopathies such as Parkinson's disease (PD) in that α-syn accumulates primarily in oligodendrocytes, the only source of white matter myelination in the brain. Previous MSA imaging studies have uncovered focal differences in white matter. Here, we sought to build on this work by taking a global perspective on whole brain white matter. In order to do this, in vivo structural imaging and diffusion magnetic resonance imaging were acquired on 26 MSA patients, 26 healthy controls, and 23 PD patients. A refined whole brain approach encompassing the major fiber tracts and the superficial white matter located at the boundary of the cortical mantle was applied. The primary observation was that MSA but not PD patients had whole brain deep and superficial white matter diffusivity abnormalities (p < .001). In addition, in MSA patients, these abnormalities were associated with motor (Unified MSA Rating Scale, Part II) and cognitive functions (Mini-Mental State Examination). The pervasive whole brain abnormalities we observe suggest that there is widespread white matter damage in MSA patients which mirrors the widespread aggregation of α-syn in oligodendrocytes. Importantly, whole brain white matter abnormalities were associated with clinical symptoms, suggesting that white matter impairment may be more central to MSA than previously thought.
Collapse
Affiliation(s)
- Natalia Del Campo
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Owen Phillips
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
- Division of Child and Adolescent Psychiatry, Department of PsychiatryStanford University School of MedicineStanfordCaliforniaUSA
- BrainKeySan FranciscoCaliforniaUSA
| | - Françoise Ory‐Magne
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Christine Brefel‐Courbon
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Monique Galitzky
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Claire Thalamas
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Katherine L. Narr
- Department of NeurologyAhmanson Lovelace Brain Mapping Center, David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Shantanu Joshi
- Department of NeurologyAhmanson Lovelace Brain Mapping Center, David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Manpreet K. Singh
- Division of Child and Adolescent Psychiatry, Department of PsychiatryStanford University School of MedicineStanfordCaliforniaUSA
| | - Patrice Péran
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Anne Pavy‐LeTraon
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| | - Olivier Rascol
- CHU de Toulouse, Université de Toulouse‐Toulouse 3, INSERM, UMR1214 Toulouse NeuroImaging Centre “TONIC,” Center of Excellence in Neurodegeneration (CoEN), NeuroToul, Centre National de Reference AMS, Centre Expert Parkinson de Toulouse, Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, UMR 1048 Institute for Cardiovascular DiseasesToulouseFrance
| |
Collapse
|
13
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
14
|
Jellinger KA. Neuropathological findings in multiple system atrophy with cognitive impairment. J Neural Transm (Vienna) 2020; 127:1031-1039. [PMID: 32367182 DOI: 10.1007/s00702-020-02201-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/26/2020] [Indexed: 01/10/2023]
Abstract
Cognitive impairment (CI), previously considered an exclusion criterium for the diagnosis of multiple system atrophy (MSA) according to the second consensus criteria, is not uncommon in MSA. Mild cognitive impairment (MCI) has been reported in up to 47% of MSA patients, while severe dementia is rare. We related clinical CI with neuropathological findings in 48 autopsy-proven cases of MSA. This retrospective study included 33 parkinsonism predominant MSA (MSA-P), and 15 cerebellar ataxia-predominant MSA (MSA-C) cases (mean age at death 60.5 ± 7.8; range 46-82 years). Cognitive state was assessed from hospital charts, however, without comprehensive neuropsychological testing. Neuropathological examination, in addition to grading of the MSA pathologies, included semiquantitative assessment of Lewy and Alzheimer-related co-pathologies. Their incidence was compared with 143 age-matched controls (mean age 60.5 ± 7.6 years). MCI reported in ten cases (20.8%) was associated with moderate cortical tau pathology in only three; moderate CI in seven patients (14.5%) was associated with cortical amyloid plaques and moderate cortical tau pathology in six each, and one with probable primary age-related tauopathy (PART); a female aged 82 years with severe dementia showed fully developed Alzheimer disease. Cortical amyloid plaques, observed in eight cases, three of them without tau pathology, were associated with clinical MCI, as was cortical Lewy pathology in five. Two cases with cortical Lewy pathology and neuritic Braak stages II and III, and three with Braak stage IV, without cortical Lewy bodies, had shown moderate CI. Cortical Lewy pathology observed in four cases was not associated with clinical CI. 77.1% of the MSA cases were free of Alzheimer-type lesions, compared to 42% of controls; while Lewy pathology in the MSA cohort (22.9%) was significantly higher than in the control group (8.4%) both p < 0.001. Mild-to-moderate CI, reported in 35.3% of MSA patients, being significantly older than those without CI, were frequently associated with cortical Alzheimer (Braak stages III and IV) and Lewy pathologies, while only one with severe dementia had fully developed Alzheimer disease. In view of these findings in a limited series of MSA patients, further studies to elucidate the pathological basis of cognitive impairment in MSA are warranted.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
15
|
Sugiyama A, Cooper G, Hirano S, Yokota H, Mori M, Shimizu K, Yakiyama M, Finke C, Brandt AU, Paul F, Kuwabara S. WITHDRAWN: Cognitive impairment in multiple system atrophy is related to white matter damage detected by the T1w/T2w ratio. Parkinsonism Relat Disord 2020. [DOI: 10.1016/j.parkreldis.2020.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Kawabata K, Hara K, Watanabe H, Bagarinao E, Ogura A, Masuda M, Yokoi T, Kato T, Ohdake R, Ito M, Katsuno M, Sobue G. Alterations in Cognition-Related Cerebello-Cerebral Networks in Multiple System Atrophy. THE CEREBELLUM 2020; 18:770-780. [PMID: 31069705 DOI: 10.1007/s12311-019-01031-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We aimed to elucidate the effect of cerebellar degeneration in relation to cognition in multiple system atrophy (MSA). Thirty-two patients diagnosed with probable MSA and 32 age- and gender-matched healthy controls (HCs) were enrolled. We conducted voxel-based morphometry (VBM) for anatomical images and independent component analysis (ICA), dual-regression analysis, and seed-based analysis for functional images with voxel-wise gray matter correction. In the MSA group, a widespread cerebellar volume loss was observed. ICA and dual-regression analysis showed lower functional connectivity (FC) in the left executive control and salience networks in regions located in the cerebellum. Seed-based analysis using the identified cerebellar regions as seeds showed extensive disruptions in cerebello-cerebral networks. Global cognitive scores correlated with the FC values between the right lobules VI/crus I and the medial prefrontal/anterior cingulate cortices and between the same region and the amygdala/parahippocampal gyrus. Our study indicates that cerebellar degeneration in MSA causes segregation of cerebellar-cerebral networks. Furthermore, the cognitive deficits in MSA may be driven by decreased cerebello-prefrontal and cerebello-amygdaloid functional connections.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan. .,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
17
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
18
|
Cerebellar atrophy and its contribution to motor and cognitive performance in multiple system atrophy. NEUROIMAGE-CLINICAL 2019; 23:101891. [PMID: 31226621 PMCID: PMC6587071 DOI: 10.1016/j.nicl.2019.101891] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
Objective Neuroanatomical differences in the cerebellum are among the most consistent findings in multiple system atrophy (MSA) patients. This study performed a detailed cerebellar morphology in MSA patients and its two subtypes: MSA-P (parkinson's symptoms predominate) and MSA-C (cerebellar symptoms predominant), and their relations to profiles of motor and cognitive deficits. Materials and methods Structure MRI data were acquired from 63 healthy controls and 61 MSA patients; voxel-based morphometry and the Spatially Unbiased Infratentorial Toolbox cerebellar atlas were performed to identify the cerebellar gray volume changes in MSA and its subtypes. Further, the gray matter changes were correlated with the clinical motor/cognitive scores. Results Patients with MSA exhibited widespread loss of cerebellar volume bilaterally, relative to healthy controls. In those with MSA-C, gray matter loss was detected from anterior (bilateral lobule IV-V) to posterior (bilateral crus I/II, bilateral lobule IX, left lobule VIII) cerebellar lobes. Lower anterior cerebellar volume negatively correlated with disease duration and motor performance, whereas posterior lobe integrity positively correlated with cognitive assessment. In patients with MSA-P, atrophy of anterior lobe (bilateral lobules IV-V) and posterior lobe in part (left lobule VI, bilateral IX) was evident; and in left cerebellar lobule IX, gray matter loss negatively correlated with motor scores. Direct comparison of MSA-P and MSA-C group outcomes showed divergence in right cerebellar crus II only. Conclusions Our data suggest that volumetric abnormalities of cerebellum contribute substantially to motor and cognitive performance in patients with MSA. In patients with MSA-P and MSA-C, affected regions of cerebellum differed. Cerebellum atrophy contributed substantially to motor and cognitive behavior in MSA. Lower cerebellum IV-V volume was correlated with MSA-C disease duration and severity Cerebellum atrophy in one side may imply symptoms onset on contralateral
Collapse
|