1
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Ludolph AC, Corcia P, Desnuelle C, Heiman-Patterson T, Mora JS, Mansfield CD, Couratier P. Categorization of the amyotrophic lateral sclerosis population via the clinical determinant of post-onset ΔFS for study design and medical practice. Muscle Nerve 2024; 70:36-41. [PMID: 38712849 DOI: 10.1002/mus.28101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
The amyotrophic lateral sclerosis (ALS) functional rating scale-revised (ALSFRS-R) has become the most widely utilized measure of disease severity in patients with ALS, with change in ALSFRS-R from baseline being a trusted primary outcome measure in ALS clinical trials. This is despite the scale having several established limitations, and although alternative scales have been proposed, it is unlikely that these will displace ALSFRS-R in the foreseeable future. Here, we discuss the merits of delta FS (ΔFS), the slope or rate of ALSFRS-R decline over time, as a relevant tool for innovative ALS study design, with an as yet untapped potential for optimization of drug effectiveness and patient management. In our view, categorization of the ALS population via the clinical determinant of post-onset ΔFS is an important study design consideration. It serves not only as a critical stratification factor and basis for patient enrichment but also as a tool to explore differences in treatment response across the overall population; thereby, facilitating identification of responder subgroups. Moreover, because post-onset ΔFS is derived from information routinely collected as part of standard patient care and monitoring, it provides a suitable patient selection tool for treating physicians. Overall, post-onset ΔFS is a very attractive enrichment tool that is, can and should be regularly incorporated into ALS trial design.
Collapse
Affiliation(s)
- Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Philippe Corcia
- Le Centre de Référence pour les Maladies Rares SLA, CHRU Bretonneau, Tours, France
- UMR 1253 iBrain, Tours, France
| | - Claude Desnuelle
- Centre de Référence Maladies Neuromusculaires/SLA, Neurosciences Department, CHU Nice-University Nice-Côte d'Azur, Nice, France
| | - Terry Heiman-Patterson
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | | | - Philippe Couratier
- Centre de Référence SLA et Autres Maladies du Motoneurone, CHU Dupuytren, Limoges, France
| |
Collapse
|
3
|
Trubshaw M, Gohil C, Yoganathan K, Kohl O, Edmond E, Proudfoot M, Thompson AG, Talbot K, Stagg CJ, Nobre AC, Woolrich M, Turner MR. The cortical neurophysiological signature of amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae164. [PMID: 38779353 PMCID: PMC11109820 DOI: 10.1093/braincomms/fcae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/09/2024] [Indexed: 05/25/2024] Open
Abstract
The progressive loss of motor function characteristic of amyotrophic lateral sclerosis is associated with widespread cortical pathology extending beyond primary motor regions. Increasing muscle weakness reflects a dynamic, variably compensated brain network disorder. In the quest for biomarkers to accelerate therapeutic assessment, the high temporal resolution of magnetoencephalography is uniquely able to non-invasively capture micro-magnetic fields generated by neuronal activity across the entire cortex simultaneously. This study examined task-free magnetoencephalography to characterize the cortical oscillatory signature of amyotrophic lateral sclerosis for having potential as a pharmacodynamic biomarker. Eight to ten minutes of magnetoencephalography in the task-free, eyes-open state was recorded in amyotrophic lateral sclerosis (n = 36) and healthy age-matched controls (n = 51), followed by a structural MRI scan for co-registration. Extracted magnetoencephalography metrics from the delta, theta, alpha, beta, low-gamma, high-gamma frequency bands included oscillatory power (regional activity), 1/f exponent (complexity) and amplitude envelope correlation (connectivity). Groups were compared using a permutation-based general linear model with correction for multiple comparisons and confounders. To test whether the extracted metrics could predict disease severity, a random forest regression model was trained and evaluated using nested leave-one-out cross-validation. Amyotrophic lateral sclerosis was characterized by reduced sensorimotor beta band and increased high-gamma band power. Within the premotor cortex, increased disability was associated with a reduced 1/f exponent. Increased disability was more widely associated with increased global connectivity in the delta, theta and high-gamma bands. Intra-hemispherically, increased disability scores were particularly associated with increases in temporal connectivity and inter-hemispherically with increases in frontal and occipital connectivity. The random forest model achieved a coefficient of determination (R2) of 0.24. The combined reduction in cortical sensorimotor beta and rise in gamma power is compatible with the established hypothesis of loss of inhibitory, GABAergic interneuronal circuits in pathogenesis. A lower 1/f exponent potentially reflects a more excitable cortex and a pathology unique to amyotrophic lateral sclerosis when considered with the findings published in other neurodegenerative disorders. Power and complexity changes corroborate with the results from paired-pulse transcranial magnetic stimulation. Increased magnetoencephalography connectivity in worsening disability is thought to represent compensatory responses to a failing motor system. Restoration of cortical beta and gamma band power has significant potential to be tested in an experimental medicine setting. Magnetoencephalography-based measures have potential as sensitive outcome measures of therapeutic benefit in drug trials and may have a wider diagnostic value with further study, including as predictive markers in asymptomatic carriers of disease-causing genetic variants.
Collapse
Affiliation(s)
- Michael Trubshaw
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Katie Yoganathan
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Oliver Kohl
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Evan Edmond
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Charlotte J Stagg
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Martin R Turner
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Vahsen BF, Nalluru S, Morgan GR, Farrimond L, Carroll E, Xu Y, Cramb KML, Amein B, Scaber J, Katsikoudi A, Candalija A, Carcolé M, Dafinca R, Isaacs AM, Wade-Martins R, Gray E, Turner MR, Cowley SA, Talbot K. C9orf72-ALS human iPSC microglia are pro-inflammatory and toxic to co-cultured motor neurons via MMP9. Nat Commun 2023; 14:5898. [PMID: 37736756 PMCID: PMC10517114 DOI: 10.1038/s41467-023-41603-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, with additional pathophysiological involvement of non-neuronal cells such as microglia. The commonest ALS-associated genetic variant is a hexanucleotide repeat expansion (HRE) mutation in C9orf72. Here, we study its consequences for microglial function using human iPSC-derived microglia. By RNA-sequencing, we identify enrichment of pathways associated with immune cell activation and cyto-/chemokines in C9orf72 HRE mutant microglia versus healthy controls, most prominently after LPS priming. Specifically, LPS-primed C9orf72 HRE mutant microglia show consistently increased expression and release of matrix metalloproteinase-9 (MMP9). LPS-primed C9orf72 HRE mutant microglia are toxic to co-cultured healthy motor neurons, which is ameliorated by concomitant application of an MMP9 inhibitor. Finally, we identify release of dipeptidyl peptidase-4 (DPP4) as a marker for MMP9-dependent microglial dysregulation in co-culture. These results demonstrate cellular dysfunction of C9orf72 HRE mutant microglia, and a non-cell-autonomous role in driving C9orf72-ALS pathophysiology in motor neurons through MMP9 signaling.
Collapse
Affiliation(s)
- Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Sumedha Nalluru
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Georgia R Morgan
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Lucy Farrimond
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Emily Carroll
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Kaitlyn M L Cramb
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QX, UK
| | - Benazir Amein
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Antigoni Katsikoudi
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Molecular Neurodegeneration Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ana Candalija
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WCIN 3BG, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WCIN 3BG, UK
| | - Richard Wade-Martins
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QX, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Martin R Turner
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK.
| |
Collapse
|
5
|
Scaber J, Thompson AG, Farrimond L, Feneberg E, Proudfoot M, Ossher L, Turner MR, Talbot K. Advantages of routine next-generation sequencing over standard genetic testing in the amyotrophic lateral sclerosis clinic. Eur J Neurol 2023; 30:2240-2249. [PMID: 37159497 PMCID: PMC10947345 DOI: 10.1111/ene.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Next-generation sequencing has enhanced our understanding of amyotrophic lateral sclerosis (ALS) and its genetic epidemiology. Outside the research setting, testing is often restricted to those who report a family history. The aim of this study was to explore the added benefit of offering routine genetic testing to all patients in a regional ALS centre. METHODS C9ORF72 expansion testing and exome sequencing was offered to consecutive patients (150 with ALS and 12 with primary lateral sclerosis [PLS]) attending the Oxford Motor Neuron Disease Clinic within a defined time period. RESULTS A total of 17 (11.3%) highly penetrant pathogenic variants in C9ORF72, SOD1, TARDBP, FUS and TBK1 were detected, of which 10 were also found through standard clinical genetic testing pathways. The systematic approach resulted in five additional diagnoses of a C9ORF72 expansion (number needed to test [NNT] = 28), and two further missense variants in TARDBP and SOD1 (NNT = 69). Additionally, 3 patients were found to carry pathogenic risk variants in NEK1, and 13 patients harboured common missense variants in CFAP410 and KIF5A, also associated with an increased risk of ALS. We report two novel non-coding loss-of-function splice variants in TBK1 and OPTN. No relevant variants were found in the PLS patients. Patients were offered double-blinded participation, but >80% requested disclosure of the results. CONCLUSIONS This study provides evidence that expanding genetic testing to all patients with a clinical diagnosis of ALS enhances the potential for recruitment to clinical trials, but will have direct resource implications for genetic counselling.
Collapse
Affiliation(s)
- Jakub Scaber
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Alexander G. Thompson
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Lucy Farrimond
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Emily Feneberg
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Malcolm Proudfoot
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Lynn Ossher
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Martin R. Turner
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Kevin Talbot
- Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Thompson AG, Marsden R, Talbot K, Turner MR. Primary care blood tests show lipid profile changes in pre-symptomatic amyotrophic lateral sclerosis. Brain Commun 2023; 5:fcad211. [PMID: 37577380 PMCID: PMC10412752 DOI: 10.1093/braincomms/fcad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/04/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Multiple sources of evidence suggest that changes in metabolism may precede the onset of motor symptoms in amyotrophic lateral sclerosis. This study aimed to seek evidence for alterations in the levels of blood indices collected routinely in the primary care setting prior to the onset of motor symptoms in amyotrophic lateral sclerosis. Premorbid data, measured as part of routine health screening, for total cholesterol, high-density and low-density lipoprotein cholesterol, triglyceride, glycated haemoglobin A1c and creatinine were collected retrospectively from (i) a cohort of amyotrophic lateral sclerosis patients attending a specialist clinic (n = 143) and (ii) from primary care-linked data within UK Biobank. Data were fitted using linear mixed effects models with linear b-splines to identify inflection points, controlling for age and sex. In specialist amyotrophic lateral sclerosis clinic cases, models indicated decreasing levels of total and low-density lipoprotein cholesterol prior to an inflection point in the years before symptom onset (total cholesterol 3.25 years, low-density lipoprotein cholesterol 1.25 years), after which they stabilized or rose. A similar pattern was observed in amyotrophic lateral sclerosis cases within UK Biobank, occurring several years prior to diagnosis (total cholesterol 7 years, low-density lipoprotein cholesterol 7.25 years), differing significantly from matched controls. High-density lipoprotein cholesterol followed a similar pattern but was less robust to sensitivity analyses. Levels of triglyceride remained stable throughout. Glycated haemoglobin temporal profiles were not consistent between the clinic and biobank cohorts. Creatinine level trajectories prior to amyotrophic lateral sclerosis did not differ significantly from controls but decreased significantly in the symptomatic period after an inflection point of 0.25 years after symptom onset (clinic cohort) or 0.5 years before diagnosis (UK Biobank). These data provide further evidence for a pre-symptomatic period of dynamic metabolic change in amyotrophic lateral sclerosis, consistently associated with alterations in blood cholesterols. Such changes may ultimately contribute to biomarkers applicable to population screening and for pathways guiding the targeting of preventative therapy.
Collapse
Affiliation(s)
- Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Rachael Marsden
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
Arthur P, Muok L, Nathani A, Zeng EZ, Sun L, Li Y, Singh M. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022; 11:3429. [PMID: 36359825 PMCID: PMC9653705 DOI: 10.3390/cells11213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/24/2023] Open
Abstract
Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
8
|
Poppe C, Verwey M, Wangmo T. "Walking a tightrope": A grounded theory approach to informal caregiving for amyotrophic lateral sclerosis. HEALTH & SOCIAL CARE IN THE COMMUNITY 2022; 30:e1935-e1947. [PMID: 34719073 PMCID: PMC9545073 DOI: 10.1111/hsc.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Informal caregivers, mainly family members and friends, provide supportive and palliative care for people with amyotrophic lateral sclerosis (ALS) during their terminal disease course. Informal caregiving for people with ALS continues towards palliative care and end-of-life care with the progression of the disease. In this study, we provide a theoretical understanding of informal caregiving in ALS utilising 23 semi-structured interviews conducted with informal caregivers of people with ALS (pwALS) in Switzerland. Due to the expected death of the care recipient, our grounded theory approach outlines informal caregivers' caregiving work as an effort to secure a balance amongst different caregiving activities, which feed into the final stage of providing palliative care. Overall, our theoretical understanding of ALS informal caregiving work encompasses the core category 'holding the balance' and four secondary categories: 'Organising support', 'being present', 'managing everyday life' and 'keeping up with ALS'. The core category of holding the balance underlines the significance of ensuring care and normalcy even as disease progresses and until the end of life. For the informal caregivers, this balancing act is the key element of care provision to pwALS and therefore guides decisions surrounding caregiving. On this understanding, those caregivers that succeed in holding the balance can provide care at home until death. The balance is heavily influenced by contextual factors of caregiving, for example relating to personal characteristics of the caregiver, or activities of caregiving where the goal is to ensure the quality of life of the pwALS. As there is a heterogeneity of speed and subtype of progression of ALS, our work accounts for multiple caregiving trajectories.
Collapse
Affiliation(s)
| | - Martine Verwey
- Patient Association ALS Patients ConnectedBilthovenThe Netherlands
| | - Tenzin Wangmo
- Institute for Biomedical EthicsUniversity of BaselBaselSwitzerland
| |
Collapse
|
9
|
Vafaei Mastanabad M, Nooraei A, Hassan Zadeh Tabatabaei MS, Akbari Fakhrabadi A, Jafarzadeh F. Granulocyte-colony stimulating factor (G-CSF): an emerging therapeutic approach for amyotrophic lateral sclerosis (ALS). Acta Neurol Belg 2022:10.1007/s13760-022-01996-z. [PMID: 35737276 DOI: 10.1007/s13760-022-01996-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by neuronal degeneration and inflammation in the nerves. G-CSF is a 19.6-kDa hematopoietic growth factor which is essential for the proliferation and differentiation of granulocyte hematopoietic progenitors. G-CSF exerts neuroprotective activities by induction of neuronal regeneration, inhibition of neuronal apoptosis, mobilization of Hematopoietic stem cells (HSCs), regulation of pro and anti-inflammatory cytokines, and activation of angiogenesis. Pre-clinical studies have shown significant efficacy of G-CSF therapy in mSOD1G93A mice models. G-CSF treatments were able to increase the survival of mice. However, clinical studies on ALS patients failed to clone pre-clinical results. Considering the potential role of G-CSF in nervous system regeneration, this study aimed to comprehensively review the clinical and pre-clinical studies addressing G-CSF in ALS treatment.
Collapse
Affiliation(s)
| | - Aref Nooraei
- Comparative Anatomy and Embryology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | - Faria Jafarzadeh
- Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
10
|
Pandya S, Maia PD, Freeze B, Menke RAL, Talbot K, Turner MR, Raj A. Modeling seeding and neuroanatomic spread of pathology in amyotrophic lateral sclerosis. Neuroimage 2022; 251:118968. [PMID: 35143975 PMCID: PMC10729776 DOI: 10.1016/j.neuroimage.2022.118968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The neurodegenerative disorder amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of upper and lower motor neurons, with pathological involvement of cerebral motor and extra-motor areas in a clinicopathological spectrum with frontotemporal dementia (FTD). A key unresolved issue is how the non-random distribution of pathology in ALS reflects differential network vulnerability, including molecular factors such as regional gene expression, or preferential spread of pathology via anatomical connections. A system of histopathological staging of ALS based on the regional burden of TDP-43 pathology observed in postmortem brains has been supported to some extent by analysis of distribution of in vivo structural MRI changes. In this paper, computational modeling using a Network Diffusion Model (NDM) was used to investigate whether a process of focal pathological 'seeding' followed by structural network-based spread recapitulated postmortem histopathological staging and, secondly, whether this had any correlation to the pattern of expression of a panel of genes implicated in ALS across the healthy brain. Regionally parcellated T1-weighted MRI data from ALS patients (baseline n=79) was studied in relation to a healthy control structural connectome and a database of associated regional cerebral gene expression. The NDM provided strong support for a structural network-based basis for regional pathological spread in ALS, but no simple relationship to the spatial distribution of ALS-related genes in the healthy brain. Interestingly, OPTN gene was identified as a significant but a weaker non-NDM contributor within the network-gene interaction model (LASSO). Intriguingly, the critical seed regions for spread within the model were not within the primary motor cortex but basal ganglia, thalamus and insula, where NDM recapitulated aspects of the postmortem histopathological staging system. Within the ALS-FTD clinicopathological spectrum, non-primary motor structures may be among the earliest sites of cerebral pathology.
Collapse
Affiliation(s)
- Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, United States.
| | - Pedro D Maia
- Department of Mathematics, University of Texas at Arlington, TX, United States
| | - Benjamin Freeze
- Scripps Health/MD Anderson Cancer Center, Department of Radiology, CA, United States
| | - Ricarda A L Menke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, West Wing Level 6, Oxford OX2 7PZ, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, West Wing Level 6, Oxford OX2 7PZ, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94121, United States.
| |
Collapse
|
11
|
Le Gall L, Duddy WJ, Martinat C, Mariot V, Connolly O, Milla V, Anakor E, Ouandaogo ZG, Millecamps S, Lainé J, Vijayakumar UG, Knoblach S, Raoul C, Lucas O, Loeffler JP, Bede P, Behin A, Blasco H, Bruneteau G, Del Mar Amador M, Devos D, Henriques A, Hesters A, Lacomblez L, Laforet P, Langlet T, Leblanc P, Le Forestier N, Maisonobe T, Meininger V, Robelin L, Salachas F, Stojkovic T, Querin G, Dumonceaux J, Butler Browne G, González De Aguilar JL, Duguez S, Pradat PF. Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles. J Cachexia Sarcopenia Muscle 2022; 13:1385-1402. [PMID: 35194965 PMCID: PMC8978001 DOI: 10.1002/jcsm.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/11/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS.
Collapse
Affiliation(s)
- Laura Le Gall
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - William J Duddy
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | | | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | - Owen Connolly
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Vanessa Milla
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Ekene Anakor
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Zamalou G Ouandaogo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | | | - Jeanne Lainé
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Udaya Geetha Vijayakumar
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Susan Knoblach
- Genetic Medicine, Children's National Medical Center, George Washington University, Washington, DC, USA
| | - Cedric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Olivier Lucas
- The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Jean Philippe Loeffler
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, INSERM UMR_S 1118, Strasbourg, France
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland.,CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Anthony Behin
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Helene Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Gaelle Bruneteau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Maria Del Mar Amador
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - David Devos
- INSERM U1171, Pharmacologie Médicale & Neurologie Université, Faculté de Médecine, CHU de Lille, Lille, France
| | - Alexandre Henriques
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, INSERM UMR_S 1118, Strasbourg, France
| | - Adele Hesters
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Lucette Lacomblez
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Pascal Laforet
- Département de Neurologie, Centre de Référence Maladies Neuromusculaires Paris-Est, Hôpital Raymond-Poincaré, Garches, France
| | - Timothee Langlet
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Pascal Leblanc
- Laboratory of Molecular Biology of the Cell, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Nadine Le Forestier
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Thierry Maisonobe
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | | | - Laura Robelin
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, INSERM UMR_S 1118, Strasbourg, France
| | - Francois Salachas
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Giorgia Querin
- CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | - Gillian Butler Browne
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jose-Luis González De Aguilar
- Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, INSERM UMR_S 1118, Strasbourg, France
| | - Stephanie Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Pierre Francois Pradat
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK.,CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| |
Collapse
|
12
|
Dharmadasa T, Scaber J, Edmond E, Marsden R, Thompson A, Talbot K, Turner MR. Genetic testing in motor neurone disease. Pract Neurol 2022; 22:107-116. [PMID: 35027459 PMCID: PMC8938673 DOI: 10.1136/practneurol-2021-002989] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 11/21/2022]
Abstract
A minority (10%-15%) of cases of amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease (MND), are currently attributable to pathological variants in a single identifiable gene. With the emergence of new therapies targeting specific genetic subtypes of ALS, there is an increasing role for routine genetic testing for all those with a definite diagnosis. However, potential harm to both affected individuals and particularly to asymptomatic relatives can arise from the indiscriminate use of genetic screening, not least because of uncertainties around incomplete penetrance and variants of unknown significance. The most common hereditary cause of ALS, an intronic hexanucleotide repeat expansion in C9ORF72, may be associated with frontotemporal dementia independently within the same pedigree. The boundary of what constitutes a possible family history of MND has therefore extended to include dementia and associated psychiatric presentations. Notwithstanding the important role of clinical genetics specialists, all neurologists need a basic understanding of the current place of genetic testing in MND, which holds lessons for other neurological disorders.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Evan Edmond
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Rachael Marsden
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander Thompson
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
13
|
Giacomelli E, Vahsen BF, Calder EL, Xu Y, Scaber J, Gray E, Dafinca R, Talbot K, Studer L. Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 2022; 29:11-35. [PMID: 34995492 PMCID: PMC8785905 DOI: 10.1016/j.stem.2021.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Elisa Giacomelli
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
14
|
Thompson AG, Talbot K, Turner MR. Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:75-81. [PMID: 34518331 PMCID: PMC8685635 DOI: 10.1136/jnnp-2021-327133] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/08/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Premorbid body mass index, physical activity, diabetes and cardiovascular disease have been associated with an altered risk of developing amyotrophic lateral sclerosis (ALS). There is evidence of shared genetic risk between ALS and lipid metabolism. A very large prospective longitudinal population cohort permits the study of a range of metabolic parameters and the risk of subsequent diagnosis of ALS. METHODS The risk of subsequent ALS diagnosis in those enrolled prospectively to the UK Biobank (n=502 409) was examined in relation to baseline levels of blood high and low density lipoprotein (HDL, LDL), total cholesterol, total cholesterol:HDL ratio, apolipoproteins A1 and B (apoA1, apoB), triglycerides, glycated haemoglobin A1c (HbA1c) and creatinine, plus self-reported exercise and body mass index. RESULTS Controlling for age and sex, higher HDL (HR 0.84, 95% CI 0.73 to 0.96, p=0.010) and apoA1 (HR 0.83, 95% CI 0.72 to 0.94, p=0.005) were associated with a reduced risk of ALS. Higher total cholesterol:HDL was associated with an increased risk of ALS (HR 1.17, 95% CI 1.05 to 1.31, p=0.006). In models incorporating multiple metabolic markers, higher LDL or apoB was associated with an increased risk of ALS, in addition to a lower risk with higher HDL or apoA. Coronary artery disease, cerebrovascular disease and increasing age were also associated with an increased risk of ALS. CONCLUSIONS The association of HDL, apoA1 and LDL levels with risk of ALS contributes to an increasing body of evidence that the premorbid metabolic landscape may play a role in pathogenesis. Understanding the molecular basis for these changes will inform presymptomatic biomarker development and therapeutic targeting.
Collapse
Affiliation(s)
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Thompson AG, Gray E, Verber N, Bobeva Y, Lombardi V, Shepheard SR, Yildiz O, Feneberg E, Farrimond L, Dharmadasa T, Gray P, Edmond EC, Scaber J, Gagliardi D, Kirby J, Jenkins TM, Fratta P, McDermott CJ, Manohar SG, Talbot K, Malaspina A, Shaw PJ, Turner MR. OUP accepted manuscript. Brain Commun 2022; 4:fcac029. [PMID: 35224491 PMCID: PMC8870425 DOI: 10.1093/braincomms/fcac029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The routine clinical integration of individualized objective markers of disease activity in those diagnosed with the neurodegenerative disorder amyotrophic lateral sclerosis is a key requirement for therapeutic development. A large, multicentre, clinic-based, longitudinal cohort was used to systematically appraise the leading candidate biofluid biomarkers in the stratification and potential therapeutic assessment of those with amyotrophic lateral sclerosis. Incident patients diagnosed with amyotrophic lateral sclerosis (n = 258), other neurological diseases (n = 80) and healthy control participants (n = 101), were recruited and followed at intervals of 3–6 months for up to 30 months. Cerebrospinal fluid neurofilament light chain and chitotriosidase 1 and blood neurofilament light chain, creatine kinase, ferritin, complement C3 and C4 and C-reactive protein were measured. Blood neurofilament light chain, creatine kinase, serum ferritin, C3 and cerebrospinal fluid neurofilament light chain and chitotriosidase 1 were all significantly elevated in amyotrophic lateral sclerosis patients. First-visit plasma neurofilament light chain level was additionally strongly associated with survival (hazard ratio for one standard deviation increase in log10 plasma neurofilament light chain 2.99, 95% confidence interval 1.65–5.41, P = 0.016) and rate of disability progression, independent of other prognostic factors. A small increase in level was noted within the first 12 months after reported symptom onset (slope 0.031 log10 units per month, 95% confidence interval 0.012–0.049, P = 0.006). Modelling the inclusion of plasma neurofilament light chain as a therapeutic trial outcome measure demonstrated that a significant reduction in sample size and earlier detection of disease-slowing is possible, compared with using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale. This study provides strong evidence that blood neurofilament light chain levels outperform conventional measures of disease activity at the group level. The application of blood neurofilament light chain has the potential to radically reduce the duration and cost of therapeutic trials. It might also offer a first step towards the goal of more personalized objective disease activity monitoring for those living with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Nick Verber
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Yoana Bobeva
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Stephanie R. Shepheard
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ozlem Yildiz
- Blizard Institute, Queen Mary University of London, London, UK
| | - Emily Feneberg
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lucy Farrimond
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Pamela Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Evan C. Edmond
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Delia Gagliardi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thomas M. Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pietro Fratta
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea Malaspina
- Blizard Institute, Queen Mary University of London, London, UK
- Correspondence may also be addressed to: Prof Andrea Malaspina Blizard Institute 4 Newark St, Whitechapel London, E1 2AT, UK E-mail:
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Correspondence may also be addressed to: Prof Dame Pamela Shaw Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield, 385a Glossop Rd Broomhall, Sheffield, S10 2HQ, UK E-mail:
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Correspondence to: Prof Martin Turner Nuffield Department of Clinical Neurosciences Level 6, West Wing, John Radcliffe Hospital Oxford, OX3 9DU, UK E-mail:
| |
Collapse
|
16
|
Thompson AG, Oeckl P, Feneberg E, Bowser R, Otto M, Fischer R, Kessler B, Turner MR. Advancing mechanistic understanding and biomarker development in amyotrophic lateral sclerosis. Expert Rev Proteomics 2021; 18:977-994. [PMID: 34758687 DOI: 10.1080/14789450.2021.2004890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomic analysis has contributed significantly to the study of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has helped to define the pathological change common to nearly all cases, namely intracellular aggregates of phosphorylated TDP-43, shifting the focus of pathogenesis in ALS toward RNA biology. Proteomics has also uniquely underpinned the delineation of disease mechanisms in model systems and has been central to recent advances in human ALS biomarker development. AREAS COVERED The contribution of proteomics to understanding the cellular pathological changes, disease mechanisms, and biomarker development in ALS are covered. EXPERT OPINION Proteomics has delivered unique insights into the pathogenesis of ALS and advanced the goal of objective measurements of disease activity to improve therapeutic trials. Further developments in sensitivity and quantification are expected, with application to the presymptomatic phase of human disease offering the hope of prevention strategies.
Collapse
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (Dzne e.V.), Ulm, Germany
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Robert Bowser
- Departments of Neurology and Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Yoon SY, Kim HK, Kim MJ, Suh JH, Leigh JH. Factors associated with assisted ventilation use in amyotrophic lateral sclerosis: a nationwide population-based study in Korea. Sci Rep 2021; 11:19682. [PMID: 34608192 PMCID: PMC8490422 DOI: 10.1038/s41598-021-98990-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Few studies have investigated the factors associated with assisted ventilation use in amyotrophic lateral sclerosis (ALS) in western countries with a relatively small number of participants. This study aimed to evaluate the factors associated with assisted ventilation use using a large nationwide cohort covering the entire Korean population. We selected patients with primary or secondary diagnoses of ALS (ICD-10 code: G12.21) and a registration code for ALS (V123) in the rare intractable disease registration program. Covariates included in the analyses were age, sex, socioeconomic status and medical condition. Factors associated with non-invasive ventilation (NIV) and tracheostomy invasive ventilation (TIV) were evaluated. Logistic regression analyses were performed using odds ratios and 95% confidence intervals. In total, 3057 patients with ALS were enrolled. During the 6-year follow-up period, 1228 (40%) patients started using assisted ventilation: 956 with NIV and 272 with TIV. There was no significant difference in the assisted ventilation use according to sex, whereas different patterns of discrepancies were noted between the sexes: Females living in non-metropolitan areas showed decreased use of assisted ventilation, whereas high income levels showed a positive relationship with assisted ventilation use only in males. Patients aged ≥ 70 years showed decreased use of NIV. NIV use was more affected by socioeconomic status than TIV, whereas TIV showed a significant relationship with medical conditions such as nasogastric tube insertion and gastrostomy. We found that various factors, including age, socioeconomic status, and medical condition, were related with assisted ventilation use. Understanding the pattern of assisted ventilation use would help set optimal management strategies in patients with ALS.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Han-Kyoul Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yang-Pyeong, Republic of Korea
| | - Mi Ji Kim
- Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Jee Hyun Suh
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Ho Leigh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yang-Pyeong, Republic of Korea. .,Department of Rehabilitation Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
18
|
Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers. Nat Rev Neurol 2021; 17:333-348. [PMID: 33927394 DOI: 10.1038/s41582-021-00487-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
The prevailing motor neuron-centric view of amyotrophic lateral sclerosis (ALS) pathogenesis could be an important factor in the failure to identify disease-modifying therapy for this neurodegenerative disorder. Non-neuronal cells have crucial homeostatic functions within the CNS and evidence of involvement of these cells in the pathophysiology of several neurodegenerative disorders, including ALS, is accumulating. Microglia and astrocytes, in crosstalk with peripheral immune cells, can exert both neuroprotective and adverse effects, resulting in a highly nuanced range of neuronal and non-neuronal cell interactions. This Review provides an overview of the diverse roles of non-neuronal cells in relation to the pathogenesis of ALS and the emerging potential of non-neuronal cell biomarkers to advance therapeutic development.
Collapse
|
19
|
Sun N, Meng X, Liu Y, Song D, Jiang C, Cai J. Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci 2021; 28:30. [PMID: 33888112 PMCID: PMC8063318 DOI: 10.1186/s12929-021-00728-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
A brain organoid is a self-organizing three-dimensional tissue derived from human embryonic stem cells or pluripotent stem cells and is able to simulate the architecture and functionality of the human brain. Brain organoid generation methods are abundant and continue to improve, and now, an in vivo vascularized brain organoid has been encouragingly reported. The combination of brain organoids with immune-staining and single-cell sequencing technology facilitates our understanding of brain organoids, including the structural organization and the diversity of cell types. Recent publications have reported that brain organoids can mimic the dynamic spatiotemporal process of early brain development, model various human brain disorders, and serve as an effective preclinical platform to test and guide personalized treatment. In this review, we introduce the current state of brain organoid differentiation strategies, summarize current progress and applications in the medical domain, and discuss the challenges and prospects of this promising technology.
Collapse
Affiliation(s)
- Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
20
|
Thompson AG, Gray E, Charles PD, Hu MTM, Talbot K, Fischer R, Kessler BM, Turner MR. Network Analysis of the CSF Proteome Characterizes Convergent Pathways of Cellular Dysfunction in ALS. Front Neurosci 2021; 15:642324. [PMID: 33815045 PMCID: PMC8010303 DOI: 10.3389/fnins.2021.642324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis is a clinical syndrome with complex biological determinants, but which in most cases is characterized by TDP-43 pathology. The identification in CSF of a protein signature of TDP-43 network dysfunction would have the potential to inform the identification of new biomarkers and therapeutic targets. METHODS We compared CSF proteomic data from patients with ALS (n = 41), Parkinson's disease (n = 19) and healthy control participants (n = 20). Weighted correlation network analysis was used to identify modules within the CSF protein network and combined with gene ontology enrichment analysis to functionally annotate module proteins. Analysis of module eigenproteins and differential correlation analysis of the CSF protein network was used to compare ALS and Parkinson's disease protein co-correlation with healthy controls. In order to monitor temporal changes in the CSF proteome, we performed longitudinal analysis of the CSF proteome in a subset of ALS patients. RESULTS Weighted correlation network analysis identified 10 modules, including those enriched for terms involved in gene expression including nucleic acid binding, RNA metabolism and translation; humoral immune system function, including complement pathways; membrane proteins, axonal outgrowth and adherence; and glutamatergic synapses. Immune system module eigenproteins were increased in ALS, whilst axonal module eigenproteins were decreased in ALS. The 19 altered protein correlations in ALS were enriched for gene expression (OR 3.05, p = 0.017) and membrane protein modules (OR 17.48, p = 0.011), including intramodular hub proteins previously identified as TDP-43 interactors. Proteins decreasing over longitudinal analysis ALS were enriched in glutamatergic synapse and axonal outgrowth modules. Protein correlation network disruptions in Parkinson's disease showed no module enrichment. CONCLUSIONS Alterations in the co-correlation network in CSF samples identified a set of pathways known to be associated with TDP-43 dysfunction in the pathogenesis of ALS, with important implications for therapeutic targeting and biomarker development.
Collapse
Affiliation(s)
- Alexander G. Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philip D. Charles
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michele T. M. Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
22
|
Neurotrophic Properties of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Motor Neuron Disease. Toxins (Basel) 2020; 12:toxins12100666. [PMID: 33096857 PMCID: PMC7589688 DOI: 10.3390/toxins12100666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022] Open
Abstract
The carboxyl-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) exerts a neuroprotective effect in neurodegenerative diseases via the activation of signaling pathways related to neurotrophins, and also through inhibiting apoptotic cell death. Here, we demonstrate that Hc-TeTx preserves motoneurons from chronic excitotoxicity in an in vitro model of amyotrophic lateral sclerosis. Furthermore, we found that PI3-K/Akt pathway, but not p21ras/MAPK pathway, is involved in their beneficial effects under chronic excitotoxicity. Moreover, we corroborate the capacity of the Hc-TeTx to be transported retrogradely into the spinal motor neurons and also its capacity to bind to the motoneuron-like cell line NSC-34. These findings suggest a possible therapeutic tool to improve motoneuron preservation in neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
|
23
|
Thompson AG, Gray E, Mäger I, Thézénas ML, Charles PD, Talbot K, Fischer R, Kessler BM, Wood M, Turner MR. CSF extracellular vesicle proteomics demonstrates altered protein homeostasis in amyotrophic lateral sclerosis. Clin Proteomics 2020; 17:31. [PMID: 32821252 PMCID: PMC7433176 DOI: 10.1186/s12014-020-09294-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Extracellular vesicles (EVs) released by neurons and glia reach the cerebrospinal fluid (CSF). Studying the proteome of CSF-derived EVs offers a novel perspective on the key intracellular processes associated with the pathogenesis of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and a potential source from which to develop biomarkers. Methods CSF EVs were extracted using ultrafiltration liquid chromatography from ALS patients and controls. EV size distribution and concentration was measured using nanoparticle tracking analysis and liquid chromatography-tandem mass spectrometry proteomic analysis performed. Results CSF EV concentration and size distribution did not differ between ALS and control groups, nor between a sub-group of ALS patients with or without an associated hexanucleotide repeat expansion (HRE) in C9orf72. Univariate proteomic analysis identified downregulation of the pentameric proteasome-like protein Bleomycin hydrolase in ALS patients, whilst Gene Ontology enrichment analysis demonstrated downregulation of proteasome core complex proteins (8/8 proteins, normalized enrichment ratio -1.77, FDR-adjusted p = 0.057) in the ALS group. The sub-group of ALS patients associated with the C9orf72 HRE showed upregulation in Ubiquitin-like modifying-activating protein 1 (UBA1) compared to non-C9orf72 cases. Conclusions Proteomic analysis of CSF EVs in ALS detects intracellular alterations in protein homeostatic mechanisms, previously only identified in pathological tissues. This supports the wider use of CSF EVs as a source of novel biomarkers reflecting key and potentially druggable pathological intracellular pathway alterations in ALS.
Collapse
Affiliation(s)
- Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Imre Mäger
- Department of Paediatrics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Marie-Laëtitia Thézénas
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Mathew Wood
- Department of Paediatrics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| |
Collapse
|
24
|
Gaur N, Perner C, Witte OW, Grosskreutz J. The Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis: Signals From the CNS and Beyond. Front Neurol 2020; 11:377. [PMID: 32536900 PMCID: PMC7267218 DOI: 10.3389/fneur.2020.00377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative condition, most widely characterized by the selective vulnerability of motor neurons and the poor life expectancy of afflicted patients. Limited disease-modifying therapies currently exist, which only further attests to the substantial heterogeneity associated with this disease. In addition to established prognostic factors like genetic background, site of onset, and age at onset, wide consensus on the role of neuroinflammation as a disease exacerbator and driver has been established. In lieu of this, the emerging literature on chitinases in ALS is particularly intriguing. Individual groups have reported substantially elevated chitotriosidase (CHIT1), chitinase-3-like-1 (CHI3L1), and chitinase-3-like-2 (CHI3L2) levels in the cerebrospinal, motor cortex, and spinal cord of ALS patients with multiple—and often conflicting—lines of evidence hinting at possible links to disease severity and progression. This mini-review, while not exhaustive, will aim to discuss current evidence on the involvement of key chitinases in ALS within the wider framework of other neurodegenerative conditions. Implications for understanding disease etiology, developing immunomodulatory therapies and biomarkers, and other translational opportunities will be considered.
Collapse
Affiliation(s)
- Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Caroline Perner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, United States
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Jena Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Jena Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
25
|
Williamson MG, Finelli MJ, Sleigh JN, Reddington A, Gordon D, Talbot K, Davies KE, Oliver PL. Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Hum Mol Genet 2020; 28:3584-3599. [PMID: 31642482 PMCID: PMC6927465 DOI: 10.1093/hmg/ddz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.
Collapse
Affiliation(s)
- Matthew G Williamson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Amy Reddington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.,MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
26
|
Rajabinejad M, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: A clinical and preclinical systematic review. J Cell Physiol 2019; 235:5030-5040. [PMID: 31788795 DOI: 10.1002/jcp.29401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by neuronal degeneration and inflammation in the nerves. The role of the immune system has been concentrated by researchers in the etiopathogenesis of the disease. Given the inhibitory roles of regulatory T cells (Tregs), it is expected that increasing or activating their populations in patients with ALS can have significant therapeutic effects. Here we searched databases, including CENTRAL, MEDLINE, CINAHL Plus, clinicaltrials.gov, and ICTRP for randomized clinical trials (RCTs) and non-RCTs until March 2019. For preclinical studies, we searched PubMed, Scopus, and Google Scholar up to June 2019. We also included preclinical studies, due to the lack of clinical information available, which used Tregs (or directly targeting them) for treating mice models of ALS. We identified 29 records (CENTRAL 7, MEDLINE 4, CINAHL Plus 8, and clinicaltrials.gov 10) and removed 10 duplicated publications. After screening, we identified one RCT which had been published as an abstract, three non-RCTs, and four ongoing studies. We also identified 551 records (PubMed 446, Google Scholar 68, and Scopus 37) for preclinical studies and performed a meta-analysis. Finally, we found three papers that matched our inclusion criteria for preclinical studies. Results indicated the effectiveness of the application of Tregs in the treatment of ALS. Our meta-analysis on preclinical studies revealed that Tregs significantly prolonged survival in mice models of ALS. Overall, our analysis testified that exertion of Tregs in the treatment of ALS is a promising approach, that notwithstanding, requires further evaluations.
Collapse
Affiliation(s)
- Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, School of Medicine, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
27
|
Thompson AG, Gray E, Bampton A, Raciborska D, Talbot K, Turner MR. CSF chitinase proteins in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:1215-1220. [PMID: 31123140 DOI: 10.1136/jnnp-2019-320442] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the classifier performance, clinical and biochemical correlations of cerebrospinal fluid (CSF) levels of the chitinase proteins Chitotriosidase-1 (CHIT1), Chitinase-3-like protein 1 (CHI3L1) and Chitinase-3-like protein 2 (CHI3L2) in amyotrophic lateral sclerosis (ALS). METHODS CSF levels of CHIT1, CHI3L1, CHI3L2, phosphorylated neurofilament heavy chain (pNFH) and C-reactive protein were measured by ELISA in a longitudinal cohort of patients with ALS (n=82), primary lateral sclerosis (PLS, n=10), ALS-mimic conditions (n=12), healthy controls (n=25) and asymptomatic carriers of ALS-causing genetic mutations (AGC; n=5). RESULTS CSF CHIT1, CHI3L1 and CHI3L2 were elevated in patients with ALS compared with healthy controls (p<0.001) and ALS-mimics (CHIT1, p<0.001; CHI3L1, p=0.017; CHI3L2, p<0.001). CHIT1 and CHI3L2 were elevated in ALS compared with PLS (CHIT1, p=0.021; CHI3L1, p=0.417; CHI3L2, p<0.001). Chitinase levels were similar in AGCs and healthy controls. Chitinase proteins distinguished ALS from healthy controls (area under the curve (AUC): CHIT1 0.92; CHI3L1 0.80; CHI3L2 0.90), mimics (AUC: CHIT1 0.84; CHI3L1 0.73; CHI3L2 0.88) and, to a lesser extent, PLS (AUC: CHIT 0.73; CHI3L1 0.51; CHI3L2 0.82) but did not outperform pNFH. CHIT1 and CHI3L2 correlated with disease progression rate (Pearson's r=0.49, p<0.001; r=0.42, p<0.001, respectively). CHI3L1 correlated with degree of cognitive dysfunction (r=-0.25, p=0.038). All chitinases correlated with pNFH. CHIT1 levels were associated with survival in multivariate models. Chitinase levels were longitudinally stable. CONCLUSIONS CSF chitinase proteins may have limited value as independent diagnostic and stratification biomarkers in ALS, but offer a window into non-autonomous mechanisms of motor neuronal loss in ALS, specifically in assessing response to therapies targeting neuroinflammatory pathways.
Collapse
Affiliation(s)
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Alexander Bampton
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
28
|
Edmond EC, Stagg CJ, Turner MR. Therapeutic non-invasive brain stimulation in amyotrophic lateral sclerosis: rationale, methods and experience. J Neurol Neurosurg Psychiatry 2019; 90:1131-1138. [PMID: 31072957 DOI: 10.1136/jnnp-2018-320213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
Abstract
The neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) is characterised by increased cortical excitability, thought to reflect pathological changes in the balance of local excitatory and inhibitory neuronal influences. Non-invasive brain stimulation (NIBS) has been shown to modulate cortical activity, with some protocols showing effects that outlast the stimulation by months. NIBS has been suggested as a potential therapeutic approach for disorders associated with changes in cortical neurophysiology, including ALS. This article reviews NIBS methodology, rationale for its application to ALS and progress to date.
Collapse
Affiliation(s)
- Evan C Edmond
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK.,Oxford Centre for Human Brain Activity (OHBA), Oxford University, Oxford, UK.,Oxford Centre for Functional MRI of the Brain (FMRIB), Oxford University, Oxford, UK
| | - Charlotte J Stagg
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK.,Oxford Centre for Human Brain Activity (OHBA), Oxford University, Oxford, UK.,Oxford Centre for Functional MRI of the Brain (FMRIB), Oxford University, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK .,Wellcome Centre for Integrative Neuroimaging, Oxford University, Oxford, UK.,Oxford Centre for Human Brain Activity (OHBA), Oxford University, Oxford, UK.,Oxford Centre for Functional MRI of the Brain (FMRIB), Oxford University, Oxford, UK
| |
Collapse
|
29
|
Turner MR. MND plus. Pract Neurol 2019; 19:376-377. [DOI: 10.1136/practneurol-2019-002213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 11/04/2022]
|
30
|
Turner MR, Faull C, McDermott CJ, Nickol AH, Palmer J, Talbot K. Tracheostomy in motor neurone disease. Pract Neurol 2019; 19:467-475. [PMID: 31273080 DOI: 10.1136/practneurol-2018-002109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Tracheostomy-associated ventilation for the respiratory insufficiency caused by amyotrophic lateral sclerosis (motor neurone disease (MND)) is a complex issue with practical, ethical and economic dimensions. This article considers the current prevalence of tracheostomy in MND, the evidence for its benefit both for survival and quality of life, and the practicalities of its implementation. The decision to request invasive ventilatory support is among the most challenging for those living with MND. Neurologists should be prepared to discuss this option openly and objectively: we suggest a framework for discussion, including withdrawal of therapy.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Christina Faull
- LOROS Hospice and University Hospitals of Leicester, Leicester, UK
| | | | - Annabel H Nickol
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Jonathan Palmer
- Thoracic Medicine, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
31
|
Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SMR. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10:400. [PMID: 31139131 PMCID: PMC6527847 DOI: 10.3389/fneur.2019.00400] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Marie-Rose Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| |
Collapse
|
32
|
Proudfoot M, Bede P, Turner MR. Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 9:1148. [PMID: 30671016 PMCID: PMC6332509 DOI: 10.3389/fneur.2018.01148] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, complementing histopathological insights, have established a multi-system involvement of cerebral networks beyond the traditional neuromuscular pathological view of amyotrophic lateral sclerosis (ALS). The development of effective disease-modifying therapy remains a priority and this will be facilitated by improved biomarkers of motor system integrity against which to assess the efficacy of candidate drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and connectivity, but there is an increasing recognition of neuronal oscillations in facilitating long-distance communication across the cortical surface. Such dynamic synchronization vastly expands the connectivity foundations defined by traditional neuronal architecture. This review considers the unique pathogenic insights afforded by the capture of cerebral disease activity in ALS using FMRI and encephalography.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|