1
|
Shang W, Xie S, Feng W, Li Z, Jia J, Cao X, Shen Y, Li J, Shi H, Gu Y, Weng SJ, Lin L, Pan YH, Yuan XB. A non-image-forming visual circuit mediates the innate fear of heights in male mice. Nat Commun 2024; 15:3746. [PMID: 38702319 PMCID: PMC11068790 DOI: 10.1038/s41467-024-48147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.
Collapse
Affiliation(s)
- Wei Shang
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Shuangyi Xie
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Wenbo Feng
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Zhuangzhuang Li
- Department of Otolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jingyan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Xiaoxiao Cao
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yanting Shen
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Jing Li
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Haibo Shi
- Department of Otolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yiran Gu
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Hoesterey S, Onnasch L. A New Experimental Paradigm to Manipulate Risk in Human-Automation Research. HUMAN FACTORS 2024; 66:1170-1185. [PMID: 36257770 PMCID: PMC10903125 DOI: 10.1177/00187208221133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Two studies serve as a manipulation check of a new experimental multi-task paradigm that can be applied to human-automation research (Virtual Reality Testbed for Risk and Automation Studies; ViRTRAS), in which a subjectively experienceable risk can be manipulated as part of a virtual reality environment. BACKGROUND Risk has been postulated as an important contextual factor affecting human-automation interaction. However, experimental evidence is scarce due to the difficulty operationalizing risk in an ethical way. In the new paradigm, risk is varied by the altitude at which participants carry out the task, including the possibility of virtually falling in case of a mistake. METHOD Key components of the paradigm were used to investigate participants' risk perception in a low (0.5 m) and high altitude (70 m) using subjective self-reports and objective behavioral measures. RESULTS In the high-altitude condition risk perception was significantly higher with medium to large effect sizes. In addition, results of the behavioral measures reveal that participants habituated with length of exposure. However, this habituation seems to occur similarly in both altitude conditions. CONCLUSION The manipulation checks were successful. The new paradigm is a promising tool for automation research. It incorporates the contextual factor of risk and creates a situation which is more comparable to what real-life operators experience. Additionally, it meets the same requirements of other multi-task environments in human-automation research. APPLICATION The new paradigm provides the basis to vary the contextual factor of risk in human-automation research, which has previously been either neglected or operationalized in an arguably inferior way.
Collapse
|
3
|
Bzdúšková D, Marko M, Hirjaková Z, Riečanský I, Kimijanová J. Fear of heights shapes postural responses to vibration-induced balance perturbation at virtual height. Front Hum Neurosci 2023; 17:1229484. [PMID: 37771346 PMCID: PMC10523023 DOI: 10.3389/fnhum.2023.1229484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Standing upright at height is a challenging situation involving intense threat of balance loss and fall. The ability to maintain balance in such conditions requires properly resolving sensory conflicts and is influenced by fear. To get more insight on the role of fear in balance control at height, we explored the dynamics of postural behavior in the situation of enhanced threat of potential balance loss. Methods In 40 young individuals with varying fear of heights, we combined simulated exposure to height in a virtual reality environment with bilateral vibration of tibialis anterior muscles which evokes posture destabilization (the so-called vibration-induced falling). Results Under such condition of enhanced postural threat, individuals with intense fear of heights showed stronger stiffening of posture compared with individuals with low fear of heights who react more flexibly and adaptively to posture destabilization. This group difference was evident already at ground level but further increased during virtual height exposure. Discussion Our data show that fear of height significantly affects posture adaptation to balance-destabilizing events. Our findings demonstrate that the assessment of postural behavior during threatening situations in the virtual reality environment provides valuable insights into the mechanisms of balance control and may be used to develop novel strategies aimed at prevention of falls.
Collapse
Affiliation(s)
- Diana Bzdúšková
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Hirjaková
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Psychiatry, Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Jana Kimijanová
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
4
|
Zhu HY, Chen HT, Lin CT. The Effects of Virtual and Physical Elevation on Physiological Stress During Virtual Reality Height Exposure. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1937-1950. [PMID: 34898434 DOI: 10.1109/tvcg.2021.3134412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Advances in virtual reality technology have greatly benefited the acrophobia research field. Virtual reality height exposure is a reliable method of inducing stress with low variance across ages and demographics. When creating a virtual height exposure environment, researchers have often used haptic feedback elements to improve the sense of realism of a virtual environment. While the quality of the rendered for the virtual environment increases over time, the physical environment is often simplified to a conservative passive haptic feedback platform. The impact of the increasing disparity between the virtual and physical environment on the induced stress levels is unclear. This article presents an experiment that explored the effect of combining an elevated physical platform with different levels of virtual heights to induce stress. Eighteen participants experienced four different conditions of varying physical and virtual heights. The measurements included gait parameters, heart rate, heart rate variability, and electrodermal activity. The results show that the added physical elevation at a low virtual height shifts the participant's walking behaviour and increases the perception of danger. However, the virtual environment still plays an essential role in manipulating height exposure and inducing physiological stress. Another finding is that a person's behaviour always corresponds to the more significant perceived threat, whether from the physical or virtual environment.
Collapse
|
5
|
Wonghempoom A, Chuangchai W, Selanon P. Physiological Stress Responses to Fear and Anxiety in a Height Change Experiment among Non-Labor Teenagers. SAFETY 2023. [DOI: 10.3390/safety9020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Working on elevated surfaces without prior experience can be dangerous, particularly for young people, who are significantly more at risk of developing fear and anxiety, which might lead to falls and fatalities. This critical problem has, however, received limited research attention. The present study aimed to demonstrate the associations among physiological responses, fear, and anxiety in Thai teenagers at various height levels. Sixty teenagers (30 males and 30 females) between the ages of 15 and 18 who had no labor skills were recruited to perform the task at 11 levels, starting at zero meters and increasing by one meter at each level. The measurements were examined and recorded once the task at each level was finished. The main results indicated that heart rate was partially positively associated with mean arterial pressure, fear, and anxiety (with all p values < 0.001) in all teenagers (after controlling for level and sex), as well as male and female teenagers (after controlling for level). The present study suggested monitoring heart rate data in teenagers conducting activities at heights, which can be triggered by fear and anxiety, as a strategy for preventing falls from height hazards.
Collapse
|
6
|
The Walls Are Closing In: Postural Responses to a Virtual Reality Claustrophobic Simulation. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Changes in the visual environment and thereby, the spatial orientation, can induce postural instability leading to falls. Virtual reality (VR) has been used to expose individuals to virtual environments (VE) that increase postural threats. Claustrophobia is an anxiety disorder categorized under situational phobias and can induce such postural threats in a VE. Purpose: The purpose of the study was to investigate if VR-generated claustrophobic simulation has any impact on postural threats that might lead to postural instability. Methods: Thirty healthy men and women (age: 20.7 ± 1.2 years; height: 166.5 ± 7.3 cm; mass: 71.7 ± 16.2 kg) were tested for postural stability while standing on a force platform, upon exposure to five different testing trials, including a normal stance (NoVR), in stationary VE (VR), and three consecutive, randomly initiated, unexpected claustrophobia trials (VR CP1, VR CP2, VR CP3). The claustrophobia trials involved all four walls closing in towards the center of the room. Center of pressure (COP)-derived postural sway variables were analyzed with a one-way repeated measures analysis of variance at an alpha level of 0.05. Results: Significant main effect differences existed in all but one dependent COP-derived postural sway variables, at p < 0.05. Post-hoc pairwise comparisons with a Bonferroni correction revealed that, predominantly, postural sway excursions were significantly lower in claustrophobia trials compared to NoVR and VR, but only accomplished with significantly increased sway velocity. Conclusion: The VR CP trials induced lower postural sway magnitude, but with increased velocity, suggesting a bracing and co-contraction strategy when exposed to virtual claustrophobic postural threats. Additionally, postural sway decreased with subsequent claustrophobia trials, suggesting potential motor learning effects. Findings from the study offer insights to postural control behavior under virtual claustrophobic simulations and can aid in VR exposure therapy for claustrophobia.
Collapse
|
7
|
Bzdúšková D, Marko M, Hirjaková Z, Kimijanová J, Hlavačka F, Riečanský I. The Effects of Virtual Height Exposure on Postural Control and Psychophysiological Stress Are Moderated by Individual Height Intolerance. Front Hum Neurosci 2022; 15:773091. [PMID: 35095450 PMCID: PMC8789875 DOI: 10.3389/fnhum.2021.773091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Virtual reality (VR) enables individuals to be exposed to naturalistic environments in laboratory settings, offering new possibilities for research in human neuroscience and treatment of mental disorders. We used VR to study psychological, autonomic and postural reactions to heights in individuals with varying intensity of fear of heights. Study participants (N = 42) were immersed in a VR of an unprotected open-air elevator platform in an urban area, while standing on an unstable ground. Virtual elevation of the platform (up to 40 m above the ground level) elicited robust and reliable psychophysiological activation including increased distress, heart rate, and electrodermal activity, which was higher in individuals suffering from fear of heights. In these individuals, compared with individuals with low fear of heights, the VR height exposure resulted in higher velocity of postural movements as well as decreased low-frequency (<0.5 Hz) and increased high-frequency (>1 Hz) body sway oscillations. This indicates that individuals with strong fear of heights react to heights with maladaptive rigidity of posture due to increased weight of visual input for balance control, while the visual information is less reliable at heights. Our findings show that exposure to height in a naturalistic VR environment elicits a complex reaction involving correlated changes of the emotional state, autonomic activity, and postural balance, which are exaggerated in individuals with fear of heights.
Collapse
Affiliation(s)
- Diana Bzdúšková
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Hirjaková
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Kimijanová
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - František Hlavačka
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Psychiatry, Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
- *Correspondence: Igor Riečanský,
| |
Collapse
|
8
|
Zaback M, Reiter ER, Adkin AL, Carpenter MG. Initial experience of balance assessment introduces 'first trial' effects on emotional state and postural control. Gait Posture 2021; 88:116-121. [PMID: 34034022 DOI: 10.1016/j.gaitpost.2021.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Anxiety and arousal have been shown to influence balance control and, therefore, have the potential to confound balance assessment. It has been suggested that the 'first-trial' effect, where performance on the first trial of a balance task differs from subsequent trials, may be a result of participants being more anxious during their first experience of having their balance assessed. However, this remains speculative since limited work has simultaneously examined emotional state and balance control during repeated assessment of the same balance task. RESEARCH QUESTION Determine how emotional state and standing balance control change over the course of repeated assessment. METHODS Seventy-five healthy young adults completed five 120-s quiet standing trials. Psychological state was probed at each trial using self-report measures that assessed confidence, anxiety, and attention focus. Arousal was estimated from electrodermal activity and balance control was assessed from centre of pressure (COP) measures derived from forceplate data. Repeated measures ANOVAs were conducted to determine how each of these estimates changed with repeated testing. RESULTS There were significant changes in emotional state with repeated testing; self-report and autonomic measures indicated that participants were most anxious and physiologically aroused during the first trial. This emotional response diminished with repeated testing, although the greatest changes occurred from the first to second trial. Despite these changes in emotional state, only some COP outcomes significantly changed. Individuals leaned further forward during only the first trial and demonstrated higher frequency and velocity mediolateral COP oscillations during the first two trials. SIGNIFICANCE When balance is assessed for the first time in an unfamiliar laboratory setting, there is a transient emotional response which appears sufficient to influence some aspects of balance control. It is critical to control for these confounds when designing experiments or interventions involving balance assessment.
Collapse
Affiliation(s)
- Martin Zaback
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emma R Reiter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allan L Adkin
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Becker-Bense S, Huppert D. [Less common, but clinically important episodic vertigo syndromes]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2021; 89:221-232. [PMID: 33652478 DOI: 10.1055/a-1353-4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ZusammenfassungDie Differentialdiagnostik der selteneren, episodischen Schwindelsyndrome kann im klinischen Alltag eine Herausforderung darstellen, insbesondere wenn sie keine im Intervall messbaren Befunde in der neuro-ophthalmologischen oder -otologischen Routinediagnostik hinterlassen. Ursächlich für diese episodischen Schwindelsyndrome können physiologische Reaktionen aufgrund intersensorischer Inkongruenzen oder angeborene bzw. erworbene neuroanatomische/neurophysiologische Varianten sein, die zu vestibulären Reizsyndromen führen. In dieser Übersicht fokussieren wir auf die folgenden, aus unserer Sicht wichtigen vestibulären Syndrome: Bewegungskrankheit, Mal de Debarquement Syndrom, Visuelle Höhenintoleranz, Vestibularisparoxysmie, Zervikaler Schwindel, Episodische Ataxie Typ II und Syndrome eines dritten mobilen Fensters wie das Syndrom der Dehiszenz des superioren Bogengangs. Die Ausprägung reicht von milden Symptomen mit geringer Belastung bis hin zu schweren Krankheitsbildern mit relevanter Alltagseinschränkung. Sie können vom Kindes- oder Jugendalter bis ins Senium auftreten, teilweise mit abweichender Symptomatik. Durch gezielte Anamnese und ggf. erweiterte vestibuläre Diagnostik in einem spezialisierten Zentrum lassen sich diese Syndrome oft klar herausarbeiten und einer erfolgreichen Therapie zuführen.
Collapse
Affiliation(s)
- Sandra Becker-Bense
- Deutsches Schwindel- und Gleichgewichtszentrum (DSGZ), Ludwig-Maximilians-Universität München Deutschland
| | - Doreen Huppert
- Deutsches Schwindel- und Gleichgewichtszentrum (DSGZ), Ludwig-Maximilians-Universität München Deutschland
| |
Collapse
|
10
|
Wang Q, Wang H, Hu F, Hua C, Wang D. Using convolutional neural networks to decode EEG-based functional brain network with different severity of acrophobia. J Neural Eng 2021; 18. [DOI: 10.1088/1741-2552/abcdbd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
|
11
|
Representation of Fear of Heights by Basolateral Amygdala Neurons. J Neurosci 2021; 41:1080-1091. [PMID: 33436527 DOI: 10.1523/jneurosci.0483-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Fear of heights is evolutionarily important for survival, yet it is unclear how and which brain regions process such height threats. Given the importance of the basolateral amygdala (BLA) in mediating both learned and innate fear, we investigated how BLA neurons may respond to high-place exposure in freely behaving male mice. We found that a discrete set of BLA neurons exhibited robust firing increases when the mouse was either exploring or placed on a high place, accompanied by increased heart rate and freezing. Importantly, these high-place fear neurons were only activated under height threats, but not looming, acoustic startle, predatory odor, or mild anxiogenic conditions. Furthermore, after a fear-conditioning procedure, these high-place fear neurons developed conditioned responses to the context, but not the cue, indicating a convergence in processing of dangerous/risky contextual information. Our results provide insights into the neuronal representation of the fear of heights and may have implications for the treatment of excessive fear disorders.SIGNIFICANCE STATEMENT Fear can be innate or learned, as innate fear does not require any associative learning or experiences. Previous research mainly focused on studying the neural mechanism of learned fear, often using an associative conditioning procedure such as pairing a tone with a footshock. Only recently scientists started to investigate the neural circuits of innate fear, including the fear of predator odors and looming visual threats; however, how the brain processes the innate fear of heights is unclear. Here we provide direct evidence that the basolateral amygdala (BLA) is involved in representing the fear of heights. A subpopulation of BLA neurons exhibits a selective response to height and contextual threats, but not to other fear-related sensory or anxiogenic stimuli.
Collapse
|
12
|
Zaback M, Luu MJ, Adkin AL, Carpenter MG. Selective preservation of changes to standing balance control despite psychological and autonomic habituation to a postural threat. Sci Rep 2021; 11:384. [PMID: 33431937 PMCID: PMC7801693 DOI: 10.1038/s41598-020-79417-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Humans exhibit changes in postural control when confronted with threats to stability. This study used a prolonged threat exposure protocol to manipulate emotional state within a threatening context to determine if any threat-induced standing behaviours are employed independent of emotional state. Retention of balance adaptations was also explored. Thirty-seven adults completed a series of 90-s standing trials at two surface heights (LOW: 0.8 m above ground, away from edge; HIGH: 3.2 m above ground, at edge) on two visits 2-4 weeks apart. Psychological and autonomic state was assessed using self-report and electrodermal measures. Balance control was assessed using centre of pressure (COP) and lower limb electromyographic recordings. Upon initial threat exposure, individuals leaned backward, reduced low-frequency centre of pressure (COP) power, and increased high-frequency COP power and plantar/dorsiflexor coactivation. Following repeated exposure, the psychological and autonomic response to threat was substantially reduced, yet only high-frequency COP power and plantar/dorsiflexor coactivation habituated. Upon re-exposure after 2-4 weeks, there was partial recovery of the emotional response to threat and few standing balance adaptations were retained. This study suggests that some threat-induced standing behaviours are coupled with the psychological and autonomic state changes induced by threat, while others may reflect context-appropriate adaptations resistant to habituation.
Collapse
Affiliation(s)
- Martin Zaback
- grid.17091.3e0000 0001 2288 9830School of Kinesiology, University of British Columbia, 6108 Thunderbird Blvd., Vancouver, BC V6T 1Z4 Canada
| | - Minh John Luu
- grid.17091.3e0000 0001 2288 9830School of Kinesiology, University of British Columbia, 6108 Thunderbird Blvd., Vancouver, BC V6T 1Z4 Canada
| | - Allan L. Adkin
- grid.411793.90000 0004 1936 9318Department of Kinesiology, Brock University, St. Catharines, ON Canada
| | - Mark G. Carpenter
- grid.17091.3e0000 0001 2288 9830School of Kinesiology, University of British Columbia, 6108 Thunderbird Blvd., Vancouver, BC V6T 1Z4 Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
13
|
Penkava J, Bardins S, Brandt T, Wuehr M, Huppert D. Spontaneous visual exploration during locomotion in patients with phobic postural vertigo. J Neurol 2020; 267:223-230. [PMID: 32852578 PMCID: PMC7718196 DOI: 10.1007/s00415-020-10151-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
Background Earlier studies on stance and gait with posturographic and EMG-recordings and automatic gait analysis in patients with phobic postural vertigo (PPV) or visual height intolerance (vHI) revealed similar patterns of body stiffening with muscle co-contraction and a slow, cautious gait. Visual exploration in vHI patients was characterized by a freezing of gaze-in-space when standing and reduced horizontal eye and head movements during locomotion. Objective Based on the findings in vHI patients, the current study was performed with a focus on visual control of locomotion in patients with PPV while walking along a crowded hospital hallway. Methods Twelve patients with PPV and eleven controls were recruited. Participants wore a mobile infrared video eye-tracking system that continuously measured eye-in-head movements in the horizontal and vertical planes and head orientation and motion in the yaw, pitch, and roll planes. Visual exploration behavior of participants was recorded at the individually preferred speed for a total walking distance of 200 m. Gaze-in-space directions were determined by combining eye-in-head and head-in-space orientation. Walking speeds were calculated based on the trial duration and the total distance traversed. Participants were asked to rate their feelings of discomfort during the walk on a 4-point numeric rating scale. The examiners rated the crowdedness of the hospital hallway on a 4-point numeric rating scale. Results The major results of visual exploration behavior in patients with PPV in comparison to healthy controls were: eye and head positions were directed more downward in the vertical plane towards the ground ahead with increased frequency of large amplitude vertical orientation movements towards the destination, the end of the ground straight ahead. The self-adjusted speed of locomotion was significantly lower in PPV. Particularly those patients that reported high levels of discomfort exhibited a specific visual exploration of their horizontal surroundings. The durations of fixating targets in the visual surroundings were significantly shorter as compared to controls. Conclusion Gaze control of locomotion in patients with PPV is characterized by a preferred deviation of gaze more downward and by horizontal explorations for suitable auxiliary means for potential postural support in order to prevent impending falls. These eye movements have shorter durations of fixation as compared to healthy controls and patients with vHI. Finally, the pathological alterations in eye–head coordination during locomotion correlate with a higher level of discomfort and anxiety about falling.
Collapse
Affiliation(s)
- J Penkava
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany.
| | - S Bardins
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - T Brandt
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
- Institute for Clinical Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - M Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - D Huppert
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
- Institute for Clinical Neurosciences, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
14
|
The direction of postural threat alters balance control when standing at virtual elevation. Exp Brain Res 2020; 238:2653-2663. [PMID: 32944785 DOI: 10.1007/s00221-020-05917-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Anxiogenic settings lead to reduced postural sway while standing, but anxiety-related balance may be influenced by the location of postural threat in the environment. We predicted that the direction of threat would elicit a parallel controlled manifold relative to the standing surface, and an orthogonal uncontrolled manifold during standing. Altogether, 14 healthy participants (8 women, mean age = 27.5 years, SD = 8.2) wore a virtual reality (VR) headset and stood on a matched real-world walkway (2 m × 40 cm × 2 cm) for 30 s at ground level and simulated heights (elevated 15 m) in two positions: (1) parallel to walkway, lateral threat; and (2) perpendicular to walkway, anteroposterior threat. Inertial sensors measured postural sway acceleration (e.g., 95% ellipse, root mean square (RMS) of acceleration), and a wrist-worn monitor measured heart rate coefficient of variation (HR CV). Fully factorial linear-mixed effect regressions (LMER) determined the effects of height and position. HR CV moderately increased from low to high height (p = 0.050, g = 0.397). The Height × Position interaction approached significance for sway area (95% ellipse; β = - 0.018, p = 0.062) and was significant for RMS (β = - 0.022, p = 0.007). Post-hoc analyses revealed that sagittal plane sway accelerations and RMS increased from low to high elevation in parallel standing, but were limited when facing the threat during perpendicular standing. Postural response to threat varies depending on the direction of threat, suggesting that the control strategies used during standing are sensitive to the direction of threat.
Collapse
|
15
|
Acrophobia and visual height intolerance: advances in epidemiology and mechanisms. J Neurol 2020; 267:231-240. [PMID: 32444982 PMCID: PMC7718183 DOI: 10.1007/s00415-020-09805-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022]
Abstract
Historical descriptions of fear at heights date back to Chinese and Roman antiquity. Current definitions distinguish between three different states of responses to height exposure: a physiological height imbalance that results from an impaired visual control of balance, a more or less distressing visual height intolerance, and acrophobia at the severest end of the spectrum. Epidemiological studies revealed a lifetime prevalence of visual height intolerance including acrophobia in 28% of adults (32% in women; 25% in men) and 34% among prepubertal children aged 8–10 years without gender preponderance. Visual height intolerance first occurring in adulthood usually persists throughout life, whereas an early manifestation in childhood usually shows a benign course with spontaneous relief within years. A high comorbidity was found with psychiatric disorders (e.g. anxiety and depressive syndromes) and other vertigo syndromes (e.g. vestibular migraine, Menière’s disease), but not with bilateral vestibulopathy. Neurophysiological analyses of stance, gait, and eye movements revealed an anxious control of postural stability, which entails a co-contraction of anti-gravity muscles that causes a general stiffening of the whole body including the oculomotor apparatus. Visual exploration is preferably reduced to fixation of the horizon. Gait alterations are characterized by a cautious slow walking mode with reduced stride length and increased double support phases. Anxiety is the critical factor in visual height intolerance and acrophobia leading to a motor behavior that resembles an atavistic primitive reflex of feigning death. The magnitude of anxiety and neurophysiological parameters of musculoskeletal stiffening increase with increasing height. They saturate, however, at about 20 m of absolute height above ground for postural symptoms and about 40 m for anxiety (70 m in acrophobic participants). With respect to management, a differentiation should be made between behavioral recommendations for prevention and therapy of the condition. Recommendations for coping strategies target behavioral advices on visual exploration, control of posture and locomotion as well as the role of cognition. Treatment of severely afflicted persons with distressing avoidance behavior mainly relies on behavioral therapy.
Collapse
|