1
|
Ospina JP, Wen PY. Medical and neurologic management of brain tumor patients. Curr Opin Neurol 2024; 37:657-665. [PMID: 39221926 DOI: 10.1097/wco.0000000000001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW This article discusses commonly encountered medical and neurological complications in patients with brain tumors and highlights recommendations for their management based on updated evidence. RECENT FINDINGS Use of dexamethasone is correlated with worse prognosis in patients with glioblastoma, and in brain metastases, high doses may lead to increased side effects without additional clinical benefit. There are multiple antiseizure medications (ASM) to choose from and possible interactions and toxicity must be considered when choosing an agent. Additionally, there is growing interest in the use of AMPA receptor blockers as ASM in patients with brain tumors. Nonpharmacological strategies for the management of fatigue remain paramount. Cognitive decline is common after whole brain radiation (WBRT) and hippocampal-sparing WBRT results in superior cognitive outcomes. Venous thromboembolism is a common complication and there is growing evidence on the use of direct oral anticoagulants (DOACs) in this population. SUMMARY There is evolving evidence on the management of medical and neurological complications in patients with brain tumors. These complications, require early identification and multidisciplinary collaboration and expertise.
Collapse
Affiliation(s)
- Juan Pablo Ospina
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
2
|
Hou AJ, Shih RM, Uy BR, Shafer A, Chang ZL, Comin-Anduix B, Guemes M, Galic Z, Phyu S, Okada H, Grausam KB, Breunig JJ, Brown CE, Nathanson DA, Prins RM, Chen YY. IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol 2024; 26:1850-1866. [PMID: 38982561 PMCID: PMC11449012 DOI: 10.1093/neuonc/noae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-β). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-β-mediated immune suppression in the TME. METHODS We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-β, which programs tumor-specific T cells to convert TGF-β from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-β CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS Treatment with IL-13Rα2/TGF-β CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSIONS Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-β, bispecific IL-13Rα2/TGF-β CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.
Collapse
Affiliation(s)
- Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Ryan M Shih
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Benjamin R Uy
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - ZeNan L Chang
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Begonya Comin-Anduix
- Department of Surgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Miriam Guemes
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Zoran Galic
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Su Phyu
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCSF, San Francisco, California, USA
| | - Katie B Grausam
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua J Breunig
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California, USA
| | - David A Nathanson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Goldman MJ, Baskin AM, Sharpe MA, Baskin DS. Advances in gene therapy for high-grade glioma: a review of the clinical evidence. Expert Rev Neurother 2024; 24:879-895. [PMID: 39090786 DOI: 10.1080/14737175.2024.2376847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION High-grade glioma (HGG) is one of the most deadly and difficult cancers to treat. Despite intense research efforts, there has not been a significant breakthrough in treatment outcomes since the early 2000's. Anti-glioma gene therapy has demonstrated promise in preclinical studies and is under investigation in numerous clinical trials. AREAS COVERED This manuscript reviews the current landscape of clinical trials exploring gene therapy treatment of HGG. Using information from clinicaltrials.gov, all trials initiated within the past 5 years (2018-2023) as well as other important trials were cataloged and reviewed. This review discusses trial details, innovative methodologies, and concurrent pharmacological interventions. The review also delves into the subtypes of gene therapy used, trends over time, and future directions. EXPERT OPINION Trials are in the early stages (phase I or II), and there are reports of clinical efficacy in published results. Synergistic effects utilizing immunotherapy within or alongside gene therapy are emerging as a promising avenue for future breakthroughs. Considerable heterogeneity exists across trials concerning administration route, vector selection, drug combinations, and intervention timing. Earlier intervention in newly diagnosed HGG and avoidance of corticosteroids may improve efficacy in future trials. The results from ongoing trials demonstrate promising potential for molding the future landscape of HGG care.
Collapse
Affiliation(s)
- Matthew J Goldman
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alexandra M Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - Martyn A Sharpe
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - David S Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Texas A & M Medical School
| |
Collapse
|
5
|
Rabin EE, Huang J, Kim M, Mozny A, Lauing KL, Penco-Campillo M, Zhai L, Bommi P, Mi X, Power EA, Prabhu VC, Anderson DE, Barton KP, Walunas TL, Schiltz GE, Amidei C, Sanchez-Gomez P, Thakkar JP, Lukas RV, Wainwright DA. Age-stratified comorbid and pharmacologic analysis of patients with glioblastoma. Brain Behav Immun Health 2024; 38:100753. [PMID: 38600951 PMCID: PMC11004500 DOI: 10.1016/j.bbih.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Background Increased age is a strong and unfavorable prognostic factor for patients with glioblastoma (GBM). However, the relationships between stratified patient age, comorbidities, and medications have yet to be explored in GBM patient survival analyses. Objective To evaluate co-morbid conditions, tumor-related symptoms, medication prescriptions, and subject age for patients with GBM and to establish potential targets for prospective studies. Methods Electronic health records for 565 patients with IDHwt GBM were evaluated at a single center between January 1, 2000 and August 9, 2021 were retrospectively assessed. Data were stratified by MGMT promoter methylation status when available and were used to construct multivariable time-dependent cox models and intra-cohort hazards. Results Younger (<65 years of age) but not older (≥65 years) GBM patients demonstrated a worse prognosis with movement related disabilities (P < 0.0001), gait/balance difficulty (P = 0.04) and weakness (P = 0.007), as well as psychiatric conditions, mental health disorders (P = 0.002) and anxiety (P = 0.001). In contrast, older but not younger GBM patients demonstrated a worse prognosis with epilepsy (P = 0.039). Both groups had worse survival with confusion/altered mental status (P = 0.023 vs < 0.000) and an improved survival with a Temozolomide prescription. Older but not younger GBM patients experienced an improved hazard with a prescription of ace-inhibitor medications (P = 0.048). Conclusion Age-dependent novel associations between clinical symptoms and medications prescribed for co-morbid conditions were demonstrated in patients with GBM. The results of the current work support future mechanistic studies that investigate the negative relationship(s) between increased age, comorbidities, and drug therapies for differential clinical decision-making across the lifespan of patients with GBM.
Collapse
Affiliation(s)
- Erik E. Rabin
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan Huang
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Miri Kim
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Andreas Mozny
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristen L. Lauing
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Manon Penco-Campillo
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Lijie Zhai
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Prashant Bommi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Xinlei Mi
- Department of Preventive Medicine-Division of Biostatistics at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Erica A. Power
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Vikram C. Prabhu
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Douglas E. Anderson
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Kevin P. Barton
- Department of Medicine - Hematology/Oncology at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Theresa L. Walunas
- Department of Medicine - Division of General Internal Medicine and Geriatrics at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine-Division of Health and Biomedical Informatics at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary E. Schiltz
- Department of Chemistry at Northwestern University, Evanston, IL, USA
| | - Christina Amidei
- Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pilar Sanchez-Gomez
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jigisha P. Thakkar
- Department of Neurology at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Rimas V. Lukas
- Department of Neurology at Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery at Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
- Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
6
|
Saeed AM, Bentzen SM, Ahmad H, Pham L, Woodworth GF, Mishra MV. Systematic review and pooled analysis of the impact of treatment-induced lymphopenia on survival of glioblastoma patients. Radiat Oncol 2024; 19:36. [PMID: 38481255 PMCID: PMC10938829 DOI: 10.1186/s13014-023-02393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024] Open
Abstract
PURPOSE/OBJECTIVE(S) Treatment related lymphopenia is a known toxicity for glioblastoma (GBM) patients and several single-institution studies have linked lymphopenia with poor survival outcomes. We performed a systematic review and pooled analysis to evaluate the association between lymphopenia and overall survival (OS) for GBM patients undergoing chemotherapy and radiation therapy (RT). MATERIALS/METHODS Following PRISMA guidelines, a systematic literature review of the MEDLINE database and abstracts from ASTRO, ASCO, and SNO annual meetings was conducted. A pooled analysis was performed using inverse variance-weighted random effects to generate a pooled estimate of the hazard ratio of association between lymphopenia and OS. RESULTS Ten of 104 identified studies met inclusion criteria, representing 1,718 patients. The lymphopenia cutoff value varied (400-1100 cells/uL) and as well as the timing of its onset. Studies were grouped as time-point (i.e., lymphopenia at approximately 2-months post-RT) or time-range (any lymphopenia occurrence from treatment-start to approximately 2-months post-RT. The mean overall pooled incidence of lymphopenia for all studies was 31.8%, and 11.8% vs. 39.9% for time-point vs. time-range studies, respectively. Lymphopenia was associated with increased risk of death, with a pooled HR of 1.78 (95% CI 1.46-2.17, P < 0.00001) for the time-point studies, and a pooled HR of 1.38 (95% CI 1.24-1.55, P < 0.00001) for the time-point studies. There was no significant heterogeneity between studies. CONCLUSION These results strengthen observations from previous individual single-institution studies and better defines the magnitude of the association between lymphopenia with OS in GBM patients, highlighting lymphopenia as a poor prognostic factor.
Collapse
Affiliation(s)
- Ali M Saeed
- Department of Radiation Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA
- Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Søren M Bentzen
- Department of Radiation Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, USA
| | - Haroon Ahmad
- Department of Medical Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - Lily Pham
- Department of Medical Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark V Mishra
- Department of Radiation Oncology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA.
- Maryland Proton Treatment Center, Baltimore, MD, USA.
| |
Collapse
|
7
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
8
|
Chavush E, Rössler K, Dorfer C. Perioperative quality indicators among neurosurgery patients: A retrospective cohort study of 1142 cases at a tertiary center. PLoS One 2024; 19:e0297167. [PMID: 38319933 PMCID: PMC10846709 DOI: 10.1371/journal.pone.0297167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/30/2023] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE The purpose of this study was to present the first comprehensive analysis of perioperative quality indicators; length of hospital stay; readmission; reoperation; pre-, intra, and postoperative events; and mortality in a diverse neurosurgical patient cohort in Europe. METHODS Electronic medical records of all patients who were admitted to our institution between January 1 and December 31 of 2020, and underwent an index neurosurgical operation (n = 1142) were retrospectively reviewed. RESULTS The median length of hospital stay at the index admission and readmission was 8 days (range: 1-242 days) and 5 days (range: 0-94 days), respectively. Of the 1142 patients, 22.9% (n = 262) had an extended length of hospital stay of ≥14 days. The all-cause 7-, 15-, 30-, 60-, and 90-day readmission rates were 3.9% (n = 44), 5.7% (n = 65), 8.8% (n = 100), 12.3% (n = 141), and 16.5% (n = 188), respectively. The main reason for unplanned readmission was deterioration of medical and/or neurological condition. The all-cause 7-, 15-, 30-, 60-, and 90-day reoperation rates were 11.1% (n = 127), 13.8% (n = 158), 16.5% (n = 189), 18.7% (n = 213), and 19.4% (n = 221), respectively. Unplanned reoperations were due primarily to hydrocephalus. The rate of preoperative events was 1.1% (n = 13), one-third of which were associated with infection. The rate of intraoperative events was 11.0% (n = 126), of which 98 (64.47%) were surgical, 37 (24.34%) were anesthesiologic, and 17 (11.18%) were associated with technical equipment. The rate of postoperative events was 9.5% (n = 109). The most common postoperative event was malfunction, disconnection, or dislocation of an implanted device (n = 24, 17.91%). The mortality rates within 7, 15, 30, 60, and 90 days after the index operation were 0.9% (n = 10), 1.8% (n = 21), 2.5% (n = 29), 3.4% (n = 39), and 4.7% (n = 54), respectively. Several patient characteristics and perioperative factors were significantly associated with outcome parameters. CONCLUSIONS This study provides an in-depth analysis of quality indicators in neurosurgery, highlighting a variety of inherent and modifiable factors influencing patient outcomes.
Collapse
Affiliation(s)
- Edzhem Chavush
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Shirokov A, Blokhina I, Fedosov I, Ilyukov E, Terskov A, Myagkov D, Tuktarov D, Tzoy M, Adushkina V, Zlatogosrkaya D, Evsyukova A, Telnova V, Dubrovsky A, Dmitrenko A, Manzhaeva M, Krupnova V, Tuzhilkin M, Elezarova I, Navolokin N, Saranceva E, Iskra T, Lykova E, Semyachkina-Glushkovskaya O. Different Effects of Phototherapy for Rat Glioma during Sleep and Wakefulness. Biomedicines 2024; 12:262. [PMID: 38397864 PMCID: PMC10886766 DOI: 10.3390/biomedicines12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
There is an association between sleep quality and glioma-specific outcomes, including survival. The critical role of sleep in survival among subjects with glioma may be due to sleep-induced activation of brain drainage (BD), that is dramatically suppressed in subjects with glioma. Emerging evidence demonstrates that photobiomodulation (PBM) is an effective technology for both the stimulation of BD and as an add-on therapy for glioma. Emerging evidence suggests that PBM during sleep stimulates BD more strongly than when awake. In this study on male Wistar rats, we clearly demonstrate that the PBM course during sleep vs. when awake more effectively suppresses glioma growth and increases survival compared with the control. The study of the mechanisms of this phenomenon revealed stronger effects of the PBM course in sleeping vs. awake rats on the stimulation of BD and an immune response against glioma, including an increase in the number of CD8+ in glioma cells, activation of apoptosis, and blockage of the proliferation of glioma cells. Our new technology for sleep-phototherapy opens a new strategy to improve the quality of medical care for patients with brain cancer, using promising smart-sleep and non-invasive approaches of glioma treatment.
Collapse
Affiliation(s)
- Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Egor Ilyukov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Dmitry Myagkov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Dmitry Tuktarov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Daria Zlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Arina Evsyukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Alexander Dubrovsky
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Inna Elezarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia
| | - Elena Saranceva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Tatyana Iskra
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Ekaterina Lykova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| |
Collapse
|
10
|
Arora H, Mammi M, Patel NM, Zyfi D, Dasari HR, Yunusa I, Simjian T, Smith TR, Mekary RA. Dexamethasone and overall survival and progression free survival in patients with newly diagnosed glioblastoma: a meta-analysis. J Neurooncol 2024; 166:17-26. [PMID: 38151699 DOI: 10.1007/s11060-023-04549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Glioblastomas, the most common primary malignant brain tumors in adults, still hold poor prognosis. Corticosteroids, such as dexamethasone, are usually prescribed to reduce peritumoral edema and limit neurological symptoms, although potential detrimental effects of these drugs have been described. The present meta-analysis aimed to explore the association of dexamethasone with overall survival (OS) and progression free survival (PFS) in patients with newly diagnosed glioblastoma. METHODS PubMed, Cochrane Library, Embase, and ClinicalTrials.gov were searched for pertinent studies following the Preferred Reporting Items of Systematic Review and Meta-Analysis checklist. Pooled multivariable-adjusted hazard ratios (HR) for OS and PFS and their associated 95% confidence intervals (CIs) were calculated using the random-effects model and the heterogeneity among studies was assessed using I2. The quality of evidence was assessed using the GRADE criteria. RESULTS Seven studies were included, pooling data of 1,257 patients, with age varying from 11 to 81 years. Glioblastoma patients on pre- or peri-operative dexamethasone were associated with a significantly poorer overall survival (HR: 1.33, 95% CI: 1.15, 1.55; 7 studies; I2: 59.9%) and progression free survival (HR: 1.77, 95% CI: 1.05, 2.97; 3 studies; I2: 71.1%) compared to patients not on dexamethasone. The quality of evidence was moderate for overall survival and low for progression free survival. CONCLUSION Dexamethasone appeared to be associated with poor survival outcomes of glioblastoma patients.
Collapse
Affiliation(s)
- Harshit Arora
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Mammi
- Neurosurgery Division, "M. Bufalini" Hospital, Cesena, Italy
| | - Naisargi Manishkumar Patel
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Dea Zyfi
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Hema Reddy Dasari
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Ismael Yunusa
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
- College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Thomas Simjian
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rania A Mekary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA.
| |
Collapse
|
11
|
Mistry AM. Perioperative dexamethasone in high-grade gliomas: the short-term benefits and long-term harms. Front Oncol 2023; 13:1335730. [PMID: 38162484 PMCID: PMC10755919 DOI: 10.3389/fonc.2023.1335730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Dexamethasone has been commonly given to patients with a presumed new GBM in relatively large doses (6-16 mg daily for 1-2 weeks) since the 1960s without any rigorous evidence. This treatment with dexamethasone before the diagnosis and adjuvant therapy makes GBM patients unique compared to other newly diagnosed cancer patients. While dexamethasone may be beneficial, recent studies suggest that this potent immunosuppressant with pleiotropic effects is harmful in the long term. This perspective article summarizes the disadvantages of perioperative dexamethasone from multiple facets. It concludes that these growing data mandate rigorously testing the benefits of using perioperative dexamethasone.
Collapse
Affiliation(s)
- Akshitkumar M. Mistry
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
12
|
Nakazawa T, Maeoka R, Morimoto T, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Ito T, Nakase H, Tsujimura T. An efficient feeder-free and chemically-defined expansion strategy for highly purified natural killer cells derived from human cord blood. Regen Ther 2023; 24:32-42. [PMID: 37303464 PMCID: PMC10247952 DOI: 10.1016/j.reth.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Natural killer cells (NKCs) are immune cells that can attack cancer cells through the direct recognition of ligands without prior sensitization. Cord blood-derived NKCs (CBNKCs) represent a promising tool for allogenic NKC-based cancer immunotherapy. Efficient NKC expansion and decreased T cell inclusion are crucial for the success of allogeneic NKC-based immunotherapy without inducing graft-versus-host reactions. We previously established an efficient ex vivo expansion system consisting of highly purified-NKCs derived from human peripheral blood. Herein, we evaluated the performance of the NKC expansion system using CB and characterized the expanded populations. Methods Frozen CB mononuclear cells (CBMCs), with T cells removed, were cultured with recombinant human interleukin (rhIL)-18 and rhIL-2 under conditions where anti-NKp46 and anti-CD16 antibodies were immobilized. Following 7, 14, and 21 days of expansion, the purity, fold-expansion rates of NKCs, and the expression levels of NK activating and inhibitory receptors were assessed. The ability of these NKCs to inhibit the growth of T98G, a glioblastoma (GBM) cell line sensitive to NK activity, was also examined. Results All expanded T cell-depleted CBMCs were included in over 80%, 98%, and 99% of CD3-CD56+ NKCs at 7, 14, and 21 days of expansion, respectively. The NK activating receptors LFA-1, NKG2D, DNAM-1, NKp30, NKp44, NKp46, FcγRIII and NK inhibitory receptors TIM-3, TIGIT, TACTILE, NKG2A were expressed on the expanded-CBNKCs. Two out of three of the expanded-CBNKCs weakly expressed PD-1, yet gradually expressed PD-1 according to expansion period. One of the three expanded CBNKCs almost lacked PD-1 expression during the expansion period. LAG-3 expression was variable among donors, and no consistent changes were identified during the expansion period. All of the expanded CBNKCs elicited distinct cytotoxicity-mediated growth inhibition on T98G cells. The level of cytotoxicity was gradually decreased based on the prolonged expansion period. Conclusions Our established feeder-free expansion system yielded large scale highly purified and cytotoxic NKCs derived from human CB. The system provides a stable supply of clinical grade off-the-shelf NKCs and may be feasible for allogeneic NKC-based immunotherapy for cancers, including GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Mitsutoshi Nakamura
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| |
Collapse
|
13
|
Falter J, Lohmeier A, Eberl P, Stoerr EM, Koskimäki J, Falter L, Rossmann J, Mederer T, Schmidt NO, Proescholdt M. CXCR2-Blocking Has Context-Sensitive Effects on Rat Glioblastoma Cell Line Outgrowth (S635) in an Organotypic Rat Brain Slice Culture Depending on Microglia-Depletion (PLX5622) and Dexamethasone Treatment. Int J Mol Sci 2023; 24:16803. [PMID: 38069130 PMCID: PMC10706712 DOI: 10.3390/ijms242316803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors-dexamethasone, PLX5622, and CXCL2-in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment.
Collapse
Affiliation(s)
- Johannes Falter
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Annette Lohmeier
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Petra Eberl
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Eva-Maria Stoerr
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Janne Koskimäki
- Department of Neurosurgery, Oulu University Hospital, P.O. Box 25, 90029 Oulu, Finland
| | - Lena Falter
- Department of Anesthesiology, Caritas Hospital St. Josef Regensburg, 93053 Regensburg, Germany
| | - Jakob Rossmann
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Tobias Mederer
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| |
Collapse
|
14
|
Ohmura K, Tomita H, Hara A. Peritumoral Edema in Gliomas: A Review of Mechanisms and Management. Biomedicines 2023; 11:2731. [PMID: 37893105 PMCID: PMC10604286 DOI: 10.3390/biomedicines11102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Treating malignant glioma is challenging owing to its highly invasive potential in healthy brain tissue and the formation of intense surrounding edema. Peritumoral edema in gliomas can lead to severe symptoms including neurological dysfunction and brain herniation. For the past 50 years, the standard treatment for peritumoral edema has been steroid therapy. However, the discovery of cerebral lymphatic vessels a decade ago prompted a re-evaluation of the mechanisms involved in brain fluid regulation and the formation of cerebral edema. This review aimed to describe the clinical features of peritumoral edema in gliomas. The mechanisms currently known to cause glioma-related edema are summarized, the limitations in current cerebral edema therapies are discussed, and the prospects for future cerebral edema therapies are presented. Further research concerning edema surrounding gliomas is needed to enhance patient prognosis and improve treatment efficacy.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Department of Neurosurgery, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| | - Akira Hara
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
| |
Collapse
|
15
|
Furtak J, Birski M, Bebyn M, Śledzińska P, Krajewski S, Szylberg T, Krystkiewicz K, Przybył J, Zielińska K, Soszyńska K, Majdańska A, Ryfa A, Bogusiewicz J, Bojko B, Harat M. Uncovering the molecular landscape of meningiomas and the impact of perioperative steroids on patient survival. Acta Neurochir (Wien) 2023; 165:1739-1748. [PMID: 37067618 DOI: 10.1007/s00701-023-05567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND The current literature on meningioma reveals a gap in knowledge regarding the impact of genetic factors on patient survival. Furthermore, there is a lack of data on the relationship between the perioperative use of corticosteroids and patient survival in meningioma patients. Our study aims to overcome these gaps by investigating the correlation between genetic factors and overall survival and the effect of postoperative corticosteroids and other clinical characteristics on patient outcomes in meningioma patients. METHODS A retrospective analysis of the medical records of 85 newly diagnosed meningioma patients treated from 2016 to 2017 with follow-up until December 2022 was performed. RESULTS NF2 mutations occurred in 60% of tumors, AKT1 mutations in 8.2%, and TRAF7 mutations in 3.6%. Most tumors in the parasagittal region had the NF2 mutation. On the other hand, almost all tumors in the sphenoid ridge area did not have the NF2 mutation. AKT-1-mutated meningiomas had more frequent peritumoral edema. Patients who received steroids perioperatively had worse overall survival (OS) than those without steroids (p = 0.034). Moreover, preoperative peri-meningioma edema also was associated with worse OS (p < 0.003). Contrarily, NF2 mutations did not influence survival. CONCLUSIONS The combination of clinical, pathomorphological, and genetic data allows us to characterize the tumor better and assess its prognosis. Corticosteroids perioperatively and peri-meningioma edema were associated with shorter OS, according to our study. Glucocorticoids should be used judiciously for the shortest time required to achieve symptomatic relief.
Collapse
Affiliation(s)
- Jacek Furtak
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland.
- Department of Neurooncology and Radiosurgery, Franciszek Łukaszczyk Oncology Center, 85-796, Bydgoszcz, Poland.
| | - Marcin Birski
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Paulina Śledzińska
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Stanisław Krajewski
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
- Department of Physiotherapy, University of Bydgoszcz, 85-059, Bydgoszcz, Poland
| | - Tadeusz Szylberg
- Department of Pathomorphology, 10Th Military Research Hospital, 85-681, Bydgoszcz, Poland
| | - Kamil Krystkiewicz
- Department of Neurosurgery and Neurooncology, Nicolaus Copernicus Memorial Hospital, 93-513, Lodz, Poland
| | - Jakub Przybył
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Karolina Zielińska
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Krystyna Soszyńska
- Laboratory of Clinical Genetics and Molecular Pathology, Department of Medical Analytics, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Anna Majdańska
- Laboratory of Clinical Genetics and Molecular Pathology, Department of Medical Analytics, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Agata Ryfa
- Laboratory of Clinical Genetics and Molecular Pathology, Department of Medical Analytics, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Marek Harat
- Department of Neurosurgery, 10Th Military Research Hospital and Polyclinic, 85-681, Bydgoszcz, Poland
| |
Collapse
|
16
|
Carenza C, Franzese S, Castagna A, Terzoli S, Simonelli M, Persico P, Bello L, Nibali MC, Pessina F, Kunderfranco P, Peano C, Balin S, Mikulak J, Calcaterra F, Bonecchi R, Savino B, Locati M, Della Bella S, Mavilio D. Perioperative corticosteroid treatment impairs tumor-infiltrating dendritic cells in patients with newly diagnosed adult-type diffuse gliomas. Front Immunol 2023; 13:1074762. [PMID: 36703985 PMCID: PMC9872516 DOI: 10.3389/fimmu.2022.1074762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Adult-type diffuse gliomas are malignant primary brain tumors characterized by very poor prognosis. Dendritic cells (DCs) are key in priming antitumor effector functions in cancer, but their role in gliomas remains poorly understood. Methods In this study, we characterized tumor-infiltrating DCs (TIDCs) in adult patients with newly diagnosed diffuse gliomas by using multi-parametric flow cytometry and single-cell RNA sequencing. Results We demonstrated that different subsets of DCs are present in the glioma microenvironment, whereas they are absent in cancer-free brain parenchyma. The largest cluster of TIDCs was characterized by a transcriptomic profile suggestive of severe functional impairment. Patients undergoing perioperative corticosteroid treatment showed a significant reduction of conventional DC1s, the DC subset with key functions in antitumor immunity. They also showed phenotypic and transcriptional evidence of a more severe functional impairment of TIDCs. Discussion Overall, the results of this study indicate that functionally impaired DCs are recruited in the glioma microenvironment. They are severely affected by dexamethasone administration, suggesting that the detrimental effects of corticosteroids on DCs may represent one of the mechanisms contributing to the already reported negative prognostic impact of steroids on glioma patient survival.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Castagna
- Laboratory of Leukocyte Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Pasquale Persico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lorenzo Bello
- Unit of Oncological Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Conti Nibali
- Unit of Oncological Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Laboratory of Chemokine Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Benedetta Savino
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Leukocyte Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Leukocyte Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy,*Correspondence: Silvia Della Bella, ; Domenico Mavilio,
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy,*Correspondence: Silvia Della Bella, ; Domenico Mavilio,
| |
Collapse
|
17
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|
18
|
Goldman M, Lucke-Wold B, Martinez-Sosa M, Katz J, Mehkri Y, Valisno J, Quintin S. Steroid utility, immunotherapy, and brain tumor management: an update on conflicting therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:659-675. [PMID: 36338521 PMCID: PMC9630032 DOI: 10.37349/etat.2022.00106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
Steroid use is a widely accepted practice for both the treatment and prevention of tumor-induced edema, but there are many unknowns regarding their current clinical utility with modern anti-tumor therapies. This decreases edema and relieves the symptomatic mass effect. There are clearly understood benefits and commonly accepted complications of methylprednisolone (MP) use, but the topic is recently controversial. With immunotherapy advancing, a robust immune response is crucial for full therapeutic efficacy. The immunosuppression of MP may interfere with future and current therapeutics relying on the integrity of the patient’s immune system. This further emphasizes the need for alternative agents to effectively treat tumor-induced cerebral edema. This review highlights the current clinical utility of steroids to treat brain tumor-related edema and the underlying pathophysiology. It also reviews details regarding different steroid formulations and dosing. Research available regarding concurrent steroid use with immunotherapy is detailed next, followed by alternatives to steroids and barriers to their adoption. Finally, this paper discusses pre-clinical findings and emerging treatments aimed to augment or replace steroid use.
Collapse
Affiliation(s)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wiencke JK, Molinaro AM, Warrier G, Rice T, Clarke J, Taylor JW, Wrensch M, Hansen H, McCoy L, Tang E, Tamaki SJ, Tamaki CM, Nissen E, Bracci P, Salas LA, Koestler DC, Christensen BC, Zhang Z, Kelsey KT. DNA methylation as a pharmacodynamic marker of glucocorticoid response and glioma survival. Nat Commun 2022; 13:5505. [PMID: 36127421 PMCID: PMC9486797 DOI: 10.1038/s41467-022-33215-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/08/2022] [Indexed: 12/15/2022] Open
Abstract
Assessing individual responses to glucocorticoid drug therapies that compromise immune status and affect survival outcomes in neuro-oncology is a great challenge. Here we introduce a blood-based neutrophil dexamethasone methylation index (NDMI) that provides a measure of the epigenetic response of subjects to dexamethasone. This marker outperforms conventional approaches based on leukocyte composition as a marker of glucocorticoid response. The NDMI is associated with low CD4 T cells and the accumulation of monocytic myeloid-derived suppressor cells and also serves as prognostic factor in glioma survival. In a non-glioma population, the NDMI increases with a history of prednisone use. Therefore, it may also be informative in other conditions where glucocorticoids are employed. We conclude that DNA methylation remodeling within the peripheral immune compartment is a rich source of clinically relevant markers of glucocorticoid response.
Collapse
Affiliation(s)
- J K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Gayathri Warrier
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Helen Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Emily Tang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Stan J Tamaki
- Parnassus Flow Cytometry CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Courtney M Tamaki
- Parnassus Flow Cytometry CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
20
|
Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol 2022; 96:e13201. [PMID: 35778892 DOI: 10.1111/sji.13201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma, formerly known as Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The brain is an immunopriviledged organ and the blood brain barrier shields the brain from immune surveillance. In this review we discuss the composition of the immunosuppressive tumor micromilieu and potential immune escape mechanisms in GBM. In this respect, we focus on the role of the NKG2D receptor/ligand system. NKG2D ligands are frequently expressed on GBM tumor cells and can activate NKG2D-expressing killer cells including NK cells and γδ T cells. Soluble NKG2D ligands, however, contribute to tumor escape from immunological attack. We also discuss the current immunotherapeutic strategies to improve the survival of GBM patients. Such approaches include the modulation of the NKG2D receptor/ligand system, the application of checkpoint inhibitors, the adoptive transfer of ex vivo expanded and/or modified immune cells, or the application of antibodies and antibody constructs to target cytotoxic effector cells in vivo. In view of the multitude of pursued strategies, there is hope for improved overall survival of GBM patients in the future.
Collapse
Affiliation(s)
- Guranda Chitadze
- Unit for Hematological Diagnostics, Department of Internal Medicine II
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
21
|
Basu Achari R, Chakraborty S, Goyal L, Saha S, Roy P, Zameer L, Mishra D, Parihar M, Das A, Chandra A, Biswas B, Mallick I, Arunsingh MA, Chatterjee S, Bhattacharyya T. Evaluating Quality Indicators of Glioblastoma Care: Audit Results From an Indian Tertiary Care Cancer Center. JCO Glob Oncol 2022; 8:e2100405. [PMID: 35298293 PMCID: PMC8955054 DOI: 10.1200/go.21.00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE There are limited reports of quality metrics in glioblastoma. We audited our adherence to quality indicators as proposed in the PRIME Quality Improvement study. METHODS This is a retrospective audit of patients treated between 2017 and 2020. After postsurgical integrated diagnosis, patients received radiotherapy (RT) with concurrent and adjuvant temozolomide (TMZ). Multiparametric magnetic resonance imaging at predefined times guided management. Numbers with proportions for indices were calculated. Survival was estimated using the Kaplan-Meier method. RESULTS One hundred six patients were consecutively treated. The median age was 55 years (interquartile range of 47-61 years) with a male preponderance (68%). Ninety-six (90.6%) patients underwent subtotal resection, and 10 (9.4%) biopsy alone. Isocitrate dehydrogenase was wild-type in 96 (91%), and O6-methylguanine-DNA methyltransferase was unmethylated in 70 (66.0%) patients. Telomerase reverse transcriptase promoter was mutated in 64 (60.4%), and TP53 was mutated in 22 (20.8%). Concurrent radiation and TMZ were planned for 104 (98.1%), and radiation alone for 2 (1.9%). The median time to concurrent RT-TMZ was 36 days (interquartile range 30-44 days). All patients planned for RT-TMZ completed treatment, but only 81 (76%) completed adjuvant TMZ. Sixty-three (59%) completed six cycles, 18 (17%) received less than six cycles, and 25 (24%) did not receive adjuvant TMZ. At a median follow-up of 24 months (range 21-31 months), the median (95% CI) progression-free survival and overall survival were 11 (95% CI, 9.4 to 13.0) and 20.0 (95% CI, 15 to 26) months, respectively. CONCLUSION Our patients met quality indices in most domains; outcomes are comparable with global results. Metrics will be periodically evaluated to include new standards and assess continuous service appropriateness.
Collapse
Affiliation(s)
- Rimpa Basu Achari
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | | | - Love Goyal
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - Saheli Saha
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - Paromita Roy
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Lateef Zameer
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Deepak Mishra
- Department of Laboratory Hematology, Molecular Genetics and Cytogenetics, Tata Medical Center, Kolkata, India
| | - Mayur Parihar
- Department of Laboratory Hematology, Molecular Genetics and Cytogenetics, Tata Medical Center, Kolkata, India
| | - Anirban Das
- Department of Pediatric Oncology, Tata Medical Center, Kolkata, India
| | - Aditi Chandra
- Department of Radiology, Tata Medical Center, Kolkata, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| | - Indranil Mallick
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - Moses A Arunsingh
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | - Sanjoy Chatterjee
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | | |
Collapse
|
22
|
Makwana M, Hussain H, Merola JP, Zaben M, Jesurasa AR, Patel C, Leach P. Pre-operative dosing of dexamethasone for the management of children with posterior fossa tumours: are we getting it right? Br J Neurosurg 2022; 36:609-612. [PMID: 35176921 DOI: 10.1080/02688697.2022.2040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Posterior fossa (PF) tumours are associated with vasogenic oedema causing symptoms of raised intracranial pressure. Preoperatively this is managed with dexamethasone. To minimise steroid related complications, the lowest effective dose should be administered. No neurosurgical guidelines exist for pre-operative dosing of dexamethasone in PF tumours. METHODS A retrospective review was performed of surgically managed cases for patients under 16 years of age between 2013 and 2018 to ascertain the initial dose of dexamethasone with symptomatic PF tumours. RESULTS Thirty-six patients were identified of which 30 notes were available. Sixteen were male. Median age was 6 years (range 10 months - 15 years). Twenty-two (73%) were referrals from DGH and 8 (27%) presented to our neurosurgical centre. All patients presented with symptomatic PF tumours including headache (97%), vomiting (93%), gait disturbance (43%), and nystagmus (17%). Four (13%) had papilloedema. Average initial stat dexamethasone dose was 9.15 mg; 0.31 mg/kg (range 1-16.7 mg; 0.05 - 1.77 mg/kg). Stratified according to weight, average dose (and range) was 8.8 mg; 0.94 mg/kg (1-16.6 mg; 0.13 - 1.77 mg/kg) in those weighing <10 kg; 9.7 mg; 0.66 mg/kg (4-16.7 mg; 0.21 - 1.35 mg/kg) in 10-20 kg; 12.3 mg;0.52 mg/kg (8-16.7 mg; 0.27 - 0.73mg/kg) in 20-30 kg and 7.8 mg; 0.17mg/kg (2-16.7 mg; 0.0 - 0.39 mg/kg) in >30 kg up to a maximum of 16.6 mg in any 24h period. These results suggest that dosage was higher in those children weighing less. PPI was used in 24 (80%) of cases. All doses were reduced after review by the neurosurgical team and a PPI added. CONCLUSION Pre-operative dexamethasone dosing does not always reflect the severity of clinical symptoms for PF tumours. Guidelines are required to correlate clinical symptoms with a suggested suitable dose of dexamethasone to prevent overdose and complications associated with corticosteroid use. We recommend a weight-based regimen as provided by the Food and Drug Administration. The current advice is for 0.02-0.3mg/kg/day in 3-4 divided doses.
Collapse
Affiliation(s)
- Milan Makwana
- Department of Paediatric Neurosurgery, University Hospital of Wales & Noah's Ark Children's Hospital, Cardiff, United Kingdom.,School of Medicine, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, University Hospital Wales, Cardiff University, Cardiff, United Kingdom
| | - Humaira Hussain
- Department of Paediatric Neurosurgery, University Hospital of Wales & Noah's Ark Children's Hospital, Cardiff, United Kingdom
| | - Joseph P Merola
- Department of Paediatric Neurosurgery, University Hospital of Wales & Noah's Ark Children's Hospital, Cardiff, United Kingdom.,School of Medicine, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, University Hospital Wales, Cardiff University, Cardiff, United Kingdom
| | - Malik Zaben
- Department of Paediatric Neurosurgery, University Hospital of Wales & Noah's Ark Children's Hospital, Cardiff, United Kingdom.,School of Medicine, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, University Hospital Wales, Cardiff University, Cardiff, United Kingdom
| | - Anthony R Jesurasa
- Department of Paediatric Neurosurgery, University Hospital of Wales & Noah's Ark Children's Hospital, Cardiff, United Kingdom
| | - Chirag Patel
- Department of Paediatric Neurosurgery, University Hospital of Wales & Noah's Ark Children's Hospital, Cardiff, United Kingdom
| | - Paul Leach
- Department of Paediatric Neurosurgery, University Hospital of Wales & Noah's Ark Children's Hospital, Cardiff, United Kingdom
| |
Collapse
|
23
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
24
|
Myasthenia gravis after glioblastoma resection: paraneoplastic syndrome or coincidence? A unique case report and review of the literature. Acta Neurochir (Wien) 2022; 164:423-427. [PMID: 34714432 PMCID: PMC8854242 DOI: 10.1007/s00701-021-05035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Paraneoplastic neurological syndromes (PNS) can manifest with every type of malignancy. A well-known syndrome is myasthenia gravis (MG) in combination with thymomas. No association between primary brain tumors and neuromuscular disorders has been described. Here, we present a case of a 65-year-old patient who developed MG, following an uncomplicated, gross-total resection of a glioblastoma. To our knowledge, this is the first case describing the onset of MG during the early postoperative phase after glioblastoma resection. Current criteria of PNS are insufficient when the neurological syndrome is diagnosed at the time of a malignancy or shortly thereafter and should be revisited.
Collapse
|
25
|
Zhang Y, Chen S, Chen H, Chen S, Li Z, Feng E, Li W. Prognostic Value and Risk Factors of Treatment-Related Lymphopenia in Malignant Glioma Patients Treated With Chemoradiotherapy: A Systematic Review and Meta-Analysis. Front Neurol 2022; 12:726561. [PMID: 35058869 PMCID: PMC8764122 DOI: 10.3389/fneur.2021.726561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Immunotherapy has shown promising therapeutic efficacy in various cancers but not gliomas. Circulating lymphocytes play critical roles in cancer control and responses to immune checkpoint inhibitors. Treatment-related lymphopenia has been associated with poor survival in patients with various tumors. This meta-analysis evaluated the risk and impact of lymphopenia in patients with glioma. Methods: The PubMed, Embase, Web of Science, and Cochrane Library databases were comprehensively searched. Eligible studies were included if they reported the incidence and risk factors of lymphopenia and the impact of lymphopenia on survival. Stata 16.0 was used for this meta-analysis. Results: A total of 21 studies were included in the final systematic review and 20 were included in the quantitative analysis. The overall incidence of grade III/IV lymphopenia was 31.6% [95% confidence interval (CI), 22.3-40.8%]. Pooled results based on pathology of glioma revealed that the incidence in astrocytoma and astrocytoma oligodendroglioma patients was 20.2% (95% CI:5.9-34.4%), and the incidence in glioblastoma patients was 27.6% (95% CI:16.2-38.9%). Lymphopenia was associated with poor overall survival (hazard ratio, 1.99; 95% CI, 1.74-2.27; P< 0.001) compared to no lymphopenia. Brain receiving radiation dose of 20 or 25 Gy, female sex, older age, lower baseline lymphocyte count, and dexamethasone dose > 2 mg instead of baseline use were risk factors for lymphopenia. Conclusions: Treatment-related lymphopenia was associated with decreased survival in patients with glioma. Optimization of chemoradiation regimens, particularly in patients with concurrent risk factors, can reduce lymphopenia and potentially improve survival in the era of immunotherapy.
Collapse
Affiliation(s)
- Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shichao Chen
- Neurosurgery Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hualei Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shanshan Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Emergency Department, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Enshan Feng
- Neurosurgery Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Wadiura LI, Reichert D, Sperl V, Lang A, Kiesel B, Erkkilae M, Wöhrer A, Furtner J, Roetzer T, Leitgeb R, Mischkulnig M, Widhalm G. Influence of dexamethasone on visible 5-ALA fluorescence and quantitative protoporphyrin IX accumulation measured by fluorescence lifetime imaging in glioblastomas: is pretreatment obligatory before fluorescence-guided surgery? J Neurosurg 2021:1-9. [PMID: 34678775 DOI: 10.3171/2021.6.jns21940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is nowadays widely applied for improved resection of glioblastomas (GBMs). Initially, pretreatment with dexamethasone was considered to be essential for optimal fluorescence effect. However, recent studies reported comparably high rates of visible fluorescence in GBMs despite absence of dexamethasone pretreatment. Recently, the authors proposed fluorescence lifetime imaging (FLIM) for the quantitative analysis of 5-ALA-induced protoporphyrin IX (PpIX) accumulation. The aim of this study was thus to investigate the influence of dexamethasone on visible fluorescence and quantitative PpIX accumulation. METHODS The authors prospectively analyzed the presence of visible fluorescence during surgery in a cohort of patients with GBMs. In this study, patients received dexamethasone preoperatively only if clinically indicated. One representative tumor sample was collected from each GBM, and PpIX accumulation was analyzed ex vivo by FLIM. The visible fluorescence status and mean FLIM values were correlated with preoperative intake of dexamethasone. RESULTS In total, two subgroups with (n = 27) and without (n = 20) pretreatment with dexamethasone were analyzed. All patients showed visible fluorescence independent from preoperative dexamethasone intake. Furthermore, the authors did not find a statistically significant difference in the mean FLIM values between patients with and without dexamethasone pretreatment (p = 0.097). CONCLUSIONS In this first study to date, the authors found no significant influence of dexamethasone pretreatment on either visible 5-ALA fluorescence during GBM surgery or PpIX accumulation based on FLIM. According to these preliminary data, the authors recommend administering dexamethasone prior to fluorescence-guided surgery of GBMs only when clinically indicated.
Collapse
Affiliation(s)
- Lisa I Wadiura
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - David Reichert
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Veronika Sperl
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Alexandra Lang
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Barbara Kiesel
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | | | - Adelheid Wöhrer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Julia Furtner
- 5Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology; and.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Thomas Roetzer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Rainer Leitgeb
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Mario Mischkulnig
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Georg Widhalm
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| |
Collapse
|
27
|
Mistry AM, Jonathan SV, Monsour MA, Mobley BC, Clark SW, Moots PL. Impact of postoperative dexamethasone on survival, steroid dependency, and infections in newly diagnosed glioblastoma patients. Neurooncol Pract 2021; 8:589-600. [PMID: 34594571 PMCID: PMC8475235 DOI: 10.1093/nop/npab039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND We examined the effect of dexamethasone prescribed in the initial 3 postoperative weeks on survival, steroid dependency, and infection in glioblastoma patients. METHODS In this single-center retrospective cohort analysis, we electronically retrieved inpatient administration and outpatient prescriptions of dexamethasone and laboratory values from the medical record of 360 glioblastoma patients. We correlated total dexamethasone prescribed from postoperative day (POD) 0 to 21 with survival, dexamethasone prescription from POD30 to POD90, and diagnosis of an infection by POD90. These analyses were adjusted for age, Karnofsky performance status score, tumor volume, extent of resection, IDH1/2 tumor mutation, tumor MGMT promoter methylation, temozolomide and radiotherapy initiation, and maximum blood glucose level. RESULTS Patients were prescribed a median of 159 mg [109-190] of dexamethasone cumulatively by POD21. Every 16-mg increment (4 mg every 6 hours/day) of total dexamethasone associated with a 4% increase in mortality (95% confidence interval [CI] 1%-7%, P < .01), 12% increase in the odds of being prescribed dexamethasone from POD30 to POD90 (95% CI 6%-19%, P < .01), and 10% increase in the odds of being diagnosed with an infection (95% CI, 4%-17%, P < .01). Of the 175 patients who had their absolute lymphocyte count measured in the preoperative week, 80 (45.7%) had a value indicative of lymphopenia. In the POD1-POD28 period, this proportion was 82/167 (49.1%). CONCLUSIONS Lower survival, steroid dependency, and higher infection rate in glioblastoma patients associated with higher dexamethasone administration in the initial 3 postoperative weeks. Nearly half of the glioblastoma patients are lymphopenic preoperatively and up to 1 month postoperatively.
Collapse
Affiliation(s)
- Akshitkumar M Mistry
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | | | | | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen W Clark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul L Moots
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Annavarapu S, Gogate A, Pham T, Davies K, Singh P, Robert N. Treatment patterns and outcomes for patients with newly diagnosed glioblastoma multiforme: a retrospective cohort study. CNS Oncol 2021; 10:CNS76. [PMID: 34378977 PMCID: PMC8461754 DOI: 10.2217/cns-2021-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aim: Investigate real-world outcomes and healthcare utilization of patients with glioblastoma multiforme (GBM) related to O6-methylguanine DNA methyltransferase (MGMT) promoter testing and methylation. Patients & methods: US Oncology Network data were analyzed for patients receiving first-line (1L) treatment for GBM. Results: Most patients received 1L radiation with temozolomide. Unadjusted median overall survival (OS) was higher in tested versus untested (median:18.1 vs 11.8 months) and in methylated versus unmethylated (median: 25.5 vs 12.4 months). Untested status, unmethylated MGMT and older age were associated with reduced OS and longer 1L treatment with increased OS. Similar findings were observed for progression-free survival. Utilization was similar between cohorts. Conclusion: In community oncology practices, MGMT methylation and testing were predictive of better survival in GBM. We studied the characteristics and survival of patients with newly diagnosed glioblastoma multiforme (GBM) in community-based oncology practices. These patients had received temozolomide and radiotherapy with surgery, which is the standard of care for GBM. We were interested in how patient survival was related to methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter. The study showed that patients with methylated versus unmethylated MGMT GBM survived longer. However, patients who were tested for methylation, whether MGMT was methylated or not, also survived longer. This may be because patients who get tested also get better care in general.
Collapse
Affiliation(s)
| | | | - Trang Pham
- McKesson Specialty Health, The Woodlands, TX 77380, USA
| | - Kalatu Davies
- McKesson Specialty Health, The Woodlands, TX 77380, USA
| | | | | |
Collapse
|
29
|
Lobinger D, Gempt J, Sievert W, Barz M, Schmitt S, Nguyen HT, Stangl S, Werner C, Wang F, Wu Z, Fan H, Zanth H, Shevtsov M, Pilz M, Riederer I, Schwab M, Schlegel J, Multhoff G. Potential Role of Hsp70 and Activated NK Cells for Prediction of Prognosis in Glioblastoma Patients. Front Mol Biosci 2021; 8:669366. [PMID: 34079819 PMCID: PMC8165168 DOI: 10.3389/fmolb.2021.669366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Despite rapid progress in the treatment of many cancers, glioblastoma remains a devastating disease with dismal prognosis. The aim of this study was to identify chaperone- and immune-related biomarkers to improve prediction of outcome in glioblastoma. Depending on its intra- or extracellular localization the major stress-inducible heat shock protein 70 (Hsp70) fulfills different tasks. In the cytosol Hsp70 interferes with pro-apoptotic signaling pathways and thereby protects tumor cells from programmed cell death. Extracellular Hsp70 together with pro-inflammatory cytokines are reported to stimulate the expression of activatory NK cell receptors, recognizing highly aggressive human tumor cells that present Hsp70 on their cell surface. Therefore, intra-, extracellular and membrane-bound Hsp70 levels were assessed in gliomas together with activatory NK cell receptors. All gliomas were found to be membrane Hsp70-positive and high grade gliomas more frequently show an overexpression of Hsp70 in the nucleus and cytosol. Significantly elevated extracellular Hsp70 levels are detected in glioblastomas with large necrotic areas. Overall survival (OS) is more favorable in patients with low Hsp70 serum levels indicating that a high Hsp70 expression is associated with an unfavorable prognosis. The data provide a first hint that elevated frequencies of activated NK cells at diagnosis might be associated with a better clinical outcome.
Collapse
Affiliation(s)
- Dominik Lobinger
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Technical University Munich (TUM), School of Medicine, Munich, Germany
| | - Wolfgang Sievert
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Melanie Barz
- Department of Neurosurgery, School of Medicine, Technical University Munich (TUM), School of Medicine, Munich, Germany
| | - Sven Schmitt
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Huyen Thie Nguyen
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Caroline Werner
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Fei Wang
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Zhiyuan Wu
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Hengyi Fan
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Hannah Zanth
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany.,Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Mathias Pilz
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Isabelle Riederer
- Department of Neuroradiology, School of Medicine, Technical University Munich (TUM), Munich, Germany
| | - Melissa Schwab
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Technical University Munich (TUM), Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, School of Medicine, Technical University Munich (TUM), Munich, Germany.,Central Institute for Translational Cancer Research, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
30
|
Chitadze G, Lettau M, Peters C, Luecke S, Flüh C, Quabius ES, Synowitz M, Held-Feindt J, Kabelitz D. Erroneous expression of NKG2D on granulocytes detected by phycoerythrin-conjugated clone 149810 antibody. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 102:228-238. [PMID: 33749106 DOI: 10.1002/cyto.b.22001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The activating Natural killer group 2 member D (NKG2D) receptor is typically expressed on NK cells, CD8 T lymphocytes, γδ T cells and small subsets of CD4 T lymphocytes. During the course of an extensive flow cytometry phenotyping of immune cells in the peripheral blood of patients with glioblastoma multiforme (GBM) we noticed an unexpected expression of NKG2D receptor on granulocytes using the phycoerythrin (PE)-conjugated clone 149810 antibody. METHODS Peripheral blood samples from 35 patients with GBM and 22 age-matched healthy control (HC) donors were analyzed using flow cytometry, imaging cytometry and real-time quantitative reverse transcription PCR to validate the observed expression of NKG2D receptor on myeloid cells. RESULTS Reactivity with PE-149810 was mostly observed on granulocytes from GBM patients on dexamethasone treatment where it correlated with inferior survival rates. Surprisingly, such NKG2D expression on granulocytes was not observed using the allophycocyanin (APC)-conjugate of the same clone 149810 antibody or an indirect staining procedure with unconjugated clone 149810 antibody. Moreover, the PE-conjugate of a different anti-NKG2D clone (1D11) also did not stain granulocytes. Imaging cytometry indicated cell surface and intracellular localization of PE-149810 but not of PE-1D11 in granulocytes. CONCLUSION Our results uncover an erroneous and false positive reactivity of PE-labeled (but not of APC-labeled or unconjugated) anti-NKG2D antibody 149810 on granulocytes from dexamethasone-treated GBM patients and raise a note of caution for studies of NKG2D expression on non-lymphoid cells.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany.,Department of Internal Medicine II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany.,Department of Internal Medicine II, Hematology and Oncology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Stefanie Luecke
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany.,Department of Oto-Rhino-Laryngology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
31
|
Decavèle M, Gatulle N, Weiss N, Rivals I, Idbaih A, Demeret S, Mayaux J, Dres M, Morawiec E, Hoang-Xuan K, Similowski T, Demoule A. One-year survival of patients with high-grade glioma discharged alive from the intensive care unit. J Neurol 2020; 268:516-525. [PMID: 32860544 PMCID: PMC7456207 DOI: 10.1007/s00415-020-10191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/04/2022]
Abstract
Introduction Only limited data are available regarding the long-term prognosis of patients with high-grade glioma discharged alive from the intensive care unit. We sought to quantify 1-year mortality and evaluate the association between mortality and (1) functional status, and (2) management of anticancer therapy in patients with high-grade glioma discharged alive from the intensive care unit.
Patients and methods Retrospective observational cohort study of patients with high-grade glioma admitted to two intensive care units between January 2009 and June 2018. Functional status was assessed by the Karnofsky Performance Status. Anticancer therapy after discharge was classified as (1) continued (unchanged), (2) modified (changed or stopped), or (3) initiated (for newly diagnosed disease).
Results Ninety-one high-grade glioma patients (73% of whom had glioblastoma) were included and 78 (86%) of these patients were discharged alive from the intensive care unit. Anticancer therapy was continued, modified, and initiated in 41%, 42%, and 17% of patients, respectively. Corticosteroid therapy at the time of ICU admission [odds ratio (OR) 0.07] and cancer progression (OR 0.09) was independently associated with continuation of anticancer therapy. The mortality rate 1 year after ICU admission was 73%. On multivariate analysis, continuation of anticancer therapy (OR 0.18) and Karnofsky performance status on admission (OR 0.90) were independently associated with lower 1-year mortality.
Conclusion The presence of high-grade glioma is not sufficient to justify refusal of intensive care unit admission. Performance status and continuation of anticancer therapy are associated with higher survival after intensive care unit discharge.
Previous presentation Preliminary results were presented at the most recent congress of the French Intensive Care Society, Paris, 2019. Electronic supplementary material The online version of this article (10.1007/s00415-020-10191-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maxens Decavèle
- Médecine Intensive Et Réanimation (Département R3S), Service de Pneumologie, AP-HP, Site Pitié-Salpêtrière, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Service de Neurologie 2-Mazarin, 75013, Paris, France. .,UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, INSERM, Sorbonne Université, 75005, Paris, France.
| | - Nicolas Gatulle
- Médecine Intensive Et Réanimation (Département R3S), Service de Pneumologie, AP-HP, Site Pitié-Salpêtrière, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Nicolas Weiss
- Unité de Médecine Intensive Réanimation Neurologique, Département de Neurologie, DMU Neurosciences Et Institut de Neurosciences Translationnelles, AP-HP.Sorbonne IHU-A-ICM, Hôpital de La Pitié-Salpêtrière, Université Paris, Paris, France.,Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies métaboliques, biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN),, Sorbonne Université, Paris, France
| | - Isabelle Rivals
- UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, INSERM, Sorbonne Université, 75005, Paris, France.,Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, Paris, France
| | - Ahmed Idbaih
- Inserm, CNRS, UMR S 1127, Institut du Cerveau Et de La Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, 75013, Paris, France
| | - Sophie Demeret
- Unité de Médecine Intensive Réanimation Neurologique, Département de Neurologie, DMU Neurosciences Et Institut de Neurosciences Translationnelles, AP-HP.Sorbonne IHU-A-ICM, Hôpital de La Pitié-Salpêtrière, Université Paris, Paris, France
| | - Julien Mayaux
- UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, INSERM, Sorbonne Université, 75005, Paris, France
| | - Martin Dres
- Médecine Intensive Et Réanimation (Département R3S), Service de Pneumologie, AP-HP, Site Pitié-Salpêtrière, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Service de Neurologie 2-Mazarin, 75013, Paris, France.,UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, INSERM, Sorbonne Université, 75005, Paris, France
| | - Elise Morawiec
- UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, INSERM, Sorbonne Université, 75005, Paris, France
| | - Khe Hoang-Xuan
- Inserm, CNRS, UMR S 1127, Institut du Cerveau Et de La Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, 75013, Paris, France
| | - Thomas Similowski
- Médecine Intensive Et Réanimation (Département R3S), Service de Pneumologie, AP-HP, Site Pitié-Salpêtrière, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Service de Neurologie 2-Mazarin, 75013, Paris, France.,UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, INSERM, Sorbonne Université, 75005, Paris, France
| | - Alexandre Demoule
- Médecine Intensive Et Réanimation (Département R3S), Service de Pneumologie, AP-HP, Site Pitié-Salpêtrière, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Service de Neurologie 2-Mazarin, 75013, Paris, France.,UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, INSERM, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
32
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|