1
|
McAvoy M, Ratner B, Ferreira MJ, Levitt MR. Gene therapy for intracranial aneurysms: systemic review. J Neurointerv Surg 2025:jnis-2024-021843. [PMID: 39357890 DOI: 10.1136/jnis-2024-021843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Treatment of intracranial aneurysms is currently limited to invasive surgical and endovascular modalities, and some aneurysms are not treatable with these methods. Identification and targeting of specific molecular pathways involved in the pathogenesis of aneurysms may improve outcomes. Low frequency somatic variants found in cancer related genes have been linked to intracranial aneurysm development. In particular, mutations in the PDGFRB gene lead to constitutively activated ERK and nuclear factor κB signaling pathways, which can be targeted with tyrosine kinase inhibitors. In this review, we describe how low frequency somatic variants in oncogenic and other genes affect the pathogenesis of aneurysm development, with a focus on gene therapy applications, such as endovascular in situ delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Malia McAvoy
- Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Buddy Ratner
- Chemical Engineering, Bioengineering, Materials Science, and Engineering, University of Washington, Seattle, Washington, USA
| | - Manuel J Ferreira
- Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Michael R Levitt
- Neurological Surgery, Radiology, Mechanical Engineering, Neurology, Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Tan JK, Awuah WA, Ahluwalia A, Sanker V, Ben-Jaafar A, Tenkorang PO, Aderinto N, Mehta A, Darko K, Shah MH, Roy S, Abdul-Rahman T, Atallah O. Genes to therapy: a comprehensive literature review of whole-exome sequencing in neurology and neurosurgery. Eur J Med Res 2024; 29:538. [PMID: 39523358 PMCID: PMC11552425 DOI: 10.1186/s40001-024-02063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Whole-exome sequencing (WES), a ground-breaking technology, has emerged as a linchpin in neurology and neurosurgery, offering a comprehensive elucidation of the genetic landscape of various neurological disorders. This transformative methodology concentrates on the exonic portions of DNA, which constitute approximately 1% of the human genome, thus facilitating an expedited and efficient sequencing process. WES has been instrumental in advancing our understanding of neurodegenerative diseases, neuro-oncology, cerebrovascular disorders, and epilepsy by revealing rare variants and novel mutations and providing intricate insights into their genetic complexities. This has been achieved while maintaining a substantial diagnostic yield, thereby offering novel perspectives on the pathophysiology and personalized management of these conditions. The utilization of WES boasts several advantages over alternative genetic sequencing methodologies, including cost-effectiveness, reduced incidental findings, simplified analysis and interpretation process, and reduced computational demands. However, despite its benefits, there are challenges, such as the interpretation of variants of unknown significance, cost considerations, and limited accessibility in resource-constrained settings. Additionally, ethical, legal, and social concerns are raised, particularly in the context of incidental findings and patient consent. As we look to the future, the integration of WES with other omics-based approaches could help revolutionize the field of personalized medicine through its implications in predictive models and the development of targeted therapeutic strategies, marking a significant stride toward more effective and clinically oriented solutions.
Collapse
Affiliation(s)
- Joecelyn Kirani Tan
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | | | | | - Vivek Sanker
- Department of Neurosurgery, Trivandrum Medical College, Thiruvananthapuram, India
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Kwadwo Darko
- Department of Neurosurgery, Korle Bu Teaching Hospital, Accra, Ghana
| | | | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
3
|
Wu Z, Liu Q, Zhao Y, Fang C, Zheng W, Zhao Z, Zhang N, Yang X. Rhogef17: A novel target for endothelial barrier function. Biomed Pharmacother 2024; 170:115983. [PMID: 38134633 DOI: 10.1016/j.biopha.2023.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
ARHGEF17 encodes the protein RhoGEF17, which is highly expressed in vascular endothelial cells. It is a guanine nucleotide exchange factor (GEF) that accelerates the exchange of GDP with GTP on many small GTPases through its Dbl homology (DH) domain, enabling the activation of Rho-GTPases such as RhoA, RhoB, and RhoC. Rho GTPase-regulated changes in the actin cytoskeleton and cell adhesion kinetics are the main mechanisms mediating many endothelial cell (EC) alterations, including cell morphology, migration, and division changes, which profoundly affect EC barrier function. This review focuses on ARHGEF17 expression, activation and biological functions in ECs, linking its regulation of cellular morphology, migration, mitosis and other cellular behaviors to disease onset and progression. Understanding ARHGEF17 mechanisms of action will contribute to the design of therapeutic approaches targeting RhoGEF17, a potential drug target for the treatment of various endothelium-related diseases, Such as vascular inflammation, carcinogenesis and transendothelial metastasis of tumors.
Collapse
Affiliation(s)
- Zhuolin Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanlei Liu
- Department of Neurosurgery, Capital Medical University, Xuanwu Hospital, Beijing, China
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Wen Zheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zilin Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Nai Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
5
|
Saxena D, Tiwari AK, Prasad R, Srivastav S. Resolving fetal hydrops - A rare entity. Eur J Med Genet 2023; 66:104888. [PMID: 37993095 DOI: 10.1016/j.ejmg.2023.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Non-immune hydrops fetalis (NIHF) is abnormal accumulation of serous fluid in ≥2 interstitial spaces with no evidence of maternal red cell alloimmunization. Leaving a few treatable conditions, it is generally considered as a sign of poor fetal outcome. Bi-allelic variants in THSD1 have been found to be to be associated with phenotypes ranging from lethal NIHF to persistent edema. Here, we report a family with non-immune hydrops in two successive pregnancies. Whole exome sequencing in second pregnancy identified a homozygous truncating variant in THSD1 (NM_018676:c.892G>T:p.Glu298Ter). Postnatal follow up showed gradual resolution of the accumulated fluid and normal development. This report further strengthens the association of variants in THSD1 with NIHF.
Collapse
Affiliation(s)
- Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India.
| | - Amit K Tiwari
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Rameshwar Prasad
- Department of Neonatology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Saumya Srivastav
- Consultant Fetal Medicine, Sansrishti Clinic, Hazaribagh, Jharkhand, India
| |
Collapse
|
6
|
Prakash AV, Welliver RR, Mirmire S, Baron S, Hicar MD. Presence of coronary aneurysms during Kawasaki Disease (KD) correlates with lower levels of autoantibodies to both full form and spliced variant of immune regulator Del-1. Immunol Lett 2023; 256-257:34-41. [PMID: 37019289 DOI: 10.1016/j.imlet.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Kawasaki disease (KD), a rare multisystem inflammatory condition that predominantly affects children under six years of age, is the leading cause of childhood-acquired heart disease in developed countries. The pathogenesis is unknown, but studies support that an infectious stimulus triggers an autoimmune reaction in a genetically susceptible child. Recent studies demonstrated an association with autoantibody response to Del-1 (also known as EDIL3) in children with KD. Del-1 is an extracellular matrix protein that is expressed both in macrophages and vascular endothelium. Del-1 has an anti-inflammatory role by preventing leucocyte migration to inflammatory sites. Del-1 has two expression variants and genetic variants of Del-1 have been associated with the risk of intracranial aneurysms. Due to the physiologic plausibility for a role during KD, we chose to assess if autoantibodies against DEL-1 are seen in a larger cohort of children with KD and to assess if responses correlated to aneurysm formation. Contrary to prior findings, in comparison to febrile controls, autoantibodies were not overall higher in children with KD. Elevation in Post-IVIG samples in comparison to pre-IVIG and convalescent samples supports the commonality of anti-Del-1 antibodies. Autoantibodies were notably lower in children with KD who had coronary Z score elevations in comparison to those who did not.
Collapse
Affiliation(s)
- Aviraag Vijaya Prakash
- Jacobs School of Medicine and Public Health, Department of Pediatrics, University at Buffalo, Buffalo, New York.
| | - R Ross Welliver
- Jacobs School of Medicine and Public Health, Department of Pediatrics, University at Buffalo, Buffalo, New York.
| | - Sanjiti Mirmire
- Houston Methodist Hospital, Department of Neurology, Houston, Texas.
| | - Sarah Baron
- Jacobs School of Medicine and Public Health, Department of Pediatrics, University at Buffalo, Buffalo, New York.
| | - Mark D Hicar
- Jacobs School of Medicine and Public Health, Department of Pediatrics, University at Buffalo, Buffalo, New York.
| |
Collapse
|
7
|
Chen C, Gu X, Liu F, Sun C, Mu J, Jin D, Sui X, Geng D, Li Q, Jiang Y, Shen C. SNP rs3803264 polymorphisms in THSD1 and abnormally expressed mRNA are associated with hemorrhagic stroke. Front Aging Neurosci 2023; 15:1144364. [PMID: 37139087 PMCID: PMC10150931 DOI: 10.3389/fnagi.2023.1144364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Background Thrombospondin Type 1 Domain Containing Protein 1 (THSD1) has been suggested to be a new regulator of endothelial barrier function in the angiogenesis process, preserving vascular integrity. We sought to characterize the association of THSD1 genetic variants and mRNA expression with the risk of hemorrhagic stroke (HS) with population-based evidence. Methods A case-control study was conducted with 843 HS cases and 1,400 healthy controls. A cohort study enrolled 4,080 participants free of stroke at baseline in 2009 and followed up to 2022. A synonymous variant, the main tag SNP rs3803264 of the THSD1 gene, was genotyped in all subjects, and peripheral leukocyte THSD1 mRNA expression was detected using RT-qPCR in 57 HS cases and 119 controls. Results In the case-control study, rs3803264 AG/GG variations are associated with a decreased risk of HS with odd ratio (OR) and 95% confidence interval (CI) of the dominant model of 0.788 (0.648-0.958), p = 0.017. In addition, rs3803264 and dyslipidemia had a multiplicative interaction [OR (95% CI) = 1.389 (1.032, 1.869), p = 0.030]. In the cohort study, a similar association strength of rs3803264 dominant model and the risk of HS was observed with the incidence rate ratio (IRR) of 0.734 and p-value of 0.383. Furthermore, the risk of HS showed a non-linear as THSD1 mRNA expression increased (p for non-linearity <0.001). For the subjects without hypertension, we observed THSD1 mRNA expression had a negative correlation with systolic blood pressure (SBP; ρ = -0.334, p = 0.022). Conclusion SNP rs3803264 polymorphisms in THSD1 are associated with the decreased risk of HS and interacted with dyslipidemia, and a non-linear association was observed between THSD1 mRNA expression and the risk of HS.
Collapse
Affiliation(s)
- Changying Chen
- Department of Epidemiology, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xincheng Gu
- Department of Epidemiology, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fangyuan Liu
- Department of Epidemiology, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congyong Sun
- Department of Medical Laboratory, Huai’an First People’s Hospital, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Jialin Mu
- Department of Epidemiology, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Defu Jin
- Department of Medical Laboratory, Huai’an First People’s Hospital, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Xuemei Sui
- Department of Medical Laboratory, Huai’an First People’s Hospital, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingqing Li
- Department of Neurology, The Third People's Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Yuzhang Jiang
- Department of Medical Laboratory, Huai’an First People’s Hospital, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
- *Correspondence: Yuzhang Jiang,
| | - Chong Shen
- Department of Epidemiology, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Chong Shen,
| |
Collapse
|
8
|
Chang LH, Chi NF, Chen CY, Lin YS, Hsu SL, Tsai JY, Huang HC, Lin CJ, Chung CP, Tung CY, Jeng CJ, Lee YC, Liu YT, Lee IH. Monogenic Causes in Familial Stroke Across Intracerebral Hemorrhage and Ischemic Stroke Subtypes Identified by Whole-Exome Sequencing. Cell Mol Neurobiol 2022:10.1007/s10571-022-01315-3. [PMID: 36580209 DOI: 10.1007/s10571-022-01315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing (WES) has been used to detect rare causative variants in neurological diseases. However, the efficacy of WES in genetic diagnosis of clinically heterogeneous familial stroke remains inconclusive. We prospectively searched for disease-causing variants in unrelated probands with defined familial stroke by candidate gene/hotspot screening and/or WES, depending on stroke subtypes and neuroimaging features at a referral center. The clinical significance of each variant was determined according to the American College of Medical Genetics guidelines. Among 161 probands (mean age at onset 53.2 ± 13.7 years; male 63.4%), 33 participants (20.5%) had been identified with 19 pathogenic/likely pathogenic variants (PVs; WES applied 152/161 = 94.4%). Across subtypes, the highest hit rate (HR) was intracerebral hemorrhage (ICH, 7/18 = 38.9%), particularly with the etiological subtype of structural vasculopathy (4/4 = 100%, PVs in ENG, KRIT1, PKD1, RNF213); followed by ischemic small vessel disease (SVD, 15/48 = 31.3%; PVs in NOTCH3, HTRA1, HBB). In contrast, large artery atherosclerosis (LAA, 4/44 = 9.1%) and cardioembolism (0/11 = 0%) had the lowest HR. NOTCH3 was the most common causative gene (16/161 = 9.9%), presenting with multiple subtypes of SVD (n = 13), ICH (n = 2), or LAA (n = 1). Importantly, we disclosed two previously unreported PVs, KRIT1 p.E379* in a familial cerebral cavernous malformation, and F2 p.F382L in a familial cerebral venous sinus thrombosis. The contribution of monogenic etiologies was particularly high in familial ICH and SVD subtypes in our Taiwanese cohort. Utilizing subtype-guided hotspot screening and/or subsequent WES, we unraveled monogenic causes in 20.5% familial stroke probands, including 1.2% novel PVs. Genetic diagnosis may enable early diagnosis, management and lifestyle modification. Among 161 familial stroke probands, 33 (20.5%) had been identified pathogenic or likely pathogenic monogenic variants related to stroke. The positive hit rate among all subtypes was high in intracerebral hemorrhage (ICH) and ischemic small vessel disease (SVD). Notably, two previously unreported variants, KRIT1 p.E379* in a familial cerebral cavernous malformation and F2 p.F382L in familial cerebral venous sinus thrombosis, were disclosed. CVT cerebral venous thrombosis; HTN Hypertensive subtype; LAA large artery atherosclerosis; SV structural vasculopathy; U Undetermined.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Shao-Lun Hsu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Jui-Yao Tsai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Hui-Chi Huang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Chun-Jen Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Yi Tung
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yo-Tsen Liu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - I-Hui Lee
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
9
|
Li Y, Liu J, Hu C, Luo C, Zhou J, Li B, Liao X, Liu S, Yuan D, Jiang W, Li Y, Yan J. Association of rare RNF213 variants and intracranial aneurysm risk in a Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1336. [PMID: 36660619 PMCID: PMC9843384 DOI: 10.21037/atm-22-5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022]
Abstract
Background Genetic factors play important roles in the development of intracranial aneurysm (IA). Rare RNF213 variants have been identified as being susceptible to Moyamoya disease (MMD), non-MMD intracranial artery stenosis/occlusion disease, and other vascular disorders. This study aimed to investigate the association between rare RNF213 variants and the risk of IA in a Chinese population. Methods We recruited 174 patients with IA for RNF213 target exome sequencing. Information on the control subjects was obtained from the 1,000 Genome Project and GeneSky in-house database. After prioritizing rare RNF213 variants, the filtered variants were confirmed by Sanger sequencing. Gene-based association analyses were performed to identify the association between variants and the disease using burden and variance component methods; that is, the weighted-sum statistic (WSS) and the sequence kernel association test (SKAT), respectively. The Student's t-test, Chi-squared test, and Fisher's exact test were used to compare the clinical characteristics between carriers and non-carriers of the RNF213 variants. Results After filtering, there were 14 RNF213 variants in 18 patients with IA, which were significantly associated with the disease after the gene-based association tests [minor allele frequency (MAF) <0.01, WSS P value 5.08×10-9; SKAT P value 2.96×10-6; SKAT-O P value 3.56×10-8]. Significant difference was not obtained between the carriers and non-carriers of the RNF213 variants in terms of the clinical characteristics. Conclusions Rare RNF213 variants were associated with sporadic IA in a Chinese population. Our findings suggest that these rare RNF213 variants might have potentially important roles in IA. However, more comprehensive studies need to be conducted to confirm this association and causality.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Junyu Liu
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan;,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People’s Hospital, Changsha, China
| | - Chun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jilin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China;,Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China;,The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Songlin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China;,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
10
|
Portilla-Fernandez E, Klarin D, Hwang SJ, Biggs ML, Bis JC, Weiss S, Rospleszcz S, Natarajan P, Hoffmann U, Rogers IS, Truong QA, Völker U, Dörr M, Bülow R, Criqui MH, Allison M, Ganesh SK, Yao J, Waldenberger M, Bamberg F, Rice KM, Essers J, Kapteijn DMC, van der Laan SW, de Knegt RJ, Ghanbari M, Felix JF, Ikram MA, Kavousi M, Uitterlinden AG, Roks AJM, Danser AHJ, Tsao PS, Damrauer SM, Guo X, Rotter JI, Psaty BM, Kathiresan S, Völzke H, Peters A, Johnson C, Strauch K, Meitinger T, O’Donnell CJ, Dehghan A. Genetic and clinical determinants of abdominal aortic diameter: genome-wide association studies, exome array data and Mendelian randomization study. Hum Mol Genet 2022; 31:3566-3579. [PMID: 35234888 PMCID: PMC9558840 DOI: 10.1093/hmg/ddac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, P-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10-4). In exome-array single-variant analysis (P-value threshold = 9 × 10-7), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10-5). In the gene-based analysis (P-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (P-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, P-value = 0.02), triglycerides (beta = -0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases.
Collapse
Affiliation(s)
- Eliana Portilla-Fernandez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, NHLBI/NIH, Bethesda MD, USA
- National Heart Lung and Blood Institute's Intramural Research Program's Framingham Heart Study, Framingham, MA, USA
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ian S Rogers
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Quynh A Truong
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Michael H Criqui
- Department of Family Medicine, University of California, San Diego, CA, USA
| | - Matthew Allison
- Department of Family Medicine, University of California, San Diego, CA, USA
| | - Santhi K Ganesh
- Department of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniek M C Kapteijn
- Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sander W van der Laan
- Laboratory of Clinical Chemistry & Hematology, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rob J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janine F Felix
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Philip S Tsao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Craig Johnson
- Collaborative Health Studies Coordinating Center, Department of Biostatistics in the School of Public Health, University of Washington, Seattle, WA, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Human Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, München, Germany
| | - Christopher J O’Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | |
Collapse
|
11
|
Genome-wide linkage analysis combined with genome sequencing in large families with intracranial aneurysms. Eur J Hum Genet 2022; 30:833-840. [PMID: 35228681 PMCID: PMC9259640 DOI: 10.1038/s41431-022-01059-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rupture of an intracranial aneurysm (IA) leads to aneurysmal subarachnoid haemorrhage (ASAH), a severe type of stroke. Some rare variants that cause IA in families have been identified, but still, the majority of genetic causes, as well as the biological mechanisms of IA development and rupture, remain unknown. We aimed to identify rare, damaging variants for IA in three large Dutch families with multiple affected members with IA (N = 9, 11, and 6). By combining linkage analysis and genome sequencing (GS), we identified six rare and damaging variants for which all cases within one of the families were heterozygous. These variants were p.Tyr87Cys in SYCP1, p.Phe1077Leu in FMNL2, p.Thr754Lys in TBC1D2, p.Arg321His in ZNF782, p.Arg979Trp in CCDC180, and p.Val125Met in NCBP1. None of the variants showed association with IA status in a large cohort of 937 patients from the general IA patient population and 1046 controls. Gene expression in IA and cerebral artery tissue further prioritized FMNL2 and TBC1D2 as potential important players in IA pathophysiology. Further studies are needed to characterize the functional consequences of the identified variants and their role in the biological mechanisms of IA.
Collapse
|
12
|
Aitkulova A, Mukhtarova K, Zholdybayeva E, Medetov Y, Dzhamantayeva B, Kassymbek K, Utupov T, Akhmetollayev I, Akshulakov S, Kulmambetova G, Ramankulov Y. Activated leukocyte cell adhesion molecule/cluster of differentiation 166 rs10933819 (G>A) variant is associated with familial intracranial aneurysms. Biomed Rep 2022; 17:65. [PMID: 35815187 PMCID: PMC9260160 DOI: 10.3892/br.2022.1548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022] Open
Abstract
Rupture of intracranial aneurysms (IAs) is the most common cause of subarachnoid hemorrhage (SAH). Currently, there is sufficient evidence to indicate that inflammatory responses contribute to aneurysm rupture. Moreover, the familial occurrence of SAH suggests that genetic factors may be involved in disease susceptibility. In the present study, a clinically proven case of IA in a patient who is a heterozygous mutation carrier of the activated leukocyte cell adhesion molecule (ALCAM)/cluster of differentiation 166 (CD166) gene, is reported. Genomic DNA was extracted from two siblings diagnosed with SAH and other available family members. A variant prioritization strategy that focused on functional prediction, frequency, predicted pathogenicity, and segregation within the family was employed. Sanger sequencing was also performed on the unaffected relatives to assess the segregation of variants within the phenotype. The verified mutations were sequenced in 145 ethnicity-matched healthy individuals. Based on whole exome sequencing data obtained from three individuals, two of whom were diagnosed with IAs, the single-nucleotide variant rs10933819 was prioritized in the family. Only one variant, rs10933819 (G>A), in ALCAM co-segregated with the phenotype, and this mutation was absent in ethnicity-matched healthy individuals. Collectively, ALCAM c1382 G>A p.Gly229Val was identified, for the first time, as a pathogenic mutation in this IA pedigree.
Collapse
Affiliation(s)
- Akbota Aitkulova
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Kymbat Mukhtarova
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Elena Zholdybayeva
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Yerkin Medetov
- National Center of Neurosurgery, Nazarbayev University, Nur Sultan 010000, Republic of Kazakhstan
| | - Botagoz Dzhamantayeva
- National Center of Neurosurgery, Nazarbayev University, Nur Sultan 010000, Republic of Kazakhstan
| | - Kuat Kassymbek
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Talgat Utupov
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Ilyas Akhmetollayev
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Serik Akshulakov
- National Center of Neurosurgery, Nazarbayev University, Nur Sultan 010000, Republic of Kazakhstan
| | | | - Yerlan Ramankulov
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| |
Collapse
|
13
|
Sun R, Zhou Y, Cui Q. Comparative analysis of aneurysm subtypes associated genes based on protein-protein interaction network. BMC Bioinformatics 2021; 22:587. [PMID: 34895131 PMCID: PMC8665538 DOI: 10.1186/s12859-021-04513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
The arterial aneurysm refers to localized dilation of blood vessel wall and is common in general population. The majority of aneurysm cases remains asymptomatic until a sudden rupture which is usually fatal and of extremely high mortality (~ 50-60%). Therefore, early diagnosis, prevention and management of aneurysm are in urgent need. Unfortunately, current understanding of disease driver genes of various aneurysm subtypes is still limited, and without appropriate biomarkers and drug targets no specialized drug has been developed for aneurysm treatment. In this research, aneurysm subtypes were analyzed based on protein-protein interaction network to better understand aneurysm pathogenesis. By measuring network-based proximity of aneurysm subtypes, we identified a relevant closest relationship between aortic aneurysm and aortic dissection. An improved random walk method was performed to prioritize candidate driver genes of each aneurysm subtype. Thereafter, transcriptomes of 6 human aneurysm subtypes were collected and differential expression genes were identified to further filter potential driver genes. Functional enrichment of above driver genes indicated a general role of ubiquitination and programmed cell death in aneurysm pathogenesis. Especially, we further observed participation of BCL-2-mediated apoptosis pathway and caspase-1 related pyroptosis in the development of cerebral aneurysm and aneurysmal subarachnoid hemorrhage in corresponding transcriptomes.
Collapse
Affiliation(s)
- Ruya Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China.
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center Beijing, Beijing, China.
| |
Collapse
|
14
|
Song Y, Lee JK, Lee JO, Kwon B, Seo EJ, Suh DC. Whole Exome Sequencing in Patients with Phenotypically Associated Familial Intracranial Aneurysm. Korean J Radiol 2021; 23:101-111. [PMID: 34668355 PMCID: PMC8743149 DOI: 10.3348/kjr.2021.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Familial intracranial aneurysms (FIAs) are found in approximately 6%–20% of patients with intracranial aneurysms (IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA. Materials and Methods Among the 26 families in our institutional database with two or more IA-affected first-degree relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families) for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization, were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect relatively large chromosomal abnormalities. Results Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families. Conclusion Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely responsible for the subsets of FIAs in a cohort of Korean families.
Collapse
Affiliation(s)
- Yunsun Song
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Keuk Lee
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ok Lee
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boseong Kwon
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Dae Chul Suh
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Abstract
Rupture of an intracranial aneurysm leads to aneurysmal subarachnoid hemorrhage, a severe type of stroke which is, in part, driven by genetic variation. In the past 10 years, genetic studies of IA have boosted the number of known genetic risk factors and improved our understanding of the disease. In this review, we provide an overview of the current status of the field and highlight the latest findings of family based, sequencing, and genome-wide association studies. We further describe opportunities of genetic analyses for understanding, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Mark K Bakker
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| | - Ynte M Ruigrok
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| |
Collapse
|