1
|
Mirmosayyeb O, Yazdan Panah M, Mokary Y, Mohammadi M, Moases Ghaffary E, Shaygannejad V, Weinstock-Guttman B, Zivadinov R, Jakimovski D. Neuroimaging markers and disability scales in multiple sclerosis: A systematic review and meta-analysis. PLoS One 2024; 19:e0312421. [PMID: 39637162 PMCID: PMC11620670 DOI: 10.1371/journal.pone.0312421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/06/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system disorder marked by progressive neurological impairments. Magnetic resonance imaging (MRI) parameters are key paraclinical measures that play a crucial role in the diagnosis, prognosis, and monitoring of MS-related disability. This study aims to analyze and summarize the existing literature on the correlation between MRI parameters and disability in people with MS (pwMS). METHODS The PubMed/MEDLINE, Embase, Scopus, and Web of Science databases were searched from inception to July 19, 2024, and a meta-analysis was carried out using R software version 4.4.0 and the random effects model used to determine the pooled correlation coefficient, with its 95% confidence interval (CI), between MRI measurements and disability scales. RESULTS Among 5741 studies, 383 studies with 39707 pwMS were included. The meta-analysis demonstrated that Expanded Disability Status Scale (EDSS) had significant correlations with cervical cord volume (r = -0.51, 95% CI: -0.62 to -0.38, I2 = 0%, p-heterogeneity = 0.86, p-value<0.01), cortical lesion volume (r = 0.45, 95% CI: 0.36 to 0.53, I2 = 68%, p-heterogeneity<0.01, p-value<0.01), brain volume (r = -0.40, 95% CI: -0.47 to -0.33, I2 = 41%, p-heterogeneity = 0.05, p-value<0.05), and grey matter volume (GMV) (r = -0.36, 95% CI: -0.49 to -0.21, I2 = 0%, p-heterogeneity = 0.53, p-value<0.01), respectively. CONCLUSION This study offers evidence suggesting that cortical lesion volume, brain volume, GMV, and MRI measurements of the spinal cord may constitute reliable indicators for assessing disability in pwMS.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Mohammad Yazdan Panah
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousef Mokary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mohammadi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Pharmacy School, University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| |
Collapse
|
2
|
Molenaar PCG, Noteboom S, van Nederpelt DR, Krijnen EA, Jelgerhuis JR, Lam KH, Druijff-van de Woestijne GB, Meijer KA, van Oirschot P, de Jong BA, Brouwer I, Jasperse B, de Groot V, Uitdehaag BMJ, Schoonheim MM, Strijbis EMM, Killestein J. Digital outcome measures are associated with brain atrophy in patients with multiple sclerosis. J Neurol 2024; 271:5958-5968. [PMID: 39008036 PMCID: PMC11377687 DOI: 10.1007/s00415-024-12516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Digital monitoring of people with multiple sclerosis (PwMS) using smartphone-based monitoring tools is a promising method to assess disease activity and progression. OBJECTIVE To study cross-sectional and longitudinal associations between active and passive digital monitoring parameters and MRI volume measures in PwMS. METHODS In this prospective study, 92 PwMS were included. Clinical tests [Expanded Disability Status Scale (EDSS), Timed 25 Foot Walk test (T25FW), 9-Hole Peg Test (NHPT), and Symbol Digit Modalities Test (SDMT)] and structural MRI scans were performed at baseline (M0) and 12-month follow-up (M12). Active monitoring included the smartphone-based Symbol Digit Modalities Test (sSDMT) and 2 Minute Walk Test (s2MWT), while passive monitoring was based on smartphone keystroke dynamics (KD). Linear regression analyses were used to determine cross-sectional and longitudinal relations between digital and clinical outcomes and brain volumes, with age, disease duration and sex as covariates. RESULTS In PwMS, both sSDMT and SDMT were associated with thalamic volumes and lesion volumes. KD were related to brain, ventricular, thalamic and lesion volumes. No relations were found between s2MWT and MRI volumes. NHPT scores were associated with lesion volumes only, while EDSS and T25FW were not related to MRI. No longitudinal associations were found for any of the outcome measures between M0 and M12. CONCLUSION Our results show clear cross-sectional correlations between digital biomarkers and brain volumes in PwMS, which were not all present for conventional clinical outcomes, supporting the potential added value of digital monitoring tools.
Collapse
Affiliation(s)
- Pam C G Molenaar
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc Polikliniek Neurologie, Attn. MS Center Amsterdam, P. O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Samantha Noteboom
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - David R van Nederpelt
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Eva A Krijnen
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Julia R Jelgerhuis
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Ka-Hoo Lam
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc Polikliniek Neurologie, Attn. MS Center Amsterdam, P. O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | | | | | | | - Brigit A de Jong
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc Polikliniek Neurologie, Attn. MS Center Amsterdam, P. O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Iman Brouwer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bas Jasperse
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Vincent de Groot
- MS Center Amsterdam, Rehabilitation Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bernard M J Uitdehaag
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc Polikliniek Neurologie, Attn. MS Center Amsterdam, P. O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc Polikliniek Neurologie, Attn. MS Center Amsterdam, P. O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc Polikliniek Neurologie, Attn. MS Center Amsterdam, P. O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Abraham R, Waldman-Levi A, Barrera MA, Bogaardt H, Golan D, Bergmann C, Sullivan C, Wilken J, Zarif M, Bumstead B, Buhse M, Covey TJ, Doniger GM, Penner IK, Hancock LM, Morrow SA, Giroux E, Gudesblatt M. Exploring the relationship between manual dexterity and cognition in people with multiple sclerosis: 9-hole peg and multiple cognitive functions. Mult Scler Relat Disord 2024; 88:105696. [PMID: 38850796 DOI: 10.1016/j.msard.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
AIM AND RATIONALE Problems with manual dexterity and cognition impact the everyday performance of people with multiple sclerosis (PwMS). Accumulated findings point to the relationship between deficits in manual dexterity and auditory domains of cognition with a lack of evidence on visuospatial and verbal aspects of cognitive functioning. Therefore, this study explores the relationship between manual dexterity and cognition in a cohort of PwMS. METHOD This cross-sectional study collected data from 63 PwMS aged 22 to 55 through a convenient sampling method. Participants were diagnosed with relapsing-remitting multiple sclerosis (RRMS). Cognition was measured using a multi-domain computerized cognitive testing, NeuroTrax, and manual dexterity was measured using a 9-hole peg assessment. Spearman correlation was used to identify the correlation among cognition subtests as well as with manual dexterity. Linear regression analysis was also conducted to identify whether manual dexterity predicts cognitive functioning. RESULTS A significant negative correlation was found between 9-hole peg scores and global cognitive scores (GCS), r = -0.34, p = 006. The manual dexterity scores were also shown to predict GCS, R2= 0.165, p = 0.001. CONCLUSION Manual dexterity was found to not only predict cognitive dysfunction but was also associated with multiple cognitive domains. Understanding the relationship between manual dexterity and cognition and the inferred progression of deficits can assist clinicians to provide interventions at earlier stages of disease progression to potentially increase daily functioning and quality of life (QoL).
Collapse
Affiliation(s)
- Rinu Abraham
- Katz School of Science & Health, Yeshiva University, 1165 Morris Park Avenue, Bronx, New York, NY, USA.
| | - Amiya Waldman-Levi
- Katz School of Science & Health, Yeshiva University, 1165 Morris Park Avenue, Bronx, New York, NY, USA
| | - Marissa A Barrera
- Katz School of Science & Health, Yeshiva University, 1165 Morris Park Avenue, Bronx, New York, NY, USA
| | - Hans Bogaardt
- School of Allied Health Science and Practice, University of Adelaide, Adelaide, Australia
| | - Daniel Golan
- Multiple Sclerosis and Neuroimmunology Center, Clalit Health Services, Nazareth, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Cynthia Sullivan
- Multiple Sclerosis and Neuroimmunology Center, Clalit Health Services, Nazareth, Israel; Washington Neuropsychology Research Group, Fairfax, Virginia, USA
| | - Jeffrey Wilken
- Washington Neuropsychology Research Group, Fairfax, Virginia, USA
| | - Myassar Zarif
- NYU Langone South Shore Neurologic Associates, Islip, NY, USA
| | | | - MariJean Buhse
- NYU Langone South Shore Neurologic Associates, Islip, NY, USA; Department of Nursing, State University of Stony Brook, Stony Brook, New York, USA
| | - Thomas J Covey
- Division of Cognitive and Behavioral Neurosciences, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Glen M Doniger
- Department of Clinical Research, NeuroTrax Corporation, Modiin, Israel
| | - Iris-Katharina Penner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Laura M Hancock
- Neurological Institute, Section of Neuropsychology, Cleveland Clinic, Cleveland, OH USA
| | - Sarah A Morrow
- London Health Sciences Centre, University of Western Ontario, Canada
| | - Erin Giroux
- Alberta Health Services, Edmonton, Alberta, Canada
| | - Mark Gudesblatt
- NYU Langone South Shore Neurologic Associates, Islip, NY, USA
| |
Collapse
|
4
|
Solaro C, Di Giovanni R, Grange E, Brichetto G, Mueller M, Tacchino A, Bertoni R, Patti F, Pappalardo A, Prosperini L, Rosato R, Cattaneo D, Marengo D. Influence of cognition on the correlation between objective and subjective upper limb measures in people with multiple sclerosis. Neurol Sci 2024; 45:2783-2789. [PMID: 38175316 DOI: 10.1007/s10072-023-07286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND A comprehensive assessment of upper limb (UL) function is mandatory in people with multiple sclerosis (PwMS), and the use of multiple objective and subjective measures is advisable. Findings on the role of cognitive impairment on the assessment of UL function are scant and inconclusive. The present study investigated the influence of cognitive function on the distribution of objective and subjective UL measures and on their association. METHODS In the cross-sectional study, subjects with a diagnosis of MS, age ≥ 18 years, right-hand dominance, no presence of orthopedic UL impairment, or other neurological diseases were recruited. The assessment protocol included the Nine-Hole Peg Test (9-HPT), Box and Block Test (BBT), and hand grip strength (HGS), a validated PROM (MAM-36), and the Symbol Digit Modalities Test (SDMT). RESULTS Two hundred forty-six PwMS were recruited (158 females, mean age = 51.65 ± 13.45 years; mean EDSS = 5.10 ± 1.88) Subject with mild-to-moderate cognitive impairment (SDMT ≤ - 2 SD of normative values) scored lower on the 9-HPT and higher on the BBT and MAM-36 when compared with subject with no cognitive impairment. Cognitive impairment showed a small but significant effect on the association between 9-HPT scores and the MAM-36. DISCUSSION Findings suggest that cognitive impairment is associated with subjects' performance on 9-HPT, BBT, and MAM-36 (but not HGS), resulting in scores indicating a poorer UL function. Interestingly, cognitive impairment slightly affected the congruence between subjective and objective UL measures, although only minor differences in the correlation pattern across groups reporting different cognitive performances emerged.
Collapse
Affiliation(s)
- Claudio Solaro
- CRRF "Mons. Luigi Novarese", Moncrivello, VC, Italy
- Neurology Unit, Galliera Hospital, Genoa, Italy
| | | | - Erica Grange
- CRRF "Mons. Luigi Novarese", Moncrivello, VC, Italy
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Margit Mueller
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Andrea Tacchino
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy
| | - Rita Bertoni
- IRCSS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Francesco Patti
- MS Center Institute of Neurological Sciences, University of Catania, Catania, Italy
| | - Angelo Pappalardo
- MS Center Institute of Neurological Sciences, University of Catania, Catania, Italy
| | - Luca Prosperini
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Rosalba Rosato
- Department of Psychology, University of Turin, Turin, Italy
| | - Davide Cattaneo
- IRCSS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Davide Marengo
- Department of Psychology, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Cacciaguerra L, Curatoli C, Vizzino C, Valsasina P, Filippi M, Rocca MA. Functional correlates of cognitive abilities vary with age in pediatric multiple sclerosis. Mult Scler Relat Disord 2024; 82:105404. [PMID: 38159365 DOI: 10.1016/j.msard.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Pediatric multiple sclerosis (PedMS) can hamper brain maturation. Aim of this study was to assess the neuropsychological profile of PedMS patients and their resting-state functional connectivity (RS FC). METHODS We assessed intelligence quotient (IQ), executive speed, and language in 76 PedMS patients. On a 3.0T scanner RS FC of brain networks was estimated with a seed-based analysis (subset of 58 right-handed PedMS patients and 22 matched healthy controls). Comparisons were run between controls and PedMS (whole cohort and by age). RESULTS Ninety-five% of patients had normal IQ. The highest rate of failure was observed in executive speed. PedMS showed reduced RS FC in all networks than controls, especially in the basal ganglia. In younger patients (<16-year-old, n = 32) reduced RS FC in the basal ganglia, language, and sensorimotor networks associated with poorer cognitive performance (p < 0.05; r range: 0.39; 0.56). Older patients (≥16-year-old, n = 26) showed increased RS FC in the basal ganglia, default-mode, sensorimotor, executive, and language networks, associated with poorer performance in executive speed and language abilities (p < 0.05; r range: -0.40; -0.59). In both groups, lower RS FC of the caudate nucleus associated with poorer executive speed. CONCLUSIONS The effect of PedMS on RS FC is clinically relevant and differs according to patients' age.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Curatoli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Vizzino
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Sandroff BM, Rafizadeh CM, Motl RW. Neuroimaging Technology in Exercise Neurorehabilitation Research in Persons with MS: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094530. [PMID: 37177732 PMCID: PMC10181711 DOI: 10.3390/s23094530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
There is increasing interest in the application of neuroimaging technology in exercise neurorehabilitation research among persons with multiple sclerosis (MS). The inclusion and focus on neuroimaging outcomes in MS exercise training research is critical for establishing a biological basis for improvements in functioning and elevating exercise within the neurologist's clinical armamentarium alongside disease modifying therapies as an approach for treating the disease and its consequences. Indeed, the inclusion of selective neuroimaging approaches and sensor-based technology among physical activity, mobility, and balance outcomes in such MS research might further allow for detecting specific links between the brain and real-world behavior. This paper provided a scoping review on the application of neuroimaging in exercise training research among persons with MS based on searches conducted in PubMed, Web of Science, and Scopus. We identified 60 studies on neuroimaging-technology-based (primarily MRI, which involved a variety of sequences and approaches) correlates of functions, based on multiple sensor-based measures, which are typically targets for exercise training trials in MS. We further identified 12 randomized controlled trials of exercise training effects on neuroimaging outcomes in MS. Overall, there was a large degree of heterogeneity whereby we could not identify definitive conclusions regarding a consistent neuroimaging biomarker of MS-related dysfunction or singular sensor-based measure, or consistent neural adaptation for exercise training in MS. Nevertheless, the present review provides a first step for better linking correlational and randomized controlled trial research for the development of high-quality exercise training studies on the brain in persons with MS, and this is timely given the substantial interest in exercise as a potential disease-modifying and/or neuroplasticity-inducing behavior in this population.
Collapse
Affiliation(s)
- Brian M Sandroff
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Caroline M Rafizadeh
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Ganzetti M, Graves JS, Holm SP, Dondelinger F, Midaglia L, Gaetano L, Craveiro L, Lipsmeier F, Bernasconi C, Montalban X, Hauser SL, Lindemann M. Neural correlates of digital measures shown by structural MRI: a post-hoc analysis of a smartphone-based remote assessment feasibility study in multiple sclerosis. J Neurol 2023; 270:1624-1636. [PMID: 36469103 PMCID: PMC9970954 DOI: 10.1007/s00415-022-11494-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND A study was undertaken to evaluate remote monitoring via smartphone sensor-based tests in people with multiple sclerosis (PwMS). This analysis aimed to explore regional neural correlates of digital measures derived from these tests. METHODS In a 24-week, non-randomized, interventional, feasibility study (NCT02952911), sensor-based tests on the Floodlight Proof-of-Concept app were used to assess cognition (smartphone-based electronic Symbol Digit Modalities Test), upper extremity function (Draw a Shape Test, Pinching Test), and gait and balance (Static Balance Test, Two-Minute Walk Test, U-Turn Test). In this post-hoc analysis, digital measures and standard clinical measures (e.g., Nine-Hole Peg Test [9HPT]) were correlated against regional structural magnetic resonance imaging outcomes. Seventy-six PwMS aged 18-55 years with an Expanded Disability Status Scale score of 0.0-5.5 were enrolled from two different sites (USA and Spain). Sixty-two PwMS were included in this analysis. RESULTS Worse performance on digital and clinical measures was associated with smaller regional brain volumes and larger ventricular volumes. Whereas digital and clinical measures had many neural correlates in common (e.g., putamen, globus pallidus, caudate nucleus, lateral occipital cortex), some were observed only for digital measures. For example, Draw a Shape Test and Pinching Test measures, but not 9HPT score, correlated with volume of the hippocampus (r = 0.37 [drawing accuracy over time on the Draw a Shape Test]/ - 0.45 [touching asynchrony on the Pinching Test]), thalamus (r = 0.38/ - 0.41), and pons (r = 0.35/ - 0.35). CONCLUSIONS Multiple neural correlates were identified for the digital measures in a cohort of people with early MS. Digital measures showed associations with brain regions that clinical measures were unable to demonstrate, thus providing potential novel information on functional ability compared with standard clinical assessments.
Collapse
Affiliation(s)
- Marco Ganzetti
- grid.417570.00000 0004 0374 1269F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jennifer S. Graves
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, San Diego, CA USA
| | - Sven P. Holm
- grid.417570.00000 0004 0374 1269F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Frank Dondelinger
- grid.417570.00000 0004 0374 1269F. Hoffmann-La Roche Ltd, Basel, Switzerland ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Luciana Midaglia
- grid.411083.f0000 0001 0675 8654Department of Neurology-Neuroimmunology, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Laura Gaetano
- grid.417570.00000 0004 0374 1269F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Licinio Craveiro
- grid.417570.00000 0004 0374 1269F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Corrado Bernasconi
- grid.417570.00000 0004 0374 1269F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Xavier Montalban
- grid.411083.f0000 0001 0675 8654Department of Neurology-Neuroimmunology, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Stephen L. Hauser
- grid.266102.10000 0001 2297 6811Department of Neurology, University of California San Francisco, San Francisco, CA USA
| | - Michael Lindemann
- grid.417570.00000 0004 0374 1269F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
8
|
Cacciaguerra L, Mistri D, Valsasina P, Martinelli V, Filippi M, Rocca MA. Time-varying connectivity of the precuneus and its association with cognition and depressive symptoms in neuromyelitis optica: A pilot MRI study. Mult Scler 2022; 28:2057-2069. [PMID: 35796514 PMCID: PMC9574904 DOI: 10.1177/13524585221107125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: The precuneus is involved in cognition and depression; static functional
connectivity (SFC) abnormalities of this region have been observed in
neuromyelitis optica spectrum disorders (NMOSD). Time-varying functional
connectivity (TVC) underpins dynamic variations of brain connectivity. Objective: The aim of this study was to explore precuneus SFC and TVC in NMOSD patients
and their associations with neuropsychological features. Methods: This retrospective study includes 27 NMOSD patients and 30 matched healthy
controls undergoing resting state functional magnetic resonance imaging
(MRI) and a neuropsychological evaluation of cognitive performance and
depressive symptoms. A sliding-window correlation analysis using bilateral
precuneus as seed region assessed TVC, which was quantified by the standard
deviation of connectivity across windows. Mean connectivity indicated
SFC. Results: Compared to controls, patients had reduced SFC between precuneus, temporal
lobe, putamen and cerebellum, and reduced TVC between precuneus and
prefronto-parietal-temporo-occipital cortices and caudate. Patients also had
increased intra-precuneal TVC and increased TVC between the precuneus and
the temporal cortex. More severe depressive symptoms correlated with
increased TVC between the precuneus and the temporal lobe; worse cognitive
performance mainly correlated with higher TVC between the precuneus and the
parietal lobe. Conclusion: TVC rather than SFC of the precuneus correlates with NMOSD neuropsychological
features; different TVC abnormalities underlie depressive symptoms and
cognitive impairment.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| | - Damiano Mistri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|