1
|
McDonnell J, Wilson K, Stevens AR, Davies DJ, Belli A, O'Halloran PJ. The diagnostic and prognostic utility of oxidative stress circulatory biomarkers in traumatic brain injury patients: a systematic review. Brain Inj 2025; 39:26-34. [PMID: 39262087 DOI: 10.1080/02699052.2024.2396017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE The objective of this review is to qualitatively appraise the available literature to evaluate the efficacy of circulatory systemic oxidative stress markers (OSMx) in determining the diagnosis and outcome of TBI. METHODS A systematic review was conducted of PubMed/Medline, Embase and Google Scholar databases per the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) for studies which employed serum or plasma OSMx analysis for diagnostic or prognostic purposes in patients with TBI. RESULTS Eight studies were included. There were 654 patients across the eight studies, of which 518 (79.2%) patients had sustained a TBI. The heterogeneity between studies in terms of OSMxs analyzed ultimately made collective analysis inappropriate. Nevertheless, several studies highlighted the potential role of circulatory OSMx levels in determining the diagnosis (presence and severity) and prognosis (functional outcome and mortality) of TBI. CONCLUSION The care for patients with TBI remains a complex clinical challenge with a high morbidity and mortality profile. Evidenced by this review, circulatory OSMxs appear to have the potential to supplement current diagnostic measures, in addition to identifying new treatment strategies and monitoring recovery. Despite early promise, the evidence for such markers remains in its infancy and robust prospective studies are needed.
Collapse
Affiliation(s)
- Jake McDonnell
- Trinity Centre of Biomedical Engineering, Trinity College, Dublin, Ireland
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Kielan Wilson
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Andrew R Stevens
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstructive and Microbiology Research Center, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David J Davies
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstructive and Microbiology Research Center, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Antonio Belli
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstructive and Microbiology Research Center, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Philip J O'Halloran
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
2
|
Nasir F, Yadav P, Sivanandam TM. NaHS alters synaptic plasticity proteins and enhances dendritic arborization to improve cognitive and motor deficits after traumatic brain injury in mice. Br J Pharmacol 2024. [PMID: 39562524 DOI: 10.1111/bph.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a complex medical condition affecting people globally. Hydrogen sulfide (H2S) is a recently discovered gaseous mediator and is dysregulated in the brain after TBI. Sodium hydrogen sulfide (NaHS), a known donor of H2S, is beneficial in various biological processes involving aging and diseases, including injury. It is neuroprotective against oxidative stress, neuroinflammation, and other secondary injury processes. However, the NaHS-H2S system has not been investigated as a regulator of injury-mediated synaptic plasticity proteins and the underlying mechanisms after TBI. EXPERIMENTAL APPROACH We developed a model of TBI in Swiss albino mice to study the effects of exogenous H2S, administered as NaHS. We assessed cognitive function (Barnes maze and novel object recognition) and motor function (rotarod). Brain tissue was analysed with ELISA, qRT-PCR, immunoblotting, Golgi-cox staining, and immunofluorescence. KEY RESULTS NaHS administration restored the injury-caused decline in H2S levels. Injury-mediated oxidative stress parameters were improved following NaHS. It down-regulated TBI biomarkers, ameliorated the synaptic marker proteins, and improved cognitive and motor deficits. These changes were accompanied by enhanced dendritic arborization and spine number. Restoration of N-methyl D-aspartate receptor subunits and diminished glutamate and calcium levels, along with marked changes in microtubule-associated protein 2 A and calcium/calmodulin-dependent protein kinase II, formed the basis of the underlying mechanism(s). CONCLUSION AND IMPLICATIONS Our findings suggest that NaHS could have therapeutic activity against TBI, as it ameliorated cognitive and motor deficits caused by changes in synaptic plasticity proteins and dendritic arborisation, in our model.
Collapse
Affiliation(s)
- Farheen Nasir
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Rynkiewicz-Szczepanska E, Kosciuczuk U, Maciejczyk M. Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure-A Systematic Review. Diagnostics (Basel) 2024; 14:2561. [PMID: 39594227 PMCID: PMC11593164 DOI: 10.3390/diagnostics14222561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: The available literature indicates that oxidant-antioxidant imbalance plays a significant role in the pathophysiology of traumatic brain injury and the subsequent secondary organ dysfunctions. However, there is a lack of studies summarizing the knowledge in this area, and no clear guidelines exist regarding the use of biomarkers of oxidative stress as diagnostics tools. Methods: The present work aims to provide a systematic review of the literature on the use of total antioxidant capacity (TAC) assays in predicting the outcomes of traumatic brain injury (TBI). A literature search was conducted up to 1 September 2024, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, using the PubMed and Scopus databases. Based on the inclusion criteria, 24 studies were used for the final review. Results: Promising data indicate that TAC assays are useful in predicting 30-day mortality and neurological outcomes. Moreover, they correlate with radiological findings on CT scans in brain injury and the clinical classifications of injuries, as well as the parameters of organ failure. Conclusions: Total antioxidant capacity assays can be used to assess the extent of brain damage and prognosticate general vital functions. Future experiments should include long-term randomized clinical trials on larger populations of TBI patients.
Collapse
Affiliation(s)
- Ewa Rynkiewicz-Szczepanska
- Department of Anaesthesiology and Intensive Therapy, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Urszula Kosciuczuk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| |
Collapse
|
4
|
Mîrza CM, Mîrza TV, Odagiu ACM, Uifălean A, But AE, Pârvu AE, Bulboacă AE. Phytochemical Analysis and Antioxidant Effects of Prunella vulgaris in Experimental Acute Inflammation. Int J Mol Sci 2024; 25:4843. [PMID: 38732062 PMCID: PMC11084636 DOI: 10.3390/ijms25094843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Prunella vulgaris (PV) is one of the most commonly used nutraceuticals as it has been proven to have anti-inflammatory and antioxidant properties. The aim of this study was to evaluate the phytochemical composition of PV and its in vivo antioxidant properties. A phytochemical analysis measuring the total phenolic content (TPC), the identification of phenolic compounds by HPLC-DAD-ESI, and the evaluation of the in vitro antioxidant activity by the DPPH assay of the extract were performed. The antioxidant effects on inflammation induced by turpentine oil were experimentally tested in rats. Seven groups with six animals each were used: a control group, the experimental inflammation treatment group, the experimental inflammation and diclofenac sodium (DS) treatment group, and four groups with their inflammation treated using different dilutions of the extract. Serum redox balance was assessed based on total oxidative status (TOS), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), total thiols, and an oxidative stress index (OSI) contents. The TPC was 0.28 mg gallic acid equivalents (GAE)/mL extract, while specific representatives were represented by caffeic acid, p-coumaric acid, dihydroxybenzoic acid, gentisic acid, protocatechuic acid, rosmarinic acid, vanillic acid, apigenin-glucuronide, hesperidin, kaempferol-glucuronide. The highest amount (370.45 μg/mL) was reported for hesperidin, which is a phenolic compound belonging to the flavanone subclass. The antioxidant activity of the extracts, determined using the DPPH assay, was 27.52 mmol Trolox/mL extract. The PV treatment reduced the oxidative stress by lowering the TOS, OSI, NO, and MDA and by increasing the TAC and thiols. In acute inflammation, treatment with the PV extract reduced oxidative stress, with lower concentrations being more efficient and having a better effect than DS.
Collapse
Affiliation(s)
- Camelia-Manuela Mîrza
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Tudor-Valentin Mîrza
- Department of Epidemiology of Communicable Diseases, National Institute of Public Health—Regional Centre of Public Health, 400376 Cluj-Napoca, Romania
| | - Antonia Cristina Maria Odagiu
- Department of Environmental Engineering and Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ana Uifălean
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Anca Elena But
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Alina Elena Pârvu
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Adriana-Elena Bulboacă
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| |
Collapse
|
5
|
Visser K, de Koning ME, Ciubotariu D, Kok MGJ, Sibeijn-Kuiper AJ, Bourgonje AR, van Goor H, van der Naalt J, van der Horn HJ. An exploratory study on the association between blood-based biomarkers and subacute neurometabolic changes following mild traumatic brain injury. J Neurol 2024; 271:1985-1998. [PMID: 38157029 DOI: 10.1007/s00415-023-12146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood-based biomarkers and advanced neuroimaging modalities such as magnetic resonance spectroscopy (MRS) or diffusion tensor imaging (DTI) have enhanced our understanding of the pathophysiology of mild traumatic brain injury (mTBI). However, there is limited published data on how blood biomarkers relate to neuroimaging biomarkers post-mTBI. METHODS To investigate this, 30 patients with mTBI and 21 healthy controls were enrolled. Data was collected at two timepoints postinjury: acute, < 24 h, (blood) and subacute, four-to-six weeks, (blood and imaging). Interleukin (IL) 6 and 10 (inflammation), free thiols (systemic oxidative stress) and neurofilament light (NF-L) (axonal injury) were quantified in plasma. The neurometabolites total N-acetyl aspartate (tNAA) (neuronal energetics), Myo-Inositol (Ins) and total Choline (tCh) (inflammation) and, Glutathione (GSH, oxidative stress) were quantified using MRS. RESULTS Concentrations of IL-6 and IL-10 were significantly elevated in the acute phase post-mTBI, while NF-L was elevated only in the subacute phase. Total NAA was lowered in patients with mTBI, although this difference was only nominally significant (uncorrected P < 0.05). Within the patient group, acute IL-6 and subacute tNAA levels were negatively associated (r = - 0.46, uncorrected-P = 0.01), albeit not at a threshold corrected for multiple testing (corrected-P = 0.17). When age was added as a covariate a significant increase in correlation magnitude was observed (ρ = - 0.54, corrected-P = 0.03). CONCLUSION This study demonstrates potential associations between the intensity of the inflammatory response in the acute phase post-mTBI and neurometabolic perturbations in the subacute phase. Future studies should assess the longitudinal dynamics of blood-based and imaging biomarkers after injury.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medisch Spectrum Twente, Koningstraat 1, 7512 KZ, Enschede, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marius G J Kok
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anita J Sibeijn-Kuiper
- Department of Neuroscience, BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Harm Jan van der Horn
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
6
|
A Sex-Specific Comparative Analysis of Oxidative Stress Biomarkers Predicting the Risk of Cardiovascular Events and All-Cause Mortality in the General Population: A Prospective Cohort Study. Antioxidants (Basel) 2023; 12:antiox12030690. [PMID: 36978938 PMCID: PMC10044882 DOI: 10.3390/antiox12030690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Oxidative stress plays a pivotal role in cardiovascular (CV) disease, but current biomarkers used to predict CV events are still insufficient. In this study, we comparatively assessed the utility of redox-related biomarkers in predicting the risk of CV events and all-cause mortality in male and female subjects from the general population. Subjects (n = 5955) of the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) population-based cohort study were included. Blood homocysteine, gamma-GT, HDL cholesterol, bilirubin and protein-adjusted free thiol (R-SH, sulfhydryl groups) levels were quantified at baseline and were prospectively analyzed in association with the risk of CV events and all-cause mortality. After adjustment for potentially confounding factors, protein-adjusted R-SH and homocysteine levels were significantly associated with the risk of CV events in men (HR 0.63 [0.40–0.99], p = 0.045 and HR 1.58 [1.20–2.08], p = 0.001, respectively). Protein-adjusted R-SH and HDL cholesterol levels were significantly associated with the risk of all-cause mortality in men (HR 0.52 [0.32–0.85], p = 0.009 and HR 0.90 [0.85–0.94], p < 0.001, respectively), while the same was observed for bilirubin and homocysteine levels in women (HR 0.68 [0.48–0.98], p = 0.040 and HR 2.30 [1.14–3.76], p < 0.001, respectively). Lower levels of protein-adjusted R-SH were robustly associated with an increased risk of CV events and all-cause mortality in men. Our results highlight the value of R-SH levels in cardiovascular risk assessment and their potential significance as being amenable to therapeutic intervention, while reaffirming the importance of other oxidative stress-related biomarkers, such as homocysteine, HDL cholesterol and bilirubin.
Collapse
|