1
|
Bsteh G, Hegen H, Krajnc N, Föttinger F, Altmann P, Auer M, Berek K, Kornek B, Leutmezer F, Macher S, Monschein T, Ponleitner M, Rommer P, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Deisenhammer F, Di Pauli F, Pemp B, Berger T. Retinal layer thinning for monitoring disease-modifying treatment in relapsing multiple sclerosis-Evidence for applying a rebaselining concept. Mult Scler 2024; 30:1128-1138. [PMID: 39109593 DOI: 10.1177/13524585241267257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND Employing a rebaselining concept may reduce noise in retinal layer thinning measured by optical coherence tomography (OCT). METHODS From an ongoing prospective observational study, we included patients with relapsing multiple sclerosis (RMS), who had OCT scans at disease-modifying treatment (DMT) start (baseline), 6-12 months after baseline (rebaseline), and ⩾12 months after rebaseline. Mean annualized percent loss (aL) rates (%/year) were calculated both from baseline and rebaseline for peripapillary-retinal-nerve-fiber-layer (aLpRNFLbaseline/aLpRNFLrebaseline) and macular-ganglion-cell-plus-inner-plexiform-layer (aLGCIPLbaseline/aLGCIPLrebaseline) by mixed-effects linear regression models. RESULTS We included 173 RMS patients (mean age 31.7 years (SD 8.8), 72.8% female, median disease duration 15 months (12-94) median baseline-to-last-follow-up-interval 37 months (18-71); 56.6% moderately effective DMT (M-DMT), 43.4% highly effective DMT (HE-DMT)). Both mean aLpRNFLbaseline and aLGCIPLbaseline significantly increased in association with relapse (0.51% and 0.26% per relapse, p < 0.001, respectively) and disability worsening (1.10% and 0.48%, p < 0.001, respectively) before baseline, but not with DMT class. Contrarily, neither aLpRNFLrebaseline nor aLGCIPLrebaseline was dependent on relapse or disability worsening before baseline, while HE-DMT significantly lowered aLpRNFLrebaseline (by 0.31%, p < 0.001) and aLGCIPLrebaseline (0.25%, p < 0.001) compared with M-DMT. CONCLUSIONS Applying a rebaselining concept significantly improves differentiation of DMT effects on retinal layer thinning by avoiding carry-over confounding from previous disease activity.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fabian Föttinger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Monschein
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christiane Schmied
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Berthold Pemp
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Bsteh G, Dal Bianco A, Zrzavy T, Berger T. Novel and Emerging Treatments to Target Pathophysiological Mechanisms in Various Phenotypes of Multiple Sclerosis. Pharmacol Rev 2024; 76:564-578. [PMID: 38719481 DOI: 10.1124/pharmrev.124.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
The objective is to comprehensively review novel pharmacotherapies used in multiple sclerosis (MS) and the possibilities they may carry for therapeutic improvement. Specifically, we discuss pathophysiological mechanisms worth targeting in MS, ranging from well known targets, such as autoinflammation and demyelination, to more novel and advanced targets, such as neuroaxonal damage and repair. To set the stage, a brief overview of clinical MS phenotypes is provided, followed by a comprehensive recapitulation of both clinical and paraclinical outcomes available to assess the effectiveness of treatments in achieving these targets. Finally, we discuss various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials. SIGNIFICANCE STATEMENT: This comprehensive review discusses pathophysiological mechanisms worth targeting in multiple sclerosis. Various promising novel and emerging treatments, including their respective hypothesized modes of action and currently available evidence from clinical trials, are reviewed.
Collapse
Affiliation(s)
- Gabriel Bsteh
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Assunta Dal Bianco
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology (G.B., A.D.B., T.Z., T.B.) and Comprehensive Center for Clinical Neurosciences & Mental Health (G.B., A.D.B., T.Z., T.B.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Bianchi A, Cortese R, Prados F, Tur C, Kanber B, Yiannakas MC, Samson R, De Angelis F, Magnollay L, Jacob A, Brownlee W, Trip A, Nicholas R, Hacohen Y, Barkhof F, Ciccarelli O, Toosy AT. Optic chiasm involvement in multiple sclerosis, aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein-associated disease. Mult Scler 2024; 30:674-686. [PMID: 38646958 PMCID: PMC11103893 DOI: 10.1177/13524585241240420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Optic neuritis (ON) is a common feature of inflammatory demyelinating diseases (IDDs) such as multiple sclerosis (MS), aquaporin 4-antibody neuromyelitis optica spectrum disorder (AQP4 + NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, the involvement of the optic chiasm (OC) in IDD has not been fully investigated. AIMS To examine OC differences in non-acute IDD patients with (ON+) and without ON (ON-) using magnetisation transfer ratio (MTR), to compare differences between MS, AQP4 + NMOSD and MOGAD and understand their associations with other neuro-ophthalmological markers. METHODS Twenty-eight relapsing-remitting multiple sclerosis (RRMS), 24 AQP4 + NMOSD, 28 MOGAD patients and 32 healthy controls (HCs) underwent clinical evaluation, MRI and optical coherence tomography (OCT) scan. Multivariable linear regression models were applied. RESULTS ON + IDD patients showed lower OC MTR than HCs (28.87 ± 4.58 vs 31.65 ± 4.93; p = 0.004). When compared with HCs, lower OC MTR was found in ON + AQP4 + NMOSD (28.55 ± 4.18 vs 31.65 ± 4.93; p = 0.020) and MOGAD (28.73 ± 4.99 vs 31.65 ± 4.93; p = 0.007) and in ON- AQP4 + NMOSD (28.37 ± 7.27 vs 31.65 ± 4.93; p = 0.035). ON+ RRMS had lower MTR than ON- RRMS (28.87 ± 4.58 vs 30.99 ± 4.76; p = 0.038). Lower OC MTR was associated with higher number of ON (regression coefficient (RC) = -1.15, 95% confidence interval (CI) = -1.819 to -0.490, p = 0.001), worse visual acuity (RC = -0.026, 95% CI = -0.041 to -0.011, p = 0.001) and lower peripapillary retinal nerve fibre layer (pRNFL) thickness (RC = 1.129, 95% CI = 0.199 to 2.059, p = 0.018) when considering the whole IDD group. CONCLUSION OC microstructural damage indicates prior ON in IDD and is linked to reduced vision and thinner pRNFL.
Collapse
Affiliation(s)
- Alessia Bianchi
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Rosa Cortese
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Ferran Prados
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London, UK
- eHealth Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carmen Tur
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- MS Centre of Catalonia (Cemcat), Vall d’Hebron Institute of Research, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Baris Kanber
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Marios C Yiannakas
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Rebecca Samson
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Floriana De Angelis
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Lise Magnollay
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Anu Jacob
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Department of Neurology, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wallace Brownlee
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Biomedical Research Centre, National Institute for Health Research (NIHR), University College London Hospitals (UCLH), London, UK
| | - Anand Trip
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Biomedical Research Centre, National Institute for Health Research (NIHR), University College London Hospitals (UCLH), London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Yael Hacohen
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Frederik Barkhof
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London, UK
- Biomedical Research Centre, National Institute for Health Research (NIHR), University College London Hospitals (UCLH), London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Biomedical Research Centre, National Institute for Health Research (NIHR), University College London Hospitals (UCLH), London, UK
| | - Ahmed T Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
4
|
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1355557. [PMID: 38348116 PMCID: PMC10859418 DOI: 10.3389/fncel.2024.1355557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Microglia play crucial roles in immune responses and contribute to fundamental biological processes within the central nervous system (CNS). In neurodegenerative diseases, microglia undergo functional changes and can have both protective and pathogenic roles. Microglia in the retina, as an extension of the CNS, have also been shown to be affected in many neurological diseases. While our understanding of how microglia contribute to pathological conditions is incomplete, non-invasive in vivo imaging of brain and retinal microglia in living subjects could provide valuable insights into their role in the neurodegenerative diseases and open new avenues for diagnostic biomarkers. This mini-review provides an overview of the current brain and retinal imaging tools for studying microglia in vivo. We focus on microglia targets, the advantages and limitations of in vivo microglia imaging approaches, and applications for evaluating the pathogenesis of neurological conditions, such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R. White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
5
|
Cerdá-Fuertes N, Stoessel M, Mickeliunas G, Pless S, Cagol A, Barakovic M, Maceski AM, Álvarez González C, D’ Souza M, Schaedlin S, Benkert P, Calabrese P, Gugleta K, Derfuss T, Sprenger T, Granziera C, Naegelin Y, Kappos L, Kuhle J, Papadopoulou A. Optical coherence tomography versus other biomarkers: Associations with physical and cognitive disability in multiple sclerosis. Mult Scler 2023; 29:1540-1550. [PMID: 37772490 PMCID: PMC10637109 DOI: 10.1177/13524585231198760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a biomarker of neuroaxonal loss in multiple sclerosis (MS). OBJECTIVE The objective was to assess the relative role of OCT, next to magnetic resonance imaging (MRI) and serum markers of disability in MS. METHODS A total of 100 patients and 52 controls underwent OCT to determine peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform layers (GCIPL). Serum neurofilament light chain (sNfL), total lesion volume (TLV), and brain parenchymal fraction (BPF) were also assessed. The associations of OCT with disability were examined in linear regression models with correction for age, vision, and education. RESULTS In patients, pRNFL was associated with the Symbol Digit Modalities Test (SDMT; p = 0.030). In the multivariate analysis including sNfL and MRI measures, pRNFL (β = 0.19, p = 0.044) and TLV (β = -0.24, p = 0.023) were the only markers associated with the SDMT. pRNFL (p < 0.001) and GCIPL (p < 0.001) showed associations with the Expanded Disability Status Scale (EDSS). In the multivariate analysis, GCIPL showed the strongest association with the EDSS (β = -0.32, p < 0.001) followed by sNfL (β = 0.18, p = 0.024). CONCLUSION The associations of OCT measures with cognitive and physical disability were independent of serum and brain MRI markers of neuroaxonal loss. OCT can be an important tool for stratification in MS, while longitudinal studies using combinations of biomarkers are warranted.
Collapse
Affiliation(s)
- Nuria Cerdá-Fuertes
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Neurostatus AG, University Hospital of Basel, Basel, Switzerland
| | - Marc Stoessel
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | | | - Silvan Pless
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Faculty of Psychology and interdisciplinary Platform Psychology and Psychiatry, Division of Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | | | | | - Marcus D’ Souza
- Neurostatus AG, University Hospital of Basel, Basel, Switzerland
| | - Sabine Schaedlin
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Pasquale Calabrese
- Faculty of Psychology and interdisciplinary Platform Psychology and Psychiatry, Division of Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Konstantin Gugleta
- University Eye Clinic Basel, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Yvonne Naegelin
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Athina Papadopoulou
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|