1
|
Wills O, Probst Y. Towards new perspectives: A scoping review and meta-synthesis to redefine brain health for multiple sclerosis. Eur J Neurol 2024; 31:e16210. [PMID: 38226556 PMCID: PMC11235954 DOI: 10.1111/ene.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND AND PURPOSE Research promoting the health of the brain has increased exponentially over the last decade. The importance of 'brain health' for multiple sclerosis (MS), as one example, is a high priority. However, as research into the concept increases, so does varied use of the term. METHODS A scoping review, guided by the methodological framework of the Joanna Briggs Institute, was conducted to collate the evidence relating to brain health for MS. A comprehensive literature search incorporated six search strategies to retrieve both scientific and grey literature sources. All evidence sources were qualitatively charted and synthesized (meta-synthesis) according to their definition of brain health used, outcome measures and brain-healthy lifestyle elements. RESULTS Seventy evidence sources (34 peer reviewed, 36 grey literature) were eligible for inclusion. Of these, just over half (n = 40, 57%) provided a definition of brain health. The most common definition alluded to the biomedical model of neurological reserve (n = 22, 55%), a self-remodelling theory described to retain optimal brain function. Twenty-nine outcome measures of brain health were identified, the most frequent being magnetic resonance imaging metrics (n = 25, 83%). Physical activity was the most prevalent brain-healthy lifestyle element (n = 44), followed by avoidance of smoking (n = 26) and diet (n = 24). CONCLUSIONS Brain health should be considered a primary target for optimal disease and lifestyle management across the MS disease course. A working definition reflecting a shift from a medical lens towards broader biopsychosocial contexts that may influence brain health for people living with MS is proposed.
Collapse
Affiliation(s)
- Olivia Wills
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Yasmine Probst
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
2
|
Albergoni M, Pagani E, Preziosa P, Meani A, Margoni M, Rocca MA, Filippi M. Thalamic nuclei volume partially mediates the effects of aerobic capacity on fatigue in people with multiple sclerosis. J Neurol 2024; 271:3378-3388. [PMID: 38507073 DOI: 10.1007/s00415-024-12277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Fatigue is frequent in people with multiple sclerosis (pwMS) impacting physical and cognitive functions. Lower aerobic capacity and regional thalamic volume may be involved in the pathophysiology of fatigue in pwMS. OBJECTIVES To identify associations between thalamic nuclei volumes, aerobic capacity and fatigue and to investigate whether the influence of aerobic capacity on fatigue in pwMS is mediated by thalamic integrity. METHODS Eighty-three pwMS underwent a clinical evaluation with assessment of fatigue (Modified Fatigue Impact Scale [MFIS]), including physical (pMFIS) and cognitive (cMFIS) components, and peak of oxygen uptake (VO2peak). PwMS and 63 sex- and age-matched healthy controls (HC) underwent a 3 T brain MRI to quantify volume of the whole thalamus and its nuclei. RESULTS Compared to HC, pwMS showed higher global MFIS, pMFIS and cMFIS scores, and lower VO2peak and thalamic volumes (p < 0.001). In pwMS, higher VO2peak was significantly associated with lower MFIS and pMFIS scores (r value = - 0.326 and - 0.356; pFDR ≤ 0.046) and higher laterodorsal thalamic nucleus (Dor) cluster volume (r value = 0.300; pFDR = 0.047). Moreover, lower Dor thalamic cluster volume was significantly associated with higher MFIS, pMFIS and cMFIS scores (r value range = - 0.305; - 0.293; pFDR ≤ 0.049). The volume of Dor thalamic cluster partially mediated the positive effects of VO2peak on both MFIS and cMFIS, with relative indirect effects of 21% and 32% respectively. No mediation was found for pMFIS. CONCLUSIONS Higher VO2peak is associated with lower fatigue in pwMS, likely acting on Dor thalamic cluster volume integrity. Such an effect might be different according to the type of fatigue (cognitive or physical).
Collapse
Affiliation(s)
- Matteo Albergoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Sandroff BM, Rafizadeh CM, Motl RW. Neuroimaging Technology in Exercise Neurorehabilitation Research in Persons with MS: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094530. [PMID: 37177732 PMCID: PMC10181711 DOI: 10.3390/s23094530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
There is increasing interest in the application of neuroimaging technology in exercise neurorehabilitation research among persons with multiple sclerosis (MS). The inclusion and focus on neuroimaging outcomes in MS exercise training research is critical for establishing a biological basis for improvements in functioning and elevating exercise within the neurologist's clinical armamentarium alongside disease modifying therapies as an approach for treating the disease and its consequences. Indeed, the inclusion of selective neuroimaging approaches and sensor-based technology among physical activity, mobility, and balance outcomes in such MS research might further allow for detecting specific links between the brain and real-world behavior. This paper provided a scoping review on the application of neuroimaging in exercise training research among persons with MS based on searches conducted in PubMed, Web of Science, and Scopus. We identified 60 studies on neuroimaging-technology-based (primarily MRI, which involved a variety of sequences and approaches) correlates of functions, based on multiple sensor-based measures, which are typically targets for exercise training trials in MS. We further identified 12 randomized controlled trials of exercise training effects on neuroimaging outcomes in MS. Overall, there was a large degree of heterogeneity whereby we could not identify definitive conclusions regarding a consistent neuroimaging biomarker of MS-related dysfunction or singular sensor-based measure, or consistent neural adaptation for exercise training in MS. Nevertheless, the present review provides a first step for better linking correlational and randomized controlled trial research for the development of high-quality exercise training studies on the brain in persons with MS, and this is timely given the substantial interest in exercise as a potential disease-modifying and/or neuroplasticity-inducing behavior in this population.
Collapse
Affiliation(s)
- Brian M Sandroff
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Caroline M Rafizadeh
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ 07052, USA
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|