1
|
Alzaben KA, Mousa A, Al-Abdi L, Alkuraya FS, Alsulaiman SM. Surgical Outcomes of Retinal Detachment in Knobloch Syndrome. Ophthalmol Retina 2024; 8:898-904. [PMID: 38556002 DOI: 10.1016/j.oret.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE To describe the rate, characteristics, and outcomes of rhegmatogenous retinal detachment (RD) in patients with Knobloch syndrome. DESIGN A single-center retrospective cohort study. PARTICIPANTS Fifty patients with Knobloch syndrome diagnosed clinically, with or without molecular confirmation of recessive pathogenic COL18A1 variants. METHODS A retrospective chart review of all patients diagnosed with Knobloch syndrome from November 1, 1983 to March 31, 2023. Demographic data, ophthalmic evaluation at baseline and follow-up, interventions, and final anatomic and visual outcomes were collected. MAIN OUTCOME MEASURES Rate, time of onset, characteristics, and treatment outcomes of RD. RESULTS Fifty patients with Knobloch syndrome were included. Males constituted 56% of cases. The diagnosis was confirmed with molecular genetic testing in 37 (74%) patients. Twenty-two patients (44%) had documented occipital bony defects or scalp lesions. Forty-eight of 100 eyes (48%) developed RD at a mean (standard deviation [SD]) age of 6.5 (6.1) years. The mean (SD) follow-up was 7.7 (5.6) years (range, 6 months to 24.3 years). Macular hole-related RD comprised 33% of RD cases. The overall single-surgery success rate was 36% and the final anatomic success rate was 70%. Macular hole-related RD carried a slightly worse prognosis with a 58% final anatomic success rate. Vitrectomy with adjunct scleral buckle and silicone oil tamponade provided the highest single-surgery success (62.2%). In eyes with measurable best-corrected visual acuity (BCVA), the mean preoperative BCVA was 1.2 logarithm of the minimum angle of resolution (Snellen equivalent, 20/320). After successful repair, mean visual acuity was 1.3 logarithm of the minimum angle of resolution (Snellen equivalent, 20/500). CONCLUSIONS Retinal detachment in Knobloch syndrome is frequent and occurs in young children. Macular hole-related RD comprises one third of RD cases and requires careful macular evaluation. Vitrectomy, combined with scleral buckling and silicone oil tamponade, appears to provide the best anatomic outcomes. FINANCIAL DISCLOSURES The authors have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
| | - Ahmed Mousa
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Lama Al-Abdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Al-faisal University, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Al-faisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Tejerina-Miranda S, Pedrero M, Blázquez-García M, Serafín V, Montero-Calle A, Garranzo-Asensio M, Julio Reviejo A, Pingarrón JM, Barderas R, Campuzano S. Angiogenesis inhibitor or aggressiveness marker? The function of endostatin in cancer through electrochemical biosensing. Bioelectrochemistry 2024; 155:108571. [PMID: 37717337 DOI: 10.1016/j.bioelechem.2023.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
This work reports the first electrochemical bioplatform developed for the determination of human endostatin (HE), a biomarker with recognized antiangiogenic potential whose elevated circulating levels have also been associated with the development of aggressive cancers. The developed electroanalytical biotool combines the benefits of using magnetic microparticles for the implementation of sandwich immunoassays and amperometric transduction on disposable carbon electrodes. A limit of detection (LOD) of 34.1 pg mL-1 for HE standards and a selectivity suitable for its foray into the clinical oncology area, are demonstrated. The determination of HE in clinical samples such as lysates and secretomes of colorectal cancer (CRC) cells, plasma, and tissue samples from patients with CRC in different stages, has been faced with satisfactory results showing the ability for discriminating the metastatic capabilities of cells and for identifying and staging CRC patients. The developed bioplatform allows precise quantitative determinations, requiring minimal pre-treatments and sample amounts in only 75 min. In addition, due to the instrumentation and the type of substrates used in the detection step, the biotool is compatible with implementation in multiplexed and/or point-of-need devices, features in which this bioplatform is advantageous with respect to the enzyme linked immunosorbent assay (ELISA) or immunoblotting technologies.
Collapse
Affiliation(s)
- Sandra Tejerina-Miranda
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Marina Blázquez-García
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Verónica Serafín
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Maria Garranzo-Asensio
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain
| | - A Julio Reviejo
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Maitra P, Shah PK, S P, Das A, V N. Knobloch syndrome - a rare collagenopathy, revealing peripheral avascular retina. Ophthalmic Genet 2023; 44:618-622. [PMID: 36994995 DOI: 10.1080/13816810.2023.2188226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Pediatric rhegmatogenous retinal detachments, especially those presenting at birth or soon afterward, have a high likelihood of syndromic associations that can be confirmed by genetic testing. MATERIALS AND METHODS A 5-month-old child was found to have high myopia in the right eye (RE) with highly tessellated fundus, opalescent vitreous, and peripheral thinning. Left eye had a shallow retinal detachment for which he underwent belt buckling. The baby had an occipital skin tag. A provisional diagnosis of Stickler syndrome was made. RESULTS On 1-month follow-up, left eye retina was attached and 360° laser barrage was done. Fluorescein angiography was done which revealed peripheral avascular retina in both eyes. MRI and genetic testing were suggestive of syndromic association. Genetic testing revealed pathogenic mutation in COL 18A1 suggestive of Knobloch syndrome in the baby, and both parents were found to be carriers of the same mutation. However, brain MRI showed features not pathognomonic of Knobloch syndrome. CONCLUSION Although Knobloch syndrome is associated with vitreoretinal degeneration and high risk of retinal detachment, there seems to be no recommendation for prophylaxis in the other eye and therefore we preferred to observe the RE closely. A unique feature noted in our case was the peripheral avascular zone (PAZ). The PAZ could be contributed by multiple factors such as high myopia, or due to endostatin deficiency (which is a derivative of collagen XVIII) or an underlying WNT signalling abnormality.
Collapse
Affiliation(s)
- Puja Maitra
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Parag K Shah
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Prema S
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Abhishek Das
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Narendran V
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| |
Collapse
|
4
|
Govers BM, van Huet RAC, Roosing S, Keijser S, Los LI, den Hollander AI, Klevering BJ. The genetics and disease mechanisms of rhegmatogenous retinal detachment. Prog Retin Eye Res 2023; 97:101158. [PMID: 36621380 DOI: 10.1016/j.preteyeres.2022.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.
Collapse
Affiliation(s)
- Birgit M Govers
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Keijser
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonoor I Los
- Department of Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA
| | - B Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Gammeltoft E, Alsuradi A, Trivedi RH, Wilson ME. Intraoperative discovery of lens dislocation in a child with Knobloch syndrome. J AAPOS 2023; 27:226-228. [PMID: 37302726 DOI: 10.1016/j.jaapos.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023]
Abstract
We present the case of a 14-year-old boy with a known diagnosis of Knobloch syndrome (KS) referred for bilateral cataract evaluation and possible cataract surgery. At time of initial presentation, no lens subluxation was appreciated, and no phacodonesis was detected on slit lamp biomicroscopy. However, 7-weeks later, on the day of surgery, his right eye was found to have a complete lens dislocation into the vitreous cavity, with no zonule attachment. The left eye did not have subluxated lens; however, intraoperatively, after irrigation into the eye, near complete zonular dialysis was observed. This case highlights the importance of regular follow-up of children with KS.
Collapse
Affiliation(s)
| | - Alaa Alsuradi
- Medical University of South Carolina, Charleston, South Carolina
| | - Rupal H Trivedi
- Medical University of South Carolina, Charleston, South Carolina
| | - M Edward Wilson
- Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
6
|
Arepalli S, DeBenedictis MM, Yuan A, Traboulsi EI. Severe retinal complications in Knobloch Syndrome - Three siblings without clinically apparent occipital defects and a review of the literature. Ophthalmic Genet 2022; 43:1-9. [PMID: 35387550 DOI: 10.1080/13816810.2022.2028297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/28/2021] [Accepted: 01/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Knobloch syndrome results from recessive mutations in COL18A1 and is characterized by retinopathy and occipital scalp, brain and skull defects. METHODS AND MATERIALS We report three siblings, born to consanguineous parents, two of whom with genetically confirmed Knobloch syndrome due to a homozygous pathogenic variant c.4054_4055del; p.Leu1352Valfs*72 in COL18A1. RESULTS With the lack of classic occipital findings, an initial diagnosis of familial exudative vitreoretinopathy was entertained in these siblings because of the history of retinal detachments, retinal pigmentary changes and abnormal vitreous. The diagnosis of Knobloch syndrome was eventually made through molecular genetic testing using an extensive panel. In one patient presenting with acute retinal detachment and posteriorly dislocated intraocular lens implant, reattachment surgery was successful in stabilizing vision. CONCLUSION The clinical diagnosis of Knobloch syndrome can be difficult to reach in the absence of the typical occipital scalp defects. A careful medical history, detailed clinical examination and molecular genetic testing will reveal the correct diagnosis of Knobloch syndrome in atypical cases.
Collapse
Affiliation(s)
- Sruthi Arepalli
- Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Tennessee Retina Associates, Nashville, Tennessee, USA
| | | | - Alex Yuan
- Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elias I Traboulsi
- Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Decreased endostatin in db/db retinas is associated with optic disc intravitreal vascularization. Exp Eye Res 2021; 212:108801. [PMID: 34688624 DOI: 10.1016/j.exer.2021.108801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Endostatin, a naturally cleaved fragment of type XVIII collagen with antiangiogenic activity, has been involved in the regulation of neovascularization during diabetic retinopathy. Here, the intracellular distribution of endostatin in healthy mouse and human neuroretinas has been analyzed. In addition, to study the effect of experimental hyperglycemia on retinal endostatin, the db/db mouse model has been used. Endostatin protein expression in mouse and human retinas was studied by immunofluorescence and Western blot, and compared with db/db mice. Eye fundus angiography, histology, and immunofluorescence were used to visualize mouse retinal and intravitreal vessels. For the first time, our results revealed the presence of endostatin in neurons of mouse and human retinas. Endostatin was mainly expressed in bipolar cells and photoreceptors, in contrast to the optic disc, where endostatin expression was undetectable. Diabetic mice showed a reduction of endostatin in their retinas associated with the appearance of intravitreal vessels at the optic disc in 50% of db/db mice. Intravitreal vessels showed GFAP positive neuroglia sheath, basement membrane thickening by collagen IV deposition, and presence of MMP-2 and MMP-9 in the vascular wall. All together, these results point that decreased retinal endostatin during experimental diabetes is associated with optic disc intravitreal vascularization. Based on their phenotype, these intravitreal vessels could be neovessels. However, it cannot be ruled out the possibility that they may also represent persistent hyaloid vessels.
Collapse
|
8
|
Knobloch Syndrome Associated with Novel COL18A1 Variants in Chinese Population. Genes (Basel) 2021; 12:genes12101512. [PMID: 34680907 PMCID: PMC8536191 DOI: 10.3390/genes12101512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Knobloch syndrome is an inherited disorder characterized by high myopia, retinal detachment, and occipital defects. Disease-causing mutations have been identified in the COL18A1 gene. This study aimed to investigate novel variants of COL18A1 in Knobloch syndrome and describe the associated phenotypes in Chinese patients. We reported six patients with Knobloch syndrome from four unrelated families in whom we identified five novel COL18A1 mutations. Clinical examination showed that all probands presented with high myopia, chorioretinal atrophy, and macular defects; one exhibited rhegmatogenous retinal detachment in one eye. Occipital defects were detected in one patient.
Collapse
|
9
|
Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells 2021; 10:687. [PMID: 33804633 PMCID: PMC8003714 DOI: 10.3390/cells10030687] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-β, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.
Collapse
Affiliation(s)
- Andrew E. Pouw
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Razek G. Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Levinger N, Hendler K, Banin E, Hanany M, Kimchi A, Mechoulam H, Meiner V, Parag Y, Sharon D, Macarov M, Yahalom C. Variable phenotype of Knobloch syndrome due to biallelic COL18A1 mutations in children. Eur J Ophthalmol 2020; 31:3349-3354. [PMID: 33238767 DOI: 10.1177/1120672120977343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Knobloch syndrome is a rare, recessively inherited disorder classically characterized by high myopia, retinal detachment, and occipital encephalocele. Our aim is to report the clinical and genetic findings of four Israeli children affected by Knobloch syndrome. METHODS Retrospective study of four patients diagnosed with Knobloch syndrome, who underwent full ophthalmic examination, electroretinography, and neuroradiologic imaging. Genetic analysis included whole exome sequencing (WES) and Sanger sequencing. RESULTS The four patients included in this study had high myopia and nystagmus at presentation. Ocular findings included vitreous syneresis, macular atrophy, macular coloboma, and retinal detachment. One child had iris transillumination defects and an albinotic fundus, initially leading to an erroneous clinical diagnosis of albinism. Electroretinography revealed a marked cone-rod pattern of dysfunction in all four children. Brain imaging demonstrated none to severe occipital pathology. Cutaneous scalp changes were present in three patients. WES analysis, confirmed by Sanger sequencing revealed COL18A1 biallelic null mutations in all affected individuals, consistent with autosomal recessive inheritance. CONCLUSIONS This report describes variable features in patients with Knobloch syndrome, including marked lack of eye pigment similar to albinism in one child, macular coloboma in two children as well as advanced cone-rod dysfunction in all children. One patient had normal neuroradiologic findings, emphasizing that some affected individuals have isolated ocular disease. Awareness of this syndrome, with its variable phenotype may aid early diagnosis, monitoring for potential complications, and providing appropriate genetic counseling.
Collapse
Affiliation(s)
- Nadav Levinger
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Karen Hendler
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Adva Kimchi
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hadas Mechoulam
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoav Parag
- Department of Diagnostic Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Michal Macarov
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Claudia Yahalom
- Department of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
11
|
Alsulaiman SM, Al-Abdullah AA, Alakeely A, Aldhibi H, Engelbrecht L, Ghazi NG, Mura M. Macular Hole-Related Retinal Detachment in Children with Knobloch Syndrome. Ophthalmol Retina 2020; 4:498-503. [PMID: 32111543 DOI: 10.1016/j.oret.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the findings and the management of macular hole (MH)-related retinal detachment (RD) in children with Knobloch syndrome. DESIGN Retrospective interventional case series. PARTICIPANTS Patients with Knobloch syndrome who presented with MH-related RD. METHODS Retrospective chart review of patients with Knobloch syndrome who presented with MH-related RD from January 2012 to December 2018. Interventions included pars plana vitrectomy and silicone oil tamponade with or without scleral buckle, drainage retinotomy, or relaxing retinectomy. MAIN OUTCOME MEASURES MH characteristics and surgical anatomical outcome. RESULTS The study included 9 eyes of 5 patients (age range 2 months to 5 years; median age 5.5 months). Presenting symptoms were poor fixation and nystagmus. The fellow eye of 1 patient had RD due to peripheral breaks. The MH was clinically visible in 8 eyes and detected only by OCT in 1 eye. The RD was shallow and extended to the anterior equator in 7 eyes and localized to a punched-out atrophic lesion in 1 eye. Seven eyes underwent surgical repair. At the last follow-up examination (follow-up range 11 to 42 months; mean 24 months, standard deviation 11.8 months), retinal reattachment with MH closure was achieved in 5 eyes along with marked improvement in fixation. CONCLUSION Patients with Knobloch syndrome may develop MH-related RD as early as infancy. The condition may be easily overlooked in children but should be suspected in the setting of high myopia, vitreoretinal degeneration, and encephalocele.
Collapse
Affiliation(s)
| | | | - Adel Alakeely
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Hassan Aldhibi
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Leonore Engelbrecht
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Nicola G Ghazi
- Lebanese American University School of Medicine and the Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Marco Mura
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.
| |
Collapse
|
12
|
Thau A, Tsukikawa M, Wangtiraumnuay N, Capasso J, Affel E, Alnabi WA, Adam M, Alsulaiman SM, Spirn M, Levin AV. Optical Coherence Tomography in Knobloch Syndrome. Ophthalmic Surg Lasers Imaging Retina 2019; 50:e203-e210. [DOI: 10.3928/23258160-20190806-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
13
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
14
|
Basement membranes in the cornea and other organs that commonly develop fibrosis. Cell Tissue Res 2018; 374:439-453. [PMID: 30284084 DOI: 10.1007/s00441-018-2934-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
Basement membranes are thin connective tissue structures composed of organ-specific assemblages of collagens, laminins, proteoglycan-like perlecan, nidogens, and other components. Traditionally, basement membranes are thought of as structures which primarily function to anchor epithelial, endothelial, or parenchymal cells to underlying connective tissues. While this role is important, other functions such as the modulation of growth factors and cytokines that regulate cell proliferation, migration, differentiation, and fibrosis are equally important. An example of this is the critical role of both the epithelial basement membrane and Descemet's basement membrane in the cornea in modulating myofibroblast development and fibrosis, as well as myofibroblast apoptosis and the resolution of fibrosis. This article compares the ultrastructure and functions of key basement membranes in several organs to illustrate the variability and importance of these structures in organs that commonly develop fibrosis.
Collapse
|
15
|
Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T. Collagen XVIII in tissue homeostasis and dysregulation - Lessons learned from model organisms and human patients. Matrix Biol 2016; 57-58:55-75. [PMID: 27746220 DOI: 10.1016/j.matbio.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022]
Abstract
Collagen XVIII is a ubiquitous basement membrane (BM) proteoglycan produced in three tissue-specific isoforms that differ in their N-terminal non-collagenous sequences, but share collagenous and C-terminal non-collagenous domains. The collagenous domain provides flexibility to the large collagen XVIII molecules on account of multiple interruptions in collagenous sequences. Each isoform has a complex multi-domain structure that endows it with an ability to perform various biological functions. The long isoform contains a frizzled-like (Fz) domain with Wnt-inhibiting activity and a unique domain of unknown function (DUF959), which is also present in the medium isoform. All three isoforms share an N-terminal laminin-G-like/thrombospondin-1 sequence whose specific functions still remain unconfirmed. The proteoglycan nature of the isoforms further increases the functional diversity of collagen XVIII. An anti-angiogenic domain termed endostatin resides in the C-terminus of collagen XVIII and is proteolytically cleaved from the parental molecule during the BM breakdown for example in the process of tumour progression. Recombinant endostatin can efficiently reduce tumour angiogenesis and growth in experimental models by inhibiting endothelial cell migration and proliferation or by inducing their death, but its efficacy against human cancers is still a subject of debate. Mutations in the COL18A1 gene result in Knobloch syndrome, a genetic disorder characterised mainly by severe eye defects and encephalocele and, occasionally, other symptoms. Studies with gene-modified mice have elucidated some aspects of this rare disease, highlighting in particular the importance of collagen XVIII in the development of the eye. Research with model organisms have also helped in determining other structural and biological functions of collagen XVIII, such as its requirement in the maintenance of BM integrity and its emerging roles in regulating cell survival, stem or progenitor cell maintenance and differentiation and inflammation. In this review, we summarise current knowledge on the properties and endogenous functions of collagen XVIII in normal situations and tissue dysregulation. When data is available, we discuss the functions of the distinct isoforms and their specific domains.
Collapse
Affiliation(s)
- Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Mari Aikio
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Heli Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
16
|
The role of extracellular matrix in retinal vascular development and preretinal neovascularization. Exp Eye Res 2015; 133:30-6. [PMID: 25819452 DOI: 10.1016/j.exer.2014.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/14/2014] [Accepted: 10/29/2014] [Indexed: 12/17/2022]
Abstract
Extracellular matrix (ECM) plays a central role in angiogenesis. ECM degrading enzymes breakdown the pre-existing vascular basement membrane at an early stage of angiogenesis and subsequently degrade stromal ECM as the new vessels invade into tissues. Conversely certain ECM components including collagen, fibronectin or fibrin are required for endothelial cell migration and tube morphogenesis. As the new vessels form they lay down a basement membrane that surrounds the endothelial tubes and is essential for their stability. In the rodent eye the transient expression of fibronectin and matricellular proteins plays a key role in retinal vascular development. In pathological retinal angiogenesis, such as in proliferative diabetic retinopathy, preretinal neovascularization occurs where new blood vessels invade the cortical vitreous gel and these blood vessels require vitreous collagen for their growth. The vitreous is normally anti-angiogenic and contains endogenous ECM inhibitors of angiogenesis including opticin and thombospondins, and ECM fragments such as endostatin. In preretinal neovascularization, the combined anti-angiogenic effects of these molecules are overcome by an excess of growth factors such as vascular endothelial growth factor-A, and new vessels grow into the vitreous with potentially blinding sequelae.
Collapse
|
17
|
Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Krishna V, Prasad TK, Chakravarti S, Harsha HC, Pandey A. Characterizing the normal proteome of human ciliary body. Clin Proteomics 2013; 10:9. [PMID: 23914977 PMCID: PMC3750387 DOI: 10.1186/1559-0275-10-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body. RESULTS In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis. CONCLUSIONS More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.
Collapse
Affiliation(s)
- Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India
| | - Krishna R Murthy
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.,Vittala International Institute Of Ophthalmology, Bangalore 560 085, Karnataka, India
| | - Srinivas M Srikanth
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Centre of Excellence in Bioinformatics, Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Manipal University, Madhav Nagar, Manipal 576104, Karnataka, India
| | - Mitali Bhattacharjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Dhanashree S Kelkar
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Sujatha S Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India.,Research Unit for Immunoinformatics, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Kanagawa 230 0045, Japan
| | - Venkatarangaiah Krishna
- Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India
| | - Ts Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.,Manipal University, Madhav Nagar, Manipal 576104, Karnataka, India
| | - Shukti Chakravarti
- Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.,Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Akhilesh Pandey
- Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.,McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
18
|
Le Goff MM, Sutton MJ, Slevin M, Latif A, Humphries MJ, Bishop PN. Opticin exerts its anti-angiogenic activity by regulating extracellular matrix adhesiveness. J Biol Chem 2012; 287:28027-36. [PMID: 22669977 PMCID: PMC3431625 DOI: 10.1074/jbc.m111.331157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/04/2012] [Indexed: 01/02/2023] Open
Abstract
Opticin is an extracellular matrix glycoprotein that we identified associated with the collagen network of the vitreous humor of the eye. Recently, we discovered that opticin possesses anti-angiogenic activity using a murine oxygen-induced retinopathy model: here, we investigate the underlying mechanism. Using an ex vivo chick chorioallantoic membrane assay, we show that opticin inhibits angiogenesis when stimulated by a range of growth factors. We show that it suppresses capillary morphogenesis, inhibits endothelial invasion, and promotes capillary network regression in three-dimensional matrices of collagen and Matrigel(TM). We then show that opticin binds to collagen and thereby competitively inhibits endothelial cell interactions with collagen via α(1)β(1) and α(2)β(1) integrins, thereby preventing the strong adhesion that is required for proangiogenic signaling via these integrins.
Collapse
Affiliation(s)
| | | | - Mark Slevin
- The School of Biology, Chemistry, and Health Science, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom, and
- the Institut Català de Ciències Cardiovasculars, Hospital de la Santa Creu i Sant Pau, Pavelló del Convent, Sant Antoni Maria Claret, Barcelona 08025, Spain
| | - Ayse Latif
- From the Faculty of Medical and Human Sciences and
- the Centre for Advanced Discovery and Experimental Therapeutics and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WH, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Paul N. Bishop
- From the Faculty of Medical and Human Sciences and
- the Centre for Advanced Discovery and Experimental Therapeutics and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WH, United Kingdom
| |
Collapse
|
19
|
Le Goff MM, Lu H, Ugarte M, Henry S, Takanosu M, Mayne R, Bishop PN. The vitreous glycoprotein opticin inhibits preretinal neovascularization. Invest Ophthalmol Vis Sci 2012; 53:228-34. [PMID: 22159013 DOI: 10.1167/iovs.11-8514] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Opticin is an extracellular matrix glycoprotein that the authors discovered in the vitreous humor of the eye. It is synthesized by the nonpigmented ciliary epithelium and secreted into the vitreous cavity and, unusually for an extracellular matrix molecule, high-level synthesis is maintained into adult life. Here the authors investigated the hypothesis that opticin influences vascular development in the posterior segment of the eye and pathologic angiogenesis into the normally avascular, mature (secondary) vitreous. METHODS Opticin was localized in murine eyes by immunohistochemistry. An opticin knockout mouse was established and vascular development was compared between knockout and wild-type mice. Wild-type and opticin null mice were compared in the oxygen-induced retinopathy model, a model of pathologic angiogenesis, and this model was also used to assess the effects of intravitreal injection of recombinant opticin into eyes of wild-type mice. RESULTS Opticin colocalizes with the collagen type II-rich fibrillar network of the vitreous, the inner limiting lamina, the lens capsule, the trabecular meshwork, and the iris. Analyses of the hyaloid and retinal vasculature showed that opticin has no effect on hyaloid vascular regression or developmental retinal vascularization. However, using the oxygen-induced retinopathy model, the authors demonstrated that opticin knockout mice produce significantly more preretinal neovascularization than wild-type mice, and the intravitreal delivery of excess opticin inhibited the formation of neovessels in wild-type mice. CONCLUSIONS A lack of opticin does not influence vascular development, but opticin is antiangiogenic and inhibits preretinal neovascularization.
Collapse
|
20
|
Seppinen L, Pihlajaniemi T. The multiple functions of collagen XVIII in development and disease. Matrix Biol 2011; 30:83-92. [DOI: 10.1016/j.matbio.2010.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/11/2022]
|
21
|
Zarfoss MK, Breaux CB, Whiteley HE, Hamor RE, Flaws JA, Labelle P, Dubielzig RR. Canine pre-iridal fibrovascular membranes: morphologic and immunohistochemical investigations. Vet Ophthalmol 2010; 13:4-13. [DOI: 10.1111/j.1463-5224.2009.00739.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Safvati A, Cole N, Hume E, Willcox M. Mediators of neovascularization and the hypoxic cornea. Curr Eye Res 2009; 34:501-14. [PMID: 19899985 DOI: 10.1080/02713680902919557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The maintenance of corneal avascularity is essential to vision. The mechanisms by which the cornea becomes vascularized in response to inflammation or hypoxic stress are beginning to be elucidated. A detailed understanding of the molecular responses of the cornea to hypoxia is critical for prevention and development of novel treatments for neovascularization in a range of disease states. Here, we have examined the current literature on the major mediators of angiogenesis, which have previously been reported during hypoxia in the cornea in order to better understand the mechanisms by which corneal angiogenesis occurs in circumstances where the available oxygen is reduced. The normal cornea produces angiogenic factors that are regulated by the production of anti-angiogenic molecules. The various cell types of the cornea respond differentially to inflammatory and hypoxic stimuli. An understanding of the factors that may predispose patients to development of corneal blood vessels may provide an opportunity to develop novel prophylactic strategies. The difficulties with extrapolating data from other cell types and animal models to the cornea are also examined.
Collapse
Affiliation(s)
- Aidin Safvati
- Vision Cooperative Research Centre and School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
23
|
Abstract
The presence of melanin pigment within the iris is responsible for the visual impression of human eye colouration with complex patterns also evident in this tissue, including Fuchs' crypts, nevi, Wolfflin nodules and contraction furrows. The genetic basis underlying the determination and inheritance of these traits has been the subject of debate and research from the very beginning of quantitative trait studies in humans. Although segregation of blue-brown eye colour has been described using a simple Mendelian dominant-recessive gene model this is too simplistic, and a new molecular genetic perspective is needed to fully understand the biological complexities of this process as a polygenic trait. Nevertheless, it has been estimated that 74% of the variance in human eye colour can be explained by one interval on chromosome 15 that contains the OCA2 gene. Fine mapping of this region has identified a single base change rs12913832 T/C within intron 86 of the upstream HERC2 locus that explains almost all of this association with blue-brown eye colour. A model is presented whereby this SNP, serving as a target site for the SWI/SNF family member HLTF, acts as part of a highly evolutionary conserved regulatory element required for OCA2 gene activation through chromatin remodelling. Major candidate genes possibly effecting iris patterns are also discussed, including MITF and PAX6.
Collapse
Affiliation(s)
- Richard A Sturm
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia.
| | | |
Collapse
|