1
|
Sunaric Megevand G, Bron AM. Personalising surgical treatments for glaucoma patients. Prog Retin Eye Res 2020; 81:100879. [PMID: 32562883 DOI: 10.1016/j.preteyeres.2020.100879] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Surgical treatments for glaucoma have relied for decades on traditional filtering surgery such as trabeculectomy and, in more challenging cases, tubes. Antifibrotics were introduced to improve surgical success in patients at increased risk of failure but have been shown to be linked to a greater incidence of complications, some being potentially vision-threatening. As our understanding of glaucoma and its early diagnosis have improved, a more individualised management has been suggested. Recently the term "precision medicine" has emerged as a new concept of an individualised approach to disease management incorporating a wide range of individual data in the choice of therapeutic modalities. For glaucoma surgery, this involves evaluation of the right timing, individual risk factors, targeting the correct anatomical and functional outflow pathways and appropriate prevention of scarring. As a consequence, there is an obvious need for better knowledge of anatomical and functional pathways and for more individualised surgical approaches with new, less invasive and safer techniques allowing for earlier intervention. With the recent advent of minimally invasive glaucoma surgery (MIGS) a large number of novel devices have been introduced targeting potential new sites of the outflow pathway for lowering intraocular pressure (IOP). Their popularity is growing in view of the relative surgical simplicity and apparent lack of serious side effects. However, these new surgical techniques are still in an era of early experiences, short follow-up and lack of evidence of their superiority in safety and cost-effectiveness over the traditional methods. Each year several new devices are introduced while others are withdrawn from the market. Glaucoma continues to be the primary cause of irreversible blindness worldwide and access to safe and efficacious treatment is a serious problem, particularly in the emerging world where the burden of glaucoma-related blindness is important and concerning. Early diagnosis, individualised treatment and, very importantly, safe surgical management should be the hallmarks of glaucoma treatment. However, there is still need for a better understanding of the disease, its onset and progression, the functional and structural elements of the outflow pathways in relation to the new devices as well as their long-term IOP-lowering efficacy and safety. This review discusses current knowledge and the future need for personalised glaucoma surgery.
Collapse
Affiliation(s)
- Gordana Sunaric Megevand
- Clinical Eye Research Centre Memorial Adolphe de Rothschild, Geneva, Switzerland; Centre Ophtalmologique de Florissant, Geneva, Switzerland.
| | - Alain M Bron
- Department of Ophthalmology, University Hospital, Dijon, France; Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
2
|
Li KC, Yu SH, Zhuge BZ. PIK3CG single nucleotide polymorphisms are associated with poor responsiveness to clopidogrel and increased risk of ischemia in patients with coronary heart disease. Medicine (Baltimore) 2017; 96:e7566. [PMID: 28885323 PMCID: PMC6392743 DOI: 10.1097/md.0000000000007566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study explores the associations between PIK3CG single nucleotide polymorphisms (SNPs, rs1129293 and rs17398575) and patient responsiveness to clopidogrel to evaluate the risks of ischemia in patients with coronary heart disease (CHD). METHODS The study consisted of 513 CHD patients who received clopidogrel as part of antiplatelet therapy, after percutaneous coronary intervention. According to the patient responsiveness to clopidogrel, the subjects were assigned to either clopidogrel-resistant (CR) or clopidogrel-sensitive (CS) groups. CR group was determined by patients' platelet aggregation rate of ≥70% and poor responsiveness to clopidogrel, and CS group by patients' platelet aggregation rates of <70% and good responsiveness to clopidogrel. Polymerase chain reaction using TaqMan probe was employed to detect PIK3CG polymorphism. Haplotype and linkage disequilibrium analyses were performed. Prognosis analysis was performed using the Kaplan-Meier curve. RESULTS Significant difference was found in genotype and rs1129293 and rs17398575 allele frequency between the CR and CS groups. Haplotype analysis indicated that the frequency of TG allele was higher in the CR group compared with the CS group, and the frequency of CA allele was lower in the CR group compared with the CS group. Patients with rs1129293 CT + TT genotype and T allele, rs1129293 AG + GG genotype and G allele exhibited an increased CR risk. Logistic regression analysis determined hypertension history as an independent risk factor for CR. The Kaplan-Meier curve suggests that distribution curve of cumulative probability nonischemic events was different between patients with rs1129293 and rs17398575 alleles. Stable CHD patients with TT genotype of rs1129293 allele and GG genotype of rs17398575 allele showed poorer prognosis compared to those with other genotypes and patients with acute coronary syndromes. CONCLUSION A positive correlation may exist between PIK3CG SNPs (rs1129293 and rs17398575) and patients with poor responsiveness to clopidogrel. These findings show that this factor may contribute to an increased risk of ischemia in patients suffering from CHD.
Collapse
Affiliation(s)
- Ke-Cheng Li
- Department of Clinical Laboratory, People's Hospital of Rongcheng, Rongcheng
| | - Shu-Hong Yu
- Department of Blood Transfusion, Yantai Yuhuangding Hospital, Yantai
| | - Bao-Zhong Zhuge
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, P.R. China
| |
Collapse
|
3
|
Zhou YL, Chen CL, Wang YX, Tong Y, Fang XL, Li L, Wang ZY. Association between polymorphism rs11200638 in the HTRA1 gene and the response to anti-VEGF treatment of exudative AMD: a meta-analysis. BMC Ophthalmol 2017; 17:97. [PMID: 28637435 PMCID: PMC5480205 DOI: 10.1186/s12886-017-0487-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 06/08/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Anti-angiogenesis treatments are the most commonly used treatments for the vision loss caused by exudative age-related macular degeneration (AMD), in which the anti-vascular endothelial growth factor (VEGF) drugs with ranibizumab and bevacizumab are current standard treatments. However, the outcome of anti-VEGF therapeutics is not uniform in all patients. METHODS We performed a literature-based meta-analysis including, five published studies relevant to HTRA1 and response to anti-VEGF treatment (bevacizumab or ranibizumab). Summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using fixed- and random-effects models. Sensitivity analysis and meta-regression were also performed. Q-statistic test and Egger's test was used to evaluate heterogeneity and publication bias respectively. RESULTS Overall, no association between the rs11200638 polymorphism in HTRA1 gene and the anti-VEGF treatment response was found in the genotype GG versus AA (OR = 1.06; 95% CI: 0.77 to 1.48; P = 0.98), genotype GA versus AA (OR = 1.11; 95% CI: 0.83 to 1.47; P = 0.93), genotype GG + GA versus AA (OR = 1.22; 95% CI: 0.94 to 1.57; P = 0.09), and allele G versus A (OR = 0.92; 95% CI: 0.78 to 1.08; P = 0.14). In the subgroup analysis by ethnicity Caucasian population, and a significant association was still not observed in all genetic models. Sensitivity analysis indicated the robustness of our findings, and no publication bias was observed in our meta-analysis. CONCLUSIONS This study shows that there was no association between the polymorphism rs11200638 in HTRA1 gene and response to anti-VEGF treatment of exudative AMD. However, more studies are needed to further prove the conclusion of present study, especially well-designed and high quality randomised controlled trials or intervention studies.
Collapse
Affiliation(s)
- Ya-li Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011 China
| | - Chun-li Chen
- Department of Ophthalmology, Shengli Oilfield Central Hospital, Dongying, Shandong China
| | - Yi-xiao Wang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011 China
| | - Yao Tong
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-ling Fang
- Department of Ophthalmology, Shanghai Eye Hospital, Shanghai, China
| | - Lin Li
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011 China
| | - Zhao-yang Wang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
4
|
Shastry BS. Genetics of familial exudative vitreoretinopathy and its implications for management. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Ong FS, Kuo JZ, Wu WC, Cheng CY, Blackwell WLB, Taylor BL, Grody WW, Rotter JI, Lai CC, Wong TY. Personalized Medicine in Ophthalmology: From Pharmacogenetic Biomarkers to Therapeutic and Dosage Optimization. J Pers Med 2013; 3:40-69. [PMID: 24624293 PMCID: PMC3947950 DOI: 10.3390/jpm3010040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid progress in genomics and nanotechnology continue to advance our approach to patient care, from diagnosis and prognosis, to targeting and personalization of therapeutics. However, the clinical application of molecular diagnostics in ophthalmology has been limited even though there have been demonstrations of disease risk and pharmacogenetic associations. There is a high clinical need for therapeutic personalization and dosage optimization in ophthalmology and may be the focus of individualized medicine in this specialty. In several retinal conditions, such as age-related macular degeneration, diabetic macular edema, retinal vein occlusion and pre-threshold retinopathy of prematurity, anti-vascular endothelial growth factor therapeutics have resulted in enhanced outcomes. In glaucoma, recent advances in cytoskeletal agents and prostaglandin molecules that affect outflow and remodel the trabecular meshwork have demonstrated improved intraocular pressure control. Application of recent developments in nanoemulsion and polymeric micelle for targeted delivery and drug release are models of dosage optimization, increasing efficacy and improving outcomes in these major eye diseases.
Collapse
Affiliation(s)
- Frank S. Ong
- Illumina Inc., San Diego, CA 92122, USA
- Author to whom correspondence should be addressed; E-Mail:
| | - Jane Z. Kuo
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Ophthalmology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119074, Singapore
| | | | - Brian L. Taylor
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wayne W. Grody
- Departments of Pathology and Laboratory Medicine, Pediatrics and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jerome I. Rotter
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pediatrics and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tien Y. Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119074, Singapore
| |
Collapse
|
6
|
Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D'Angelo S, Perri P, De Palma P, De Nadai K, Sebastiani A. Mechanism of inflammation in age-related macular degeneration. Mediators Inflamm 2012; 2012:546786. [PMID: 23209345 PMCID: PMC3504473 DOI: 10.1155/2012/546786] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/02/2012] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease that represents the most common cause of irreversible visual impairment among people over the age of 50 in Europe, the United States, and Australia, accounting for up to 50% of all cases of central blindness. Risk factors of AMD are heterogeneous, mainly including increasing age and different genetic predispositions, together with several environmental/epigenetic factors, that is, cigarette smoking, dietary habits, and phototoxic exposure. In the aging retina, free radicals and oxidized lipoproteins are considered to be major causes of tissue stress resulting in local triggers for parainflammation, a chronic status which contributes to initiation and/or progression of many human neurodegenerative diseases such as AMD. Experimental and clinical evidences strongly indicate the pathogenetic role of immunologic processes in AMD occurrence, consisting of production of inflammatory related molecules, recruitment of macrophages, complement activation, microglial activation and accumulation within those structures that compose an essential area of the retina known as macula lutea. This paper reviews some attractive aspects of the literature about the mechanisms of inflammation in AMD, especially focusing on those findings or arguments more directly translatable to improve the clinical management of patients with AMD and to prevent the severe vision loss caused by this disease.
Collapse
|
7
|
Tian J, Qin X, Fang K, Chen Q, Hou J, Li J, Yu W, Chen D, Hu Y, Li X. Association of genetic polymorphisms with response to bevacizumab for neovascular age-related macular degeneration in the Chinese population. Pharmacogenomics 2012; 13:779-87. [PMID: 22594510 DOI: 10.2217/pgs.12.53] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS To determine whether there is an association between CFH, ARMS2, HTRA1, VEGF, SERPING1 or C3 genotypes and patient response to treatment with intravitreal bevacizumab for neovascular age-related macular degeneration (AMD). MATERIALS & METHODS This was a multicenter prospective study. One hundred and forty four patients with neovascular AMD treated with bevacizumab were recruited from 13 centers. Twelve SNPs were genotyped using Sequenom. Visual acuity score (VAS), central retinal thickness and maximum thickness of lesion were measured at each visit. RESULTS For the CFH rs800292 polymorphism, mean VAS changes were 4.4, 8.7 and 15.5 letters in the CC, CT and TT genotype carriers (p = 0.009). For ARMS2 rs10490924, mean VAS changes were 3.6, 12.1 and 9.6 letters for the TT, TG and GG genotypes (p = 0.001). For HTRA1 rs11200638, mean VAS changes were 3.6, 12.3 and 9.6 letters for the AA, AG and GG genotypes (p < 0.001). CONCLUSION CFH, ARMS2 and HTRA1 genotypes may influence patient response to treatment with intravitreal bevacizumab for neovascular AMD.
Collapse
Affiliation(s)
- Jun Tian
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, Peoples Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gorin MB. Genetic insights into age-related macular degeneration: controversies addressing risk, causality, and therapeutics. Mol Aspects Med 2012; 33:467-86. [PMID: 22561651 DOI: 10.1016/j.mam.2012.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/19/2023]
Abstract
Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews (Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011). Large meta analysis of AMD GWAS has added new loci and variants to this collection (Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011). This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years.
Collapse
Affiliation(s)
- Michael B Gorin
- Department of Ophthalmology, David Geffen School of Medicine, UC, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Parmeggiani F, Gemmati D, Costagliola C, Semeraro F, Perri P, D'Angelo S, Romano MR, De Nadai K, Sebastiani A, Incorvaia C. Genetic predictors of response to photodynamictherapy. Mol Diagn Ther 2012; 15:195-210. [PMID: 21913742 DOI: 10.1007/bf03256411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Western countries, therapeutic management of patients affected by choroidal neovascularization (CNV) secondary to different typologies of macular degeneration represents a major health care problem. Age-related macular degeneration is the disease most frequently associated with CNV development. Schematically, CNVs can be distinguished into classic and occult subtypes, which are characterized by variable natural history and different responsiveness to some therapeutic procedures. At present, the dramatic vision loss due to CNV can be mainly treated by two interventional strategies, which are utilizable in either single or combined modalities: photodynamic therapy with verteporfin (PDT-V), and intravitreal administration of drugs acting against vascular endothelial growth factor. The combined use of PDT-V and anti-angiogenic drugs represents one of the most promising strategies against neovascular macular degeneration, but it unavoidably results in an expensive increase in health resource utilization. However, the positive data from several studies serve as a basis for reconsidering the role of PDT-V, which has undergone a renaissance prompted by the need for a more rational therapeutic approach toward CNV. New pharmacogenetic knowledge of PDT-V points to exploratory prospects to optimize the clinical application of this intriguing photothrombotic procedure. In fact, a Medline search provides data regarding the role of several single nucleotide polymorphisms (SNPs) as genetic predictors of CNV responsiveness to PDT-V. Specifically, correlations between SNPs and different levels of PDT-V efficacy have been detected by examining the gene variants influencing (i) thrombo-coagulative pathways, i.e. methylenetetrahydrofolate reductase (MTHFR) 677C>T (rs1801133), factor V (F5) 1691G>A (rs6025), prothrombin (F2) 20210G>A (rs1799963), and factor XIII-A (F13A1) 185G>T (rs5985); (ii) complement activation and/or inflammatory processes, i.e. complement factor H (CFH) 1277T>C (rs1061170), high-temperature requirement factor A1 (HTRA1) promoter -512G>A (rs11200638), and two variants of the C-reactive protein (CRP) gene (rs2808635 and rs876538); and (iii) production and bioavailability of vascular endothelial growth factor (VEGFA -2578C>A [rs699947] and rs2146323). This article critically evaluates both the clinical plausibility and the opportunity to utilize the most important SNP-response interactions of PDT-V for an effective upgrade of the current anti-CNV therapeutic scenario. In addition, the pharmacogenetics of a very severe post-PDT-V adverse event, i.e. a decrease in acute vision, is briefly discussed. A comprehensive appraisal of the findings reviewed in this article should be carefully considered to design future trials aimed at verifying (after proper genotypic stratification of the enrolled patients) whether these innovative pharmacogenetic approaches will be able to improve the multifaceted interventional management of neovascular macular degeneration.
Collapse
|