1
|
Queen D, Avram MR. Exosomes for Treating Hair Loss: A Review of Clinical Studies. Dermatol Surg 2024:00042728-990000000-01015. [PMID: 39447204 DOI: 10.1097/dss.0000000000004480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND The regenerative properties of exosomes make them especially appealing to treat skin and hair diseases. Preclinical studies suggest that exosomes may fuel hair growth by stimulating dermal papilla cells, activating hair follicle stem cells, and promoting angiogenesis. However, very limited data are available on the safety and efficacy of exosome use in human subjects. OBJECTIVE To review the published literature on exosome use in human subjects with a focus on safety and the challenges facing clinical implementation in the treatment of androgenetic and nonscarring alopecias. MATERIALS AND METHODS A review was conducted of PubMed, EMBASE, and Cochrane databases and included 48 studies. Twenty-five studies were clinical trials, 14 case reports, 4 case series, 1 retrospective review, and 4 conference abstracts. RESULTS Nine clinical studies were found relevant to alopecia. One hundred twenty-five patients received an exosome treatment for hair loss. Side effects were rare. However, in the broader field of dermatology, at least 10 serious adverse events have been reported. CONCLUSION Although exosomes have many promising therapeutic applications, there is demand for larger well-designed clinical trials with extended follow-up periods to prove efficacy and a need for consistent manufacturing standards and regulatory oversight to ensure product safety.
Collapse
Affiliation(s)
- Dawn Queen
- Department of Dermatology, Columbia University Irving Medical Center, Private Practice, New York City, NY
| | - Marc R Avram
- Department of Dermatology, Weill Cornell Medical School, Private Practice, New York City, NY
| |
Collapse
|
2
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10791-7. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Ye Z, Zheng Y, Li N, Zhang H, Li Q, Wang X. Repair of spinal cord injury by bone marrow mesenchymal stem cell-derived exosomes: a systematic review and meta-analysis based on rat models. Front Mol Neurosci 2024; 17:1448777. [PMID: 39169950 PMCID: PMC11335736 DOI: 10.3389/fnmol.2024.1448777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study aims to systematically evaluate the efficacy of bone marrow mesenchymal stem cell-derived exosomes (BMSCs-Exo) in improving spinal cord injury (SCI) to mitigate the risk of translational discrepancies from animal experiments to clinical applications. Methods We conducted a comprehensive literature search up to March 2024 using PubMed, Embase, Web of Science, and Scopus databases. Two researchers independently screened the literature, extracted data, and assessed the quality of the studies. Data analysis was performed using STATA16 software. Results A total of 30 studies were included. The results indicated that BMSCs-Exo significantly improved the BBB score in SCI rats (WMD = 3.47, 95% CI [3.31, 3.63]), inhibited the expression of the pro-inflammatory cytokine TNF-α (SMD = -3.12, 95% CI [-3.57, -2.67]), and promoted the expression of anti-inflammatory cytokines IL-10 (SMD = 2.76, 95% CI [1.88, 3.63]) and TGF-β (SMD = 3.89, 95% CI [3.02, 4.76]). Additionally, BMSCs-Exo significantly reduced apoptosis levels (SMD = -4.52, 95% CI [-5.14, -3.89]), promoted the expression of axonal regeneration markers NeuN cells/field (SMD = 3.54, 95% CI [2.65, 4.42]), NF200 (SMD = 4.88, 95% CI [3.70, 6.05]), and the number of Nissl bodies (SMD = 1.89, 95% CI [1.13, 2.65]), and decreased the expression of astrogliosis marker GFAP (SMD = -5.15, 95% CI [-6.47, -3.82]). The heterogeneity among studies was primarily due to variations in BMSCs-Exo transplantation doses, with efficacy increasing with higher doses. Conclusion BMSCs-Exo significantly improved motor function in SCI rats by modulating inflammatory responses, reducing apoptosis, inhibiting astrogliosis, and promoting axonal regeneration. However, the presence of selection, performance, and detection biases in current animal experiments may undermine the quality of evidence in this study.
Collapse
Affiliation(s)
- Zhongduo Ye
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yukun Zheng
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningning Li
- Lanzhou Maternal and Child Health Hospital, Lanzhou, China
| | - Huaibin Zhang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qiangqiang Li
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiong Wang
- The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Van Delen M, Derdelinckx J, Wouters K, Nelissen I, Cools N. A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy. J Extracell Vesicles 2024; 13:e12458. [PMID: 38958077 PMCID: PMC11220457 DOI: 10.1002/jev2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Nowadays, it has become clear that extracellular vesicles (EVs) are not a cellular waste disposal vesicle but are an essential part of an intercellular communication system. Besides the use of EVs in biomarker studies and diagnostics, the potential of EV-therapeutics has been seen by many. They provide unique properties for disease therapy, including strong immune-modulatory actions, the possibility of engineering, low immunogenicity, and the capability of crossing biological barriers. Proof-of-concept of EV-therapeutics for various pathologies has been achieved in preclinical studies. However, clinical trials with EVs have only been emerging slowly. Here, we aim to provide a comprehensive overview of the current state-of-the-art concerning clinical studies using EVs in human therapy. By approaching the current knowledge in a systematic manner, we were able to include 21 reports for meta-analysis of safety and evaluation of efficacy outcomes. Overall, we have shown that EV-based therapy is safe with a low incidence of serious adverse events (SAE; 0.7% (95%-CI: 0.1-5.2%), and adverse events (AE; 4.4% (95%-CI: 0.7-22.2%). Subgroup analysis showed no significant difference in SAE when comparing autologous versus allogeneic administration, as well as engineered versus non-engineered EV products. A significantly higher number of AE was seen in autologous versus allogeneic administration. However, the clinical relevance remains questionable. Evaluation of the clinical outcomes of immunostimulatory, immunosuppressive or regenerative EV-therapies indicated improvement in the majority of treated patients. Despite these promising results, data need to be approached with caution due to a high heterogeneity in the EVs manufacturing methods, study design, and reporting of (S)AE. Overall, we conclude that EV-based therapy is safe and presents a promising opportunity in therapy. More efforts are needed in the standardization and harmonization of reporting of EV isolation and characterization data as well as in the reporting of (S)AE to allow inter-study comparison.
Collapse
Affiliation(s)
- Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio)University of AntwerpAntwerpenBelgium
- Health DepartmentFlemish Institute for Technological Research (VITO)MolBelgium
| | - Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio)University of AntwerpAntwerpenBelgium
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University HospitalUniversity of AntwerpEdegemBelgium
| | | | - Inge Nelissen
- Health DepartmentFlemish Institute for Technological Research (VITO)MolBelgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio)University of AntwerpAntwerpenBelgium
- Center for Cell Therapy and Regenerative Medicine (CCRG)Antwerp University HospitalEdegemBelgium
| |
Collapse
|
5
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Kim M, Kim JY, Rhim WK, Cimaglia G, Want A, Morgan JE, Williams PA, Park CG, Han DK, Rho S. Extracellular vesicle encapsulated nicotinamide delivered via a trans-scleral route provides retinal ganglion cell neuroprotection. Acta Neuropathol Commun 2024; 12:65. [PMID: 38649962 PMCID: PMC11036688 DOI: 10.1186/s40478-024-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gloria Cimaglia
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Andrew Want
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| | - Pete A Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Chun Gwon Park
- Department of Biomedical Engineering and Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Jangan-gu, Suwon-Si, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Liu X, Wang B, Sun H, Ren Y, Zhang H. Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration. Biomed Pharmacother 2024; 173:116424. [PMID: 38471273 DOI: 10.1016/j.biopha.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence of retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, has been increasing globally and is linked to the aging population and improved life expectancy. These diseases are characterized by chronic, progressive neuronal damage or depletion of the photoreceptor cells in the retina, and limited effective treatment options are currently available. Mesenchymal stem cell-derived exosomes (MSC-EXOs) containing cytokines, growth factors, lipids, mRNA, and miRNA, which act as mediators of intercellular communication transferring bioactive molecules to recipient cells, offer an appealing, non-cellular nanotherapeutic approach for retinal degenerative diseases. However, treatment specificity is compromised due to their high heterogeneity in size, content, functional effects, and parental cellular source. To improve this, engineered MSC-EXOs with increased drug-loading capacity, targeting ability, and resistance to bodily degradation and elimination have been developed. This review summarizes the recent advances in miRNAs of MSC-EXOs as a treatment for retinal degeneration, discussing the strategies and methods for engineering therapeutic MSC-EXOs. Notably, to address the single functional role of engineered MSC-EXOs, we propose a novel concept called "Compound Engineered MSC-EXOs (Co-E-MSC-EXOs)" along with its derived potential therapeutic approaches. The advantages and challenges of employing Co-E-MSC-EXOs for retinal degeneration in clinical applications, as well as the strategies and issues related to them, are also highlighted.
Collapse
Affiliation(s)
- Yao Wang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| | - Xianning Liu
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Bei Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanhan Sun
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yiqian Ren
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Hongbing Zhang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| |
Collapse
|
8
|
Heo JI, Ryu J. Exosomal noncoding RNA: A potential therapy for retinal vascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102128. [PMID: 38356865 PMCID: PMC10865410 DOI: 10.1016/j.omtn.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Exosomes are extracellular vesicles that can contain DNA, RNA, proteins, and metabolites. They are secreted by cells and play a regulatory role in various biological responses by mediating cell-to-cell communication. Moreover, exosomes are of interest in developing therapies for retinal vascular disorders because they can deliver various substances to cellular targets. According to recent research, exosomes can be used as a strategy for managing retinal vascular diseases, and they are being investigated for therapeutic purposes in eye conditions, including glaucoma, dry eye syndrome, retinal ischemia, diabetic retinopathy, and age-related macular degeneration. However, the role of exosomal noncoding RNA in retinal vascular diseases is not fully understood. Here, we reviewed the latest research on the biological role of exosomal noncoding RNA in treating retinal vascular diseases. Research has shown that noncoding RNAs, including microRNAs, circular RNAs, and long noncoding RNAs play a significant role in the regulation of retinal vascular diseases. Furthermore, through exosome engineering, the expression of relevant noncoding RNAs in exosomes can be controlled to regulate retinal vascular diseases. Therefore, this review suggests that exosomal noncoding RNA could be considered as a biomarker for diagnosis and as a therapeutic target for treating retinal vascular disease.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Bansal S, Rahman M, Ravichandran R, Canez J, Fleming T, Mohanakumar T. Extracellular Vesicles in Transplantation: Friend or Foe. Transplantation 2024; 108:374-385. [PMID: 37482627 DOI: 10.1097/tp.0000000000004693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The long-term function of transplanted organs, even under immunosuppression, is hindered by rejection, especially chronic rejection. Chronic rejection occurs more frequently after lung transplantation, termed chronic lung allograft dysfunction (CLAD), than after transplantation of other solid organs. Pulmonary infection is a known risk factor for CLAD, as transplanted lungs are constantly exposed to the external environment; however, the mechanisms by which respiratory infections lead to CLAD are poorly understood. The role of extracellular vesicles (EVs) in transplantation remains largely unknown. Current evidence suggests that EVs released from transplanted organs can serve as friend and foe. EVs carry not only major histocompatibility complex antigens but also tissue-restricted self-antigens and various transcription factors, costimulatory molecules, and microRNAs capable of regulating alloimmune responses. EVs play an important role in antigen presentation by direct, indirect, and semidirect pathways in which CD8 and CD4 cells can be activated. During viral infections, exosomes (small EVs <200 nm in diameter) can express viral antigens and regulate immune responses. Circulating exosomes may also be a viable biomarker for other diseases and rejection after organ transplantation. Bioengineering the surface of exosomes has been proposed as a tool for targeted delivery of drugs and personalized medicine. This review focuses on recent studies demonstrating the role of EVs with a focus on exosomes and their dual role (immune activation or tolerance induction) after organ transplantation, more specifically, lung transplantation.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | | | | | | | | | | |
Collapse
|
11
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
12
|
Hormozi A, Hasanzadeh S, Ebrahimi F, Daei N, Hajimortezayi Z, Mehdizadeh A, Zamani M. Treatment with Exosomes Derived from Mesenchymal Stem Cells: A New Window of Healing Science in Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:879-893. [PMID: 37622719 DOI: 10.2174/1574888x18666230824165014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
Many studies have been conducted on the potential applications of mesenchymal stem cells (MSCs) over recent years due to their growing importance in regenerative medicine. Exosomes are considered cargos capable of transporting proteins, peptides, lipids, mRNAs, and growth factors. MSCsderived exosomes are also involved in the prevention or treatment of a variety of diseases, including cardiovascular diseases, neurological diseases, skin disorders, lung diseases, osteoarthritis, damaged tissue repair, and other diseases. This review attempted to summarize the importance of employing MSCs in regenerative medicine by gathering and evaluating information from current literature. The role of MSCs and the potential applications of MSCs-derived exosomes have also been discussed.
Collapse
Affiliation(s)
- Arezoo Hormozi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajedeh Hasanzadeh
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Faezeh Ebrahimi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Narges Daei
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zahra Hajimortezayi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Bao H, Tian Y, Wang H, Ye T, Wang S, Zhao J, Qiu Y, Li J, Pan C, Ma G, Wei W, Tao Y. Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases. Nat Biomed Eng 2023:10.1038/s41551-023-01112-3. [PMID: 37872369 DOI: 10.1038/s41551-023-01112-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
The therapeutic benefits of many cell types involve paracrine mechanisms. Inspired by the paracrine functions of exosomes and the sustained degradation properties of microcapsules, here we report the therapeutic benefits of exosome-loaded degradable poly(lactic-co-glycolic acid) microcapsules with micrometric pores for the treatment of vitreoretinal diseases. On intravitreal injection in a mouse model of retinal ischaemia-reperfusion injury, microcapsules encapsulating mouse mesenchymal-stem-cell-derived exosomes settled in the inferior vitreous cavity, released exosomes for over one month as they underwent degradation and led to the restoration of retinal thickness to nearly that of the healthy retina. In mice and non-human primates with primed mycobacterial uveitis, intravitreally injected microcapsules loaded with exosomes from monkey regulatory T cells resulted in a substantial reduction in the levels of inflammatory cells. The exosome-encapsulating microcapsules, which can be lyophilised, may offer alternative treatment options for vitreoretinal diseases.
Collapse
Affiliation(s)
- Han Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Ying Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China
| | - Haixin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiawei Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, P. R. China
| | - Jian Li
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P. R. China.
| |
Collapse
|
14
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
15
|
Kim H, Goh YS, Park SE, Hwang J, Kang N, Jung JS, Kim YB, Choi EK, Park KM. Preventive Effects of Exosome-Rich Conditioned Medium From Amniotic Membrane-Derived Mesenchymal Stem Cells for Diabetic Retinopathy in Rats. Transl Vis Sci Technol 2023; 12:18. [PMID: 37610767 PMCID: PMC10461646 DOI: 10.1167/tvst.12.8.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is an important disease that causes vision loss in many diabetic patients. Stem cell therapy has been attempted for treatment of this disease; however, it has some limitations. This study aimed to evaluate the preventive efficacy of exosome-rich conditioned medium (ERCM) derived from amniotic membrane stem cells for DR in rats. Methods Twenty-eight 8-week-old male Sprague-Dawley rats were divided into three groups: group 1, normal control (Con) group; group 2, diabetes mellitus (DM) group; and group 3, DM with ERCM-treated (DM-ERCM) group. DM was induced by intraperitoneal injection of streptozotocin. The DM-ERCM group received ERCM containing 1.2 × 10⁹ exosomes into subconjunctival a total of four times every 2 weeks. Results On electroretinogram, the DM-ERCM group had significantly higher b-wave and flicker amplitudes than those in the DM group. In fundoscopy, retinal vascular attenuation was found in both the DM and DM-ERCM groups; however, was more severe in the DM group. On histology, the ganglion cell and nerve fiber layer rates of the total retinal layer significantly increased in the DM group compared with the Con group, whereas the DM-ERCM group showed no significant difference compared with the Con group. Cataracts progressed significantly more in the DM group than that in the DM-ERCM group and there was no uveitis in the DM-ERCM group. Conclusions Subconjunctival ERCM delayed the progression of DR and cataracts and significantly reduced the incidence of uveitis. Translational Relevance Our study shows the clinical potential of minimally invasive exosome-rich conditioned medium treatment to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Hyemin Kim
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Yeong-Seok Goh
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Eun Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jiyi Hwang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Nanyoung Kang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ji Seung Jung
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Yun-Bae Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
16
|
Wang Y, Chen H, Fan X, Xu C, Li M, Sun H, Song J, Jia F, Wei W, Jiang F, Li G, Zhong D. Bone marrow mesenchymal stem cell-derived exosomal miR-193b-5p reduces pyroptosis after ischemic stroke by targeting AIM2. J Stroke Cerebrovasc Dis 2023; 32:107235. [PMID: 37393689 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107235] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Ischemic stroke represents a major factor causing global morbidity and death. Bone marrow mesenchymal stem cell (BMSC)-derived exosomes (Exos) have important effects on treating ischemic stroke. Here, we investigated the therapeutic mechanism by which BMSC-derived exosomal miR-193b-5p affects ischemic stroke. METHODS luciferase assay was performed to evaluate the regulatory relationship of miR-193b-5p with absent in melanoma 2 (AIM2). Additionally, an oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed for the in vitro assay, while a middle cerebral artery occlusion (MCAO) model was developed for the in vivo assay. After exosome therapy, lactate dehydrogenase and MTT assays were conducted to detect cytotoxicity and cell viability, while PCR, ELISA, western blotting assay, and immunofluorescence staining were performed to detect changes in the levels of pyroptosis-related molecules. TTC staining and TUNEL assays were performed to assess cerebral ischemia/reperfusion (I/R) injury. RESULTS In the luciferase assay, miR-193b-5p showed direct binding to the 3'-untranslated region of AIM2. In both in vivo and in vitro assays, the injected exosomes could access the sites of ischemic injury and could be internalized. In the in vitro assay, compared to normal BMSC-Exos, miR-193b-5p-overexpressing BMSC-Exos showed greater effects on increasing cell viability and attenuating cytotoxicity; AIM2, GSDMD-N, and cleaved caspase-1 levels; and IL-1β/IL-18 generation. In the in vivo assay, compared to normal BMSC-Exos, miR-193b-5p-overexpressing BMSC-Exos showed greater effects on decreasing the levels of these pyroptosis-related molecules and infarct volume. CONCLUSION BMSC-Exos attenuate the cerebral I/R injury in vivo and in vitro by inhibiting AIM2 pathway-mediated pyroptosis through miR-193b-5p delivery.
Collapse
Affiliation(s)
- Yingju Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Hongping Chen
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Xuehui Fan
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Chen Xu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Meng Li
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Hongxue Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Jihe Song
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Feihong Jia
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Wan Wei
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Fangchao Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China
| | - Guozhong Li
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China; Department of Neurology, Heilongjiang Provincial Hospital, 405 Guogeli Street, Harbin 150036, Heilongjiang Province, PR China.
| | - Di Zhong
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, PR China.
| |
Collapse
|
17
|
Tian Y, Zhang T, Li J, Tao Y. Advances in development of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev 2023; 199:114899. [PMID: 37236425 DOI: 10.1016/j.addr.2023.114899] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Exosomes contain multiple bioactive molecules and maintain the connection between cells. Recent advances in exosome-based therapeutics have witnessed unprecedented opportunities in treating ophthalmic diseases, including traumatic diseases, autoimmune diseases, chorioretinal diseases and others. Utilization of exosomes as delivery vectors to encapsulate both drugs and therapeutic genes could yield higher efficacy and avoid the unnecessary immune responses. However, exosome-based therapies also come with some potential ocular risks. In this review, we first present a general introduction to exosomes. Then we provide an overview of available applications and discuss their potential risks. Moreover, we review recently reported exosomes as delivery vectors for ophthalmic diseases. Finally, we put forward future perspectives to grapple with its translation and underlying issues.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Tao Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
18
|
Johnson J, Law SQK, Shojaee M, Hall AS, Bhuiyan S, Lim MBL, Silva A, Kong KJW, Schoppet M, Blyth C, Ranasinghe HN, Sejic N, Chuei MJ, Tatford OC, Cifuentes‐Rius A, James PF, Tester A, Dixon I, Lichtfuss G. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J Extracell Vesicles 2023; 12:e12332. [PMID: 37353884 PMCID: PMC10290200 DOI: 10.1002/jev2.12332] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
The release of growth factors, cytokines and extracellular matrix modifiers by activated platelets is an important step in the process of healthy wound healing. Extracellular vesicles (EVs) released by activated platelets carry this bioactive cargo in an enriched form, and may therefore represent a potential therapeutic for the treatment of delayed wound healing, such as chronic wounds. While EVs show great promise in regenerative medicine, their production at clinical scale remains a critical challenge and their tolerability in humans is still to be fully established. In this work, we demonstrate that Ligand-based Exosome Affinity Purification (LEAP) chromatography can successfully isolate platelet EVs (pEVs) of clinical grade from activated platelets, which retain the regenerative properties of the parent cell. LEAP-isolated pEVs display the expected biophysical features of EV populations and transport essential proteins in wound healing processes, including insulin growth factor (IGF) and transforming growth factor beta (TGF-ß). In vitro studies show that pEVs induce proliferation and migration of dermal fibroblasts and increase dermal endothelial cells' angiogenic potential, demonstrating their wound healing potential. pEV treatment activates the ERK and Akt signalling pathways within recipient cells. In a first-in-human, double-blind, placebo-controlled, phase I clinical trial of healthy volunteer adults, designed primarily to assess safety in the context of wound healing, we demonstrate that injections of LEAP-purified pEVs in formulation buffer are safe and well tolerated (Plexoval II study, ACTRN12620000944932). As a secondary objective, biological activity in the context of wound healing rate was assessed. In this cohort of healthy participants, in which the wound bed would not be expected to be deficient in the bioactive cargo that pEVs carry, all wounds healed rapidly and completely and no difference in time to wound closure of the treated and untreated wounds was observed at the single dose tested. The outcomes of this study evidence that pEVs manufactured through the LEAP process can be injected safely in humans as a potential wound healing treatment, and warrant further study in clinical trials designed expressly to assess therapeutic efficacy in patients with delayed or disrupted wound healing.
Collapse
Affiliation(s)
- Jancy Johnson
- Exopharm LtdMelbourneVICAustralia
- Department of Biochemistry and PharmacologyUniversity of MelbourneParkvilleVICAustralia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gregor Lichtfuss
- Exopharm LtdMelbourneVICAustralia
- Department of Biochemistry and PharmacologyUniversity of MelbourneParkvilleVICAustralia
| |
Collapse
|
19
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
20
|
An S, Anwar K, Ashraf M, Lee H, Jung R, Koganti R, Ghassemi M, Djalilian AR. Wound-Healing Effects of Mesenchymal Stromal Cell Secretome in the Cornea and the Role of Exosomes. Pharmaceutics 2023; 15:1486. [PMID: 37242728 PMCID: PMC10221647 DOI: 10.3390/pharmaceutics15051486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) and their secreted factors have been shown to have immunomodulatory and regenerative effects. In this study, we investigated human bone-marrow-derived MSC secretome (MSC-S) for the treatment of corneal epithelial wounds. Specifically, we evaluated the role of MSC extracellular vesicles (EV)/exosomes in mediating the wound-healing effects of the MSC-S. In vitro studies using human corneal epithelial cells showed that MSC-CM increased cell proliferation in HCEC and HCLE cells, while EV-depleted MSC-CM showed lower cell proliferation in both cell lines compared to the MSC-CM group. In vitro and in vivo experiments revealed that 1X MSC-S consistently promoted wound healing more effectively than 0.5X MSC-S, and MSC-CM promoted wound healing in a dose-dependent manner, while exosome deprivation delayed wound healing. We further evaluated the incubation period of MSC-CM on corneal wound healing and showed that MSC-S collected for 72 h is more effective than MSC-S collected for 48 h. Finally, we evaluated the stability of MSC-S under different storage conditions and found that after one cycle of freeze-thawing, MSC-S is stable at 4 °C for up to 4 weeks. Collectively, we identified the following: (i) MSC-EV/Exo as the active ingredient in MSC-S that mediates the wound-healing effects in the corneal epithelium, providing a measure to optimize its dosing for a potential clinical product; (ii) Treatment with EV/Exo-containing MSC-S resulted in an improved corneal barrier and decreased corneal haze/edema relative to EV/Exo-depleted MSC-S; (iii) The stability of MSC-CM for up to 4 weeks showed that the regular storage condition did not significantly impact its stability and therapeutic functions.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Khandaker Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Mohammadjavad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hyungjo Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (H.L.); (R.J.); (R.K.); (M.G.)
| |
Collapse
|
21
|
Yang M, Peng GH. The molecular mechanism of human stem cell-derived extracellular vesicles in retinal repair and regeneration. Stem Cell Res Ther 2023; 14:84. [PMID: 37046324 PMCID: PMC10100447 DOI: 10.1186/s13287-023-03319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Extracellular vesicles (EVs), including microvesicles (MVs) and exosomes, play a critical role in metabolic regulation and intracellular communication. Stem cell-derived EVs are considered to have the potential for regeneration, like stem cells, while simultaneously avoiding the risk of immune rejection or tumour formation. The therapeutic effect of stem cell-derived EVs has been proven in many diseases. However, the molecular mechanism of stem cell-derived EVs in retinal repair and regeneration has not been fully clarified. In this review, we described the biological characteristics of stem cell-derived EVs, summarized the current research on stem cell-derived EV treatment in retinal repair and regeneration, and discussed the potential and challenges of stem cell-derived EVs in translational medicine.
Collapse
Affiliation(s)
- Mei Yang
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Wu KY, Ahmad H, Lin G, Carbonneau M, Tran SD. Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Comprehensive Review. Pharmaceutics 2023; 15:1167. [PMID: 37111652 PMCID: PMC10142951 DOI: 10.3390/pharmaceutics15041167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Over the past decade, the field of mesenchymal stem cell (MSC) therapy has exhibited rapid growth. Due to their regenerative, reparatory, and immunomodulatory capacities, MSCs have been widely investigated as therapeutic agents in the cell-based treatment of chronic ophthalmic pathologies. However, the applicability of MSC-based therapy is limited by suboptimal biocompatibility, penetration, and delivery to the target ocular tissues. An emerging body of research has elucidated the role of exosomes in the biological functions of MSCs, and that MSC-derived extracellular vesicles (EVs) possess anti-inflammatory, anti-apoptotic, tissue repairing, neuroprotective, and immunomodulatory properties similar to MSCs. The recent advances in MSCs-derived exosomes can serve as solutions to the challenges faced by MSCs-therapy. Due to their nano-dimensions, MSC-derived exosomes can rapidly penetrate biological barriers and reach immune-privileged organs, allowing for efficient delivery of therapeutic factors such as trophic and immunomodulatory agents to ocular tissues that are typically challenging to target by conventional therapy and MSCs transplantation. In addition, the use of EVs minimizes the risks associated with mesenchymal stem cell transplantation. In this literature review, we focus on the studies published between 2017 and 2022, highlighting the characteristics of EVs derived from MSCs and their biological functions in treating anterior and posterior segment ocular diseases. Additionally, we discuss the potential use of EVs in clinical settings. Rapid advancements in regenerative medicine and exosome-based drug delivery, in conjunction with an increased understanding of ocular pathology and pharmacology, hold great promise for the treatment of ocular diseases. The potential of exosome-based therapies is exciting and can revolutionize the way we approach these ocular conditions.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Hamza Ahmad
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Grace Lin
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Marjorie Carbonneau
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
23
|
Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, Gholizadeh O. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal 2023; 21:20. [PMID: 36690996 PMCID: PMC9869323 DOI: 10.1186/s12964-022-01017-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression by targeting mRNA. Moreover, it has been shown that miRNAs expression are changed in various diseases, such as cancers, autoimmune disease, infectious diseases, and neurodegenerative Diseases. The suppression of miRNA function can be easily attained by utilizing of anti-miRNAs. In contrast, an enhancement in miRNA function can be achieved through the utilization of modified miRNA mimetics. The discovery of appropriate miRNA carriers in the body has become an interesting subject for investigators. Exosomes (EXOs) therapeutic efficiency and safety for transferring different cellular biological components to the recipient cell have attracted significant attention for their capability as miRNA carriers. Mesenchymal stem cells (MSCs) are recognized to generate a wide range of EXOs (MSC-EXOs), showing that MSCs may be effective for EXO generation in a clinically appropriate measure as compared to other cell origins. MSC-EXOs have been widely investigated because of their immune attributes, tumor-homing attributes, and flexible characteristics. In this article, we summarized the features of miRNAs and MSC-EXOs, including production, purification, and miRNA loading methods of MSC-EXOs, and the modification of MSC-EXOs for targeted miRNA delivery in various diseases. Video abstract.
Collapse
Affiliation(s)
- Elham Oveili
- Department of Pharmaceutical Science, Azad Islamic University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Bazavar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Mamaghanizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Yasamineh
- Department of Biotechnology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Omid Gholizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Attia N, Khalifa YH, Mashal M, Puras G, Pedraz JL. Stem Cell-Derived Extracellular Vesicles as a Potential Therapeutic Tool for Eye Diseases: From Benchtop to Bedside. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:127-143. [PMID: 36525172 DOI: 10.1007/5584_2022_754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cell-derived extracellular vesicles (SC-EVs) have remarkably drawn clinicians' attention in treating ocular diseases. As a paracrine factor of stem cells and an appealing alternative for off-the-shelf cell-free therapeutics, SC-EVs can be conveniently applied topically on the ocular surface or introduced to the retina via intravitreal injection, without increasing the risks of immunogenesis or oncogenesis. This chapter aims to assess the potential applications for EV, obtained from various types of stem cells, in myriad eye diseases (traumatic, inflammatory, degenerative, immunological, etc.). To the best of our knowledge, all relevant pre-clinical studies are summarized here. Furthermore, we highlight the up-to-date status of clinical trials in the same realm and emphasize where future research efforts should be directed. For a successful clinical translation, various drawbacks of EVs therapy should be overcome (e.g., contamination, infection, insufficient yield, etc.). Moreover, standardized, and scalable extraction, purification, and characterization protocols are highly suggested to determine the exosome quality before they are offered to patients with ocular disorders.
Collapse
Affiliation(s)
- Noha Attia
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Yasmine H Khalifa
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Mashal
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, Vitoria-Gasteiz, Spain
| |
Collapse
|
25
|
Rohowetz LJ, Koulen P. Stem cell-derived retinal pigment epithelium cell therapy: Past and future directions. Front Cell Dev Biol 2023; 11:1098406. [PMID: 37065847 PMCID: PMC10097914 DOI: 10.3389/fcell.2023.1098406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
The eyes are relatively immune privileged organs, making them ideal targets for stem cell therapy. Researchers have recently developed and described straightforward protocols for differentiating embryonic and induced pluripotent stem cells into retinal pigment epithelium (RPE), making diseases affecting the RPE, such as age-related macular degeneration (AMD), viable targets for stem cell therapy. With the advent of optical coherence tomography, microperimetry, and various other diagnostic technologies, the ability to document disease progression and monitor response to treatments such as stem cell therapy has been significantly enhanced in recent years. Previous phase I/II clinical trials have employed various cell origins, transplant methods, and surgical techniques to identify safe and efficacious methods of RPE transplantation, and many more are currently underway. Indeed, findings from these studies have been promising and future carefully devised clinical trials will continue to enhance our understanding of the most effective methods of RPE-based stem cell therapy, with the hope to eventually identify treatments for disabling and currently incurable retinal diseases. The purpose of this review is to briefly outline existing outcomes from initial clinical trials, review recent developments, and discuss future directions of clinical research involving stem-cell derived RPE cell transplantation for retinal disease.
Collapse
Affiliation(s)
- Landon J. Rohowetz
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri—Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
26
|
Yuan Y, Sun J, You T, Shen W, Xu W, Dong Q, Cui M. Extracellular Vesicle-Based Therapeutics in Neurological Disorders. Pharmaceutics 2022; 14:pharmaceutics14122652. [PMID: 36559145 PMCID: PMC9783774 DOI: 10.3390/pharmaceutics14122652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological diseases remain some of the major causes of death and disability in the world. Few types of drugs and insufficient delivery across the blood-brain barrier limit the treatment of neurological disorders. The past two decades have seen the rapid development of extracellular vesicle-based therapeutics in many fields. As the physiological and pathophysiological roles of extracellular vesicles are recognized in neurological diseases, they have become promising therapeutics and targets for therapeutic interventions. Moreover, advanced nanomedicine technologies have explored the potential of extracellular vesicles as drug delivery systems in neurological diseases. In this review, we discussed the preclinical strategies for extracellular vesicle-based therapeutics in neurological disorders and the struggles involved in their clinical application.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Weiwei Shen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Wenqing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- Correspondence: (Q.D.); (M.C.)
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- Correspondence: (Q.D.); (M.C.)
| |
Collapse
|
27
|
Műzes G, Sipos F. Mesenchymal Stem Cell-Derived Secretome: A Potential Therapeutic Option for Autoimmune and Immune-Mediated Inflammatory Diseases. Cells 2022; 11:cells11152300. [PMID: 35892597 PMCID: PMC9367576 DOI: 10.3390/cells11152300] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass several entities such as "classic" autoimmune disorders or immune-mediated diseases with autoinflammatory characteristics. Adult stem cells including mesenchymal stem cells (MSCs) are by far the most commonly used type in clinical practice. However, due to the possible side effects of MSC-based treatments, there is an increase in interest in the MSC-secretome (containing large extracellular vesicles, microvesicles, and exosomes) as an alternative therapeutic option in IMIDs. A wide spectrum of MSC-secretome-related biological activities has been proven thus far including anti-inflammatory, anti-apoptotic, and immunomodulatory properties. In comparison with MSCs, the secretome is less immunogenic but exerts similar biological actions, so it can be considered as an ideal cell-free therapeutic alternative. Additionally, since the composition of the MSC-secretome can be engineered, for a future perspective, it could also be viewed as part of a potential delivery system within nanomedicine, allowing us to specifically target dysfunctional cells or tissues. Although many encouraging results from pre-clinical studies have recently been obtained that strongly support the application of the MSC-secretome in IMIDs, human studies with MSC-secretome administration are still in their infancy. This article reviews the immunomodulatory effects of the MSC-secretome in IMIDs and provides insight into the interpretation of its beneficial biological actions.
Collapse
|
28
|
Chen H, Sun T, Jiang C. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy. J Control Release 2022; 348:572-589. [PMID: 35714733 DOI: 10.1016/j.jconrel.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Great attention has been paid to the impressive role the macromolecules played in cancer immunotherapy, however, the applications were largely limited by their poor circulation stability, low cellular uptake efficiency, and off-target effects. As an important messenger of intercellular communication, extracellular vesicles (EVs) exhibit unique advantages in macromolecule delivery compared to traditional synthetic carriers, offering new possibilities for modern drug delivery. These naturally derived carriers can achieve stable, efficient, and selective delivery of macromolecules and improve the efficacy and potentiality of macromolecular drugs in cancer immunotherapy. This review provides a brief overview of the unique features of EVs related to macromolecule delivery, the strategies and recent advances of using EVs as macromolecule delivery carriers in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Jiang XC, Zhang T, Gao JQ. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv Drug Deliv Rev 2022; 187:114324. [PMID: 35640803 DOI: 10.1016/j.addr.2022.114324] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Exosomes and biomimetic vesicles are widely used for gene delivery because of their excellent gene loading capacity and stability and their natural targeting delivery potential. These vesicles take advantages of both cell-based bioactive delivery system and synthetical lipid-derived nanovectors to form crossover characteristics. To further optimize the specific targeting properties of crossover vesicles, studies of their in vivo fate and various engineering approaches including nanobiotechnology are required. This review describes the preparation process of exosomes and biomimetic vesicles, and summarizes the mechanism of loading and delivery of nucleic acids or gene editing systems. We provide a comprehensive overview of the techniques employed for preparing the targeting crossover vesicles based on their cellular uptake and targeting mechanism. To delineate the future prospects of crossover vesicle gene delivery systems, various challenges and clinical applications of vesicles have also been discussed.
Collapse
|
30
|
Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2003699. [PMID: 35150092 PMCID: PMC9130902 DOI: 10.1002/advs.202003699] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2021] [Indexed: 05/07/2023]
Abstract
Intrinsic shortcomings associated with conventional therapeutic strategies often compromise treatment efficacy in clinical ophthalmology, prompting the rapid development of versatile alternatives for satisfactory diagnostics and therapeutics. Given advances in material science, nanochemistry, and nanobiotechnology, a broad spectrum of functional nanosystems has been explored to satisfy the extensive requirements of ophthalmologic applications. In the present review, the recent progress in nanosystems, both conventional and emerging nanomaterials in ophthalmology from state-of-the-art studies, are comprehensively examined and the role of their fundamental physicochemical properties in bioavailability, tissue penetration, biodistribution, and elimination after interacting with the ophthalmologic microenvironment emphasized. Furthermore, along with the development of surface engineering of nanomaterials, emerging theranostic methodologies are promoted as potential alternatives for multipurpose ocular applications, such as emerging biomimetic ophthalmology (e.g., smart electrochemical eye), thus provoking a holistic review of "ocular nanomedicine." By affording insight into challenges encountered by ocular nanomedicine and further highlighting the direction of future studies, this review provides an incentive for enriching ocular nanomedicine-based fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
31
|
Abstract
PURPOSE To report the long-term outcomes of lens capsular flap transplantation (LCFT) as initial treatment for large macular holes (MHs). METHODS Thirteen consecutive eyes with large MHs who received LCFT as primary treatment were reviewed retrospectively. All enrolled eyes underwent standard 23-gauge vitrectomy, internal limiting membrane peeling, LCFT, and 15% perfluoropropane tamponade. Autologous whole blood was applied in selected eyes to make the LCT intact. A face-down position maintained for 2 weeks postoperatively. Data including demographic information, medical history, anatomical and functional outcomes, and complications were recorded. RESULTS The mean preoperative MHs diameter was 979.42 ± 388.28 µm. Eight eyes received autologous LCFT, and the other five eyes received allogenic LCFT. Whole blood was applied in seven eyes. The mean follow-up duration was 19.57 ± 6.24 months (range: 12.0-32.2 months). The macular hole was successfully closed in all cases (13/13). The median best-corrected visual acuity improved from 1.76 (interquartile range, 1.23-1.91) logarithm of the minimum angle of resolution (median Snellen acuity: 20/1,150) preoperatively to 1.16 ± 0.47 logarithm of the minimum angle of resolution (mean Snellen acuity: 20/290) (P < 0.01) at the last visit. No severe complications were noted. CONCLUSION Lens capsular flap transplantation may help to improve the closure rate and visual outcomes in large MHs, which could be an alternative method as primary treatment for large MHs.
Collapse
|
32
|
Bang OY, Kim JE. Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases. BMB Rep 2022. [PMID: 35000673 PMCID: PMC8810548 DOI: 10.5483/bmbrep.2022.55.1.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm−1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer’s disease and Parkinson’ disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- S&E bio, Inc, Seoul 06351, Korea
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Ji-Eun Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
33
|
Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 2022; 17:194-202. [PMID: 34100456 PMCID: PMC8451579 DOI: 10.4103/1673-5374.314323] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXOs) can be substituted for BMSCs in cell transplantation. However, the underlying mechanisms remain unclear. In this study, a rat model of T10 spinal cord injury was established using the impact method. Then, 30 minutes and 1 day after spinal cord injury, the rats were administered 200 μL exosomes via the tail vein (200 μg/mL; approximately 1 × 106 BMSCs). Treatment with BMSC-EXOs greatly reduced neuronal cell death, improved myelin arrangement and reduced myelin loss, increased pericyte/endothelial cell coverage on the vascular wall, decreased blood-spinal cord barrier leakage, reduced caspase 1 expression, inhibited interleukin-1β release, and accelerated locomotor functional recovery in rats with spinal cord injury. In the cell culture experiment, pericytes were treated with interferon-γ and tumor necrosis factor-α. Then, Lipofectamine 3000 was used to deliver lipopolysaccharide into the cells, and the cells were co-incubated with adenosine triphosphate to simulate injury in vitro. Pre-treatment with BMSC-EXOs for 8 hours greatly reduced pericyte pyroptosis and increased pericyte survival rate. These findings suggest that BMSC-EXOs may protect pericytes by inhibiting pyroptosis and by improving blood-spinal cord barrier integrity, thereby promoting the survival of neurons and the extension of nerve fibers, and ultimately improving motor function in rats with spinal cord injury. All protocols were conducted with the approval of the Animal Ethics Committee of Zhengzhou University on March 16, 2019.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lu-Lu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Fei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kai-Min Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ran-Ran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yao-Bing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Jie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
34
|
Chua JKE, Lim J, Foong LH, Mok CY, Tan HY, Tung XY, Ramasamy TS, Govindasamy V, Then KY, Das AK, Cheong SK. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Progress and Remaining Hurdles in Developing Regulatory Compliant Quality Control Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:191-211. [DOI: 10.1007/5584_2022_728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kagkelaris K, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol 2022; 14:25158414221112356. [PMID: 35873277 PMCID: PMC9301101 DOI: 10.1177/25158414221112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional drug delivery formulations, such as eye drops and ointments, are
mainly administered by topical instillation. The topical delivery of ophthalmic
drugs is a challenging endeavor despite the eye is easily accessible. Unique and
complex barriers, serving as protection against extrinsic harmful factors,
hamper therapeutic intraocular drug concentrations. Bioavailability for deeper
ocular tissues of the anterior segment of the eye is exceptionally low. As the
bioavailability of the active substance is the major hurdle to overcome, dosing
is increased, so the side effects do. Both provoke patient poor compliance,
confining the desired therapeutic outcome. The incidence and severity of adverse
reactions amplify evenly in the case of chronic treatments. Current research
focuses on the development of innovative delivery strategies to address low
ocular bioavailability and provide safe and convenient dosing schemes. The main
objective of this review is to explore and present the latest developments in
ocular drug delivery formulations for the treatment of the pathology of the
anterior segment of the eye. Nanotechnology-based formulations, that is, organic
nanoparticles (liposomes, niosomes/discosomes, dendrimers, nanoemulsions,
nanosuspensions, nanoparticles/nanospheres) and inorganic nanoparticles,
nanoparticle-laden therapeutic contact lenses, in situ gelling
systems, and ocular inserts, are summarized and presented accordingly.
Collapse
Affiliation(s)
- Konstantinos Kagkelaris
- Department of Ophthalmology, School of Medicine, University of Patras, 26500 Patras, Greece
- Department of General Pharmacology, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
36
|
Jin N, Sha W, Gao L. Shaping the Microglia in Retinal Degenerative Diseases Using Stem Cell Therapy: Practice and Prospects. Front Cell Dev Biol 2021; 9:741368. [PMID: 34966736 PMCID: PMC8710684 DOI: 10.3389/fcell.2021.741368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerative disease (RDD) refers to a group of diseases with retinal degeneration that cause vision loss and affect people's daily lives. Various therapies have been proposed, among which stem cell therapy (SCT) holds great promise for the treatment of RDDs. Microglia are immune cells in the retina that have two activation phenotypes, namely, pro-inflammatory M1 and anti-inflammatory M2 phenotypes. These cells play an important role in the pathological progression of RDDs, especially in terms of retinal inflammation. Recent studies have extensively investigated the therapeutic potential of stem cell therapy in treating RDDs, including the immunomodulatory effects targeting microglia. In this review, we substantially summarized the characteristics of RDDs and microglia, discussed the microglial changes and phenotypic transformation of M1 microglia to M2 microglia after SCT, and proposed future directions for SCT in treating RDDs.
Collapse
Affiliation(s)
- Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Weiwei Sha
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
37
|
Abdul-Kadir MA, Lim LT. Update on surgical management of complex macular holes: a review. Int J Retina Vitreous 2021; 7:75. [PMID: 34930488 PMCID: PMC8686572 DOI: 10.1186/s40942-021-00350-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Modern surgical interventions effectively treat macular holes (MHs) more than 90%. Current surgical treatment for MHs is pars plana vitrectomy with epiretinal membrane, internal limiting membrane (ILM) peeling, gas endotamponade, and prone posturing postoperatively. However, a small subset of MHs imposes challenges to surgeons and frustrations on patients. A narrative review was performed on the surgical treatment of challenging MHs including large and extra-large MHs, myopic MHs with or without retinal detachment, and chronic and refractory MHs. There are robust data supporting inverted ILM flap as the first-line treatment for large idiopathic MHs and certain secondary MHs including myopic MHs. In addition, several studies had shown that ILM flap manipulations in combination with surgical adjuncts increase surgical success, especially in difficult MHs. Even in eyes with limited ILM, surgical options included autologous retinal graft, human amniotic membrane, and creation of a distal ILM flap that can assist in MH closure even though the functional outcome may be affected by the MH chronicity. Despite relative success anatomically and visually after each technique, most techniques require a long-term study to analyze their safety profile and to establish any morphological changes of the MH plug in the closed MHs.
Collapse
Affiliation(s)
| | - Lik Thai Lim
- Department of Ophthalmology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| |
Collapse
|
38
|
Yang J, Ren XJ, Chen XT, Jiang YF, Han ZB, Han ZC, Li XR, Zhang XM. Human umbilical cord-derived mesenchymal stem cells treatment for refractory uveitis: a case series. Int J Ophthalmol 2021; 14:1784-1790. [PMID: 34804871 DOI: 10.18240/ijo.2021.11.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/14/2021] [Indexed: 01/22/2023] Open
Abstract
AIM To evaluate therapeutic outcomes of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) treatment in patients with refractory uveitis. METHODS A retrospective and noncomparative review was performed on four patients with refractory uveitis from December 2013 to December 2017. HUC-MSCs were administered intravenously at a dose of 1×106 cells/kg. Clinical response, relapse rate, change of visual acuity, and other metrics were evaluated. RESULTS All four patients presented with responses to HUC-MSCs treatment, with three males and one female. The numbers of uveitis attacks per year after the HUC-MSCs treatment (0, 2, 0, 0 respectively) all decreased compared with the numbers before the treatment (3, 6, 4, 4 respectively). The oral steroid and immunosuppressive agents were tapered in all patients without recrudescence of ocular inflammation, and three patients discontinued their oral medicine at the last visit. The best corrected visual acuity (BCVA) of 3 patients was improved to varying degrees, and the BCVA of 1 patient remained at 20/20 (Snellen chart) from the first to the last consultation. CONCLUSION The study provides an effective therapy of HUC-MSCs in maintaining remission in patients affected by uveitis refractory to previous immunosuppressant treatments.
Collapse
Affiliation(s)
- Jing Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xin-Jun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xi-Teng Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yuan-Feng Jiang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Zhi-Bo Han
- National Engineering Research Center of Cell Products, Tianjin 300457, China
| | - Zhong-Chao Han
- National Engineering Research Center of Cell Products, Tianjin 300457, China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Beijing 300457, China
| | - Xiao-Rong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
39
|
Yuan A, Yang D, Olmos de Koo L. Current Trends in Macular Hole Repair. CURRENT SURGERY REPORTS 2021. [DOI: 10.1007/s40137-021-00305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
41
|
Gu C, Feng J, Waqas A, Deng Y, Zhang Y, Chen W, Long J, Huang S, Chen L. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Front Cell Dev Biol 2021; 9:709204. [PMID: 34568322 PMCID: PMC8458970 DOI: 10.3389/fcell.2021.709204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, biomaterial scaffolds have been widely applied in the field of tissue engineering and regenerative medicine. Due to different production methods, unique types of three-dimensional (3D) scaffolds can be fabricated to meet the structural characteristics of tissues and organs, and provide suitable 3D microenvironments. The therapeutic effects of stem cell (SC) therapy in tissues and organs are considerable and have attracted the attention of academic researchers worldwide. However, due to the limitations and challenges of SC therapy, exosome therapy can be used for basic research and clinical translation. The review briefly introduces the materials (nature or polymer), shapes (hydrogels, particles and porous solids) and fabrication methods (crosslinking or bioprinting) of 3D scaffolds, and describes the recent progress in SC/exosome therapy with 3D scaffolds over the past 5 years (2016-2020). Normal SC/exosome therapy can improve the structure and function of diseased and damaged tissues and organs. In addition, 3D scaffold-based SC/exosome therapy can significantly improve the structure and function cardiac and neural tissues for the treatment of various refractory diseases. Besides, exosome therapy has the same therapeutic effects as SC therapy but without the disadvantages. Hence, 3D scaffold therapy provides an alternative strategy for treatment of refractory and incurable diseases and has entered a transformation period from basic research into clinical translation as a viable therapeutic option in the future.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Yushu Deng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Chen X, Wei Q, Sun H, Zhang X, Yang C, Tao Y, Nong G. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Regulate Macrophage Polarization to Attenuate Systemic Lupus Erythematosus-Associated Diffuse Alveolar Hemorrhage in Mice. Int J Stem Cells 2021; 14:331-340. [PMID: 33906978 PMCID: PMC8429939 DOI: 10.15283/ijsc20156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Objectives To investigate the effect and the underlying mechanism of exosomes secreted by human umbilical cord mesenchymal stem cells (hUCMSCs) on diffuse alveolar hemorrhage (DAH) in murine lupus. Methods and Results Exosomes were extracted from cultured hUCMSCs by ultracentrifugation. The expressions of exosome markers (Alix, CD63 and TSG101) were measured for identification of hUCMSC-derived exosomes (hUCMSC-exosomes). The alveolar hemorrhage of DAH mice was revealed by H&E staining. The primary alveolar macrophages were isolated from bronchoalveolar lavage fluid (BALF) of DAH mice. The expressions of M1 macrophage markers (iNOS, IL-6, TNF-α and IL-1β) and M2 macrophage markers (Arg1, IL-10, TGF-β and chi3l3) were detected. Flow cytometry measured the ratio of M1/M2 macrophages. ELISA measured the secretion of pro-inflammatory cytokines (IL-6 and TNF-α) and anti-inflammatory cytokines (IL-10 and TGF-β). DAH mice had hemorrhage and small-vessel vasculitis in the lung, with neutrophil and monocyte infiltration observed around the capillary and small artery. Furthermore, increases of IL-6 and TNF-α, and decreases of IL-10 and TGF-β were detected in the BALF of DAH mice. M1 makers were overexpressed in alveolar macrophages of DAH mice while M2 makers were lowly expressed. DAH mice had a higher proportion of M1 macrophages than M2 macrophages. After hUCMSC-exosome or methylprednisolone treatment in DAH mice, the alveolar injuries and inflammatory responses were attenuated, and the proportion of M2 macrophages was increased. Conclusions hUCMSC-exosomes attenuate DAH-induced inflammatory responses and alveolar hemorrhage by regulating macrophage polarization.
Collapse
Affiliation(s)
- Xun Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qing Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Hongmei Sun
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaobo Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Changrong Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ying Tao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guangmin Nong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
43
|
Sharma A, Jaganathan BG. Stem Cell Therapy for Retinal Degeneration: The Evidence to Date. Biologics 2021; 15:299-306. [PMID: 34349498 PMCID: PMC8327474 DOI: 10.2147/btt.s290331] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
There is a rise in the number of people who have vision loss due to retinal diseases, and conventional therapies for treating retinal degeneration fail to repair and regenerate the damaged retina. Several studies in animal models and human trials have explored the use of stem cells to repair the retinal tissue to improve visual acuity. In addition to the treatment of age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies were used to treat genetic diseases such as retinitis pigmentosa (RP) and Stargardt’s disease, characterized by gradual loss of photoreceptor cells in the retina. Transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have shown promising results in improving retinal function in various preclinical models of retinal degeneration and clinical studies without any severe side effects. Mesenchymal stem cells (MSCs) were utilized to treat optic neuropathy, RP, DR, and glaucoma with positive clinical outcomes. This review summarizes the preclinical and clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
44
|
Wang W, Liu J, Yang M, Qiu R, Li Y, Bian S, Hao B, Lei B. Intravitreal Injection of an Exosome-Associated Adeno-Associated Viral Vector Enhances Retinoschisin 1 Gene Transduction in the Mouse Retina. Hum Gene Ther 2021; 32:707-716. [PMID: 33832349 DOI: 10.1089/hum.2020.328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate whether exosome-associated adeno-associated virus (AAV) retinoschisin 1 (RS1) vector improved the transduction efficiency of RS1 in the mouse retina. pAAV2-RS1-ZsGreen plasmid was constructed by homologous recombination. Exosome-associated AAV vectors containing human RS1 gene (exosome-associated AAV [exo-AAV]2-RS1-ZsGreen) were isolated from producer cells' supernatant, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. In vitro, HEK-293T cells were transduced with AAV2-RS1-ZsGreen and exo-AAV2-RS1-ZsGreen. In vivo, 1 μL of AAV2-RS1-ZsGreen or 1 μL exo-AAV2-RS1-ZsGreen (2 × 108 genome copies/μL) was injected intravitreally into the C57BL/6J mouse eyes. Phosphate buffer saline was injected as controls. The mRNA and the protein expression in the retina were detected. Exo-AAV2-RS1-ZsGreen possessed lipid bilayers, a saucer-like structures and an average of 120 nm particle size. The expression of RS1 and ZsGreen in exo-AAV2-RS1-ZsGreen group were 7.6 times and 5.7 times that of AAV2-RS1-ZsGreen group in HEK-293T cells, respectively. Furthermore, RS1 protein expression increased by 11.8 times in HEK-293T cells. Intravitreal injection of exo-AAV significantly increased the transduction efficiency of RS1 than AAV. Exo-AAV may be a powerful gene delivery system for gene therapy of X-link retinoschisis as well as other inherited retina degenerations.
Collapse
Affiliation(s)
- Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shasha Bian
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bingtao Hao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
45
|
Zhang Z, Mugisha A, Fransisca S, Liu Q, Xie P, Hu Z. Emerging Role of Exosomes in Retinal Diseases. Front Cell Dev Biol 2021; 9:643680. [PMID: 33869195 PMCID: PMC8049503 DOI: 10.3389/fcell.2021.643680] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal diseases, the leading causes of vison loss and blindness, are associated with complicated pathogeneses such as angiogenesis, inflammation, immune regulation, fibrous proliferation, and neurodegeneration. The retina is a complex tissue, where the various resident cell types communicate between themselves and with cells from the blood and immune systems. Exosomes, which are bilayer membrane vesicles with diameters of 30–150 nm, carry a variety of proteins, lipids, and nucleic acids, and participate in cell-to-cell communication. Recently, the roles of exosomes in pathophysiological process and their therapeutic potential have been emerging. Here, we critically review the roles of exosomes as possible intracellular mediators and discuss the possibility of using exosomes as therapeutic agents in retinal diseases.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aime Mugisha
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silvia Fransisca
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Murali VP, Holmes CA. Biomaterial-based extracellular vesicle delivery for therapeutic applications. Acta Biomater 2021; 124:88-107. [PMID: 33454381 DOI: 10.1016/j.actbio.2021.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicle (EV)- based therapies have been successfully tested in preclinical models for several biomedical applications, including tissue engineering, drug delivery and cancer therapy. However, EVs are most commonly delivered via local or systemic injection, which results in rapid clearance. In order to prolong the retention of EVs at target site and improve their therapeutic efficacy, biomaterial-based delivery systems are being investigated. This review discusses the various biomaterial-based systems that have been used to deliver EVs for therapeutic applications, specifically highlighting any strategies for controlled release. Further, challenges to clinical translation of biomaterial-based EV delivery systems are also discussed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| |
Collapse
|
47
|
Khan AA, T. M. de Rosales R. Radiolabelling of Extracellular Vesicles for PET and SPECT imaging. Nanotheranostics 2021; 5:256-274. [PMID: 33654653 PMCID: PMC7914338 DOI: 10.7150/ntno.51676] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) such as exosomes and microvesicles have gained recent attention as potential biomarkers of disease as well as nanomedicinal tools, but their behaviour in vivo remains mostly unexplored. In order to gain knowledge of their in vivo biodistribution it is important to develop imaging tools that allow us to track EVs over time and at the whole-body level. Radionuclide-based imaging (PET and SPECT) have properties that allow us to do so efficiently, mostly due to their high sensitivity, imaging signal tissue penetration, and accurate quantification. Furthermore, they can be easily translated from animals to humans. In this review, we summarise and discuss the different studies that have used PET or SPECT to study the behaviour of EVs in vivo. With a focus on the different radiolabelling methods used, we also discuss the advantages and disadvantages of each one, and the challenges of imaging EVs due to their variable stability and heterogeneity.
Collapse
Affiliation(s)
| | - Rafael T. M. de Rosales
- Dept. of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
48
|
Lee BC, Kang I, Yu KR. Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. J Clin Med 2021; 10:711. [PMID: 33670202 PMCID: PMC7916919 DOI: 10.3390/jcm10040711] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of the immunomodulatory and regenerative properties of mesenchymal stem cells (MSCs) have made them an attractive alternative therapeutic option for diseases with no effective treatment options. Numerous clinical trials have followed; however, issues such as infusional toxicity and cellular rejection have been reported. To address these problems associated with cell-based therapy, MSC exosome therapy was developed and has shown promising clinical outcomes. MSC exosomes are nanosized vesicles secreted from MSCs and represent a non-cellular therapeutic agent. MSC exosomes retain therapeutic features of the cells from which they originated including genetic material, lipids, and proteins. Similar to MSCs, exosomes can induce cell differentiation, immunoregulation, angiogenesis, and tumor suppression. MSC exosomes have therefore been employed in several experimental models and clinical studies. Here, we review the therapeutic potential of MSC-derived exosomes and summarize currently ongoing clinical trials according to disease type. In addition, we propose several functional enhancement strategies for the effective clinical application of MSC exosome therapy.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Insung Kang
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA;
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
49
|
Qin B, Zhang Q, Chen D, Yu HY, Luo AX, Suo LP, Cai Y, Cai DY, Luo J, Huang JF, Xiong K. Extracellular vesicles derived from mesenchymal stem cells: A platform that can be engineered. Histol Histopathol 2021; 36:615-632. [PMID: 33398872 DOI: 10.14670/hh-18-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells play an important role in tissue damage and repair. This role is mainly due to a paracrine mechanism, and extracellular vesicles (EVs) are an important part of the paracrine function. EVs play a vital role in many aspects of cell homeostasis, physiology, and pathology, and EVs can be used as clinical biomarkers, vaccines, or drug delivery vehicles. A large number of studies have shown that EVs derived from mesenchymal stem cells (MSC-EVs) play an important role in the treatment of various diseases. However, the problems of low production, low retention rate, and poor targeting of MSC-EVs are obstacles to current clinical applications. The engineering transformation of MSC-EVs can make up for those shortcomings, thereby improving treatment efficiency. This review summarizes the latest research progress of MSC-EV direct and indirect engineering transformation from the aspects of improving MSC-EV retention rate, yield, targeting, and MSC-EV visualization research, and proposes some feasible MSC-EV engineering methods of transformation.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ai-Xiang Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liang-Peng Suo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan Cai
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yang Cai
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| |
Collapse
|
50
|
Shi Z, Wang Q, Jiang D. The preventative effect of bone marrow-derived mesenchymal stem cell exosomes on urethral stricture in rats. Transl Androl Urol 2020; 9:2071-2081. [PMID: 33209670 PMCID: PMC7658129 DOI: 10.21037/tau-20-833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Urethral stricture (US) is a major challenge in urology and there is an urgent need for effective therapies for its treatment. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) have been shown to be effective in preventing scar and fibrosis formation after tissue injury. However, the potential utility of BMSCs-Exos in the prevention of US remains unknown. We hypothesized that local administration of BMSCs-Exos may influence urethral healing and scar formation in a rat model of US. Methods A previously established model of rat US was used in this study. Sprague Dawley rats were randomly assigned into sham, US, and US + BMSCs-Exos groups. Micro-ultrasound assessment, histopathology, immunohistochemistry, and gene expression analysis were performed at four weeks post-surgery. Results US rats exhibited thick urethral walls with a narrowed lumen, when compared with sham rats. However, these changes were suppressed in the US + BMSCs-Exos group. The preventative effects of BMSCs-Exos on US formation were also apparent histologically. US + BMSCs-Exos rats demonstrated decreased expression of several fibrosis-related genes in urethral tissues, including Col I, fibronectin, and elastin, when compared with US rats. BMSCs-Exos treatment also led to an increase in the expression of angiogenesis-related genes in these tissues, including VEGF, eNOS, and bFGF. Conclusions Our findings therefore demonstrate that the local administration of BMSCs-Exos prevents urethral stricture formation by regulating fibrosis and angiogenesis. These findings provide a basis for an innovative strategy involving the clinical application of exosomes to counteract US formation.
Collapse
Affiliation(s)
- Zhengzhou Shi
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Jiang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|