1
|
Russell J, Chen L, Liu A, Wang J, Ghosh S, Zhong X, Shi H, Beutler B, Nair-Gill E. Lrp10 suppresses IL7R limiting CD8 T cell homeostatic expansion and anti-tumor immunity. EMBO Rep 2024; 25:3601-3626. [PMID: 38956225 PMCID: PMC11315911 DOI: 10.1038/s44319-024-00191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Signals emanating from the T-cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T-cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T-cell function. Through forward genetic screening in mice, we discover that loss-of-function mutations in LDL receptor-related protein 10 (Lrp10) cause naive and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. T-cell activation induces Lrp10 expression, which post-translationally suppresses IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhances T-cell homeostatic expansion through IL7R signaling. Lrp10-deficient mice are also intrinsically resistant to syngeneic tumors. This phenotype depends on dense tumor infiltration of CD8 T cells, which display increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T-cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.
Collapse
Affiliation(s)
- Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Luming Chen
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Subarna Ghosh
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA.
- Department of Internal Medicine, Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
2
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Jiao H, Chen Y, Han T, Pan Q, Gao F, Li G. GGA1 participates in spermatogenesis in mice under stress. PeerJ 2023; 11:e15673. [PMID: 37551344 PMCID: PMC10404397 DOI: 10.7717/peerj.15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/11/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Infertility is recognized as a common and worrisome problem of human reproduction worldwide. Based on previous studies, male factors account for about half of all infertility cases. Exposure to environmental toxicants is an important contributor to male infertility. Bisphenol A (BPA) is the most prominent toxic environmental contaminant worldwide affecting the male reproductive system. BPA can impair the function of the Golgi apparatus which is important in spermatogenesis. GGA1 is known as Golgi-localized, gamma adaptin ear-containing, ARF-binding protein 1. Previously, it has been shown that GGA1 is associated with spermatogenesis in Drosophila, however, its function in mammalian spermatogenesis remains unclear. METHODS Gga1 knockout mice were generated using the CRISPR/Cas9 system. Gga1-/- male mice and wild-type littermates received intraperitoneal (i.p.) injections of BPA (40 µg/kg) once daily for 2 weeks. Histological and immunofluorescence staining were performed to analyze the phenotypes of these mice. RESULTS Male mice lacking Gga1 had normal fertility without any obvious defects in spermatogenesis, sperm count and sperm morphology. Gga1 ablation led to infertility in male mice exposed to BPA, along with a significant reduction in sperm count, sperm motility and the percentage of normal sperm. Histological analysis of the seminiferous epithelium showed that spermatogenesis was severely disorganized, while apoptotic germ cells were significantly increased in the Gga1 null mice exposed to BPA. Our findings suggest that Gga1 protects spermatogenesis against damage induced by environmental pollutants.
Collapse
Affiliation(s)
- Haoyun Jiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, P.R. China
| | - Tingting Han
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| | - Qiyu Pan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| |
Collapse
|
4
|
Cuchillo-Ibañez I, Lennol MP, Escamilla S, Mata-Balaguer T, Valverde-Vozmediano L, Lopez-Font I, Ferrer I, Sáez-Valero J. The apolipoprotein receptor LRP3 compromises APP levels. Alzheimers Res Ther 2021; 13:181. [PMID: 34727970 PMCID: PMC8565065 DOI: 10.1186/s13195-021-00921-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in amyloid precursor protein (APP) processing and β-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself. We have analyzed whether ApoER2-ICD is able to regulate the expression of other LDL receptors, and we focused on LRP3, the most unknown member of this family. We analyzed LRP3 expression in middle-aged individuals (MA) and in cases with Alzheimer's disease (AD)-related pathology, and the relation of LRP3 with APP. METHODS The effects of full-length ApoER2 and ApoER2-ICD overexpression on protein levels, in the presence of recombinant reelin or Aβ42 peptide, were evaluated by microarray, qRT-PCRs, and western blots in SH-SY5Y cells. LRP3 expression was analyzed in human frontal cortex extracts from MA subjects (mean age 51.8±4.8 years) and AD-related pathology subjects [Braak neurofibrillary tangle stages I-II, 68.4±8.8 years; III-IV, 80.4 ± 8.8 years; V-VI, 76.5±9.7 years] by qRT-PCRs and western blot; LRP3 interaction with other proteins was assessed by immunoprecipitation. In CHO cells overexpressing LRP3, protein levels of full-length APP and fragments were evaluated by western blots. Chloroquine was employed to block the lysosomal/autophagy function. RESULTS We have identified that ApoER2 overexpression increases LRP3 expression, also after reelin stimulation of ApoER2 signaling. The same occurred following ApoER2-ICD overexpression. In extracts from subjects with AD-related pathology, the levels of LRP3 mRNA and protein were lower than those in MA subjects. Interestingly, LRP3 transfection in CHO-PS70 cells induced a decrease of full-length APP levels and APP-CTF, particularly in the membrane fraction. In cell supernatants, levels of APP fragments from the amyloidogenic (sAPPα) or non-amyloidogenic (sAPPβ) pathways, as well as Aβ peptides, were drastically reduced with respect to mock-transfected cells. The inhibitor of lysosomal/autophagy function, chloroquine, significantly increased full-length APP, APP-CTF, and sAPPα levels. CONCLUSIONS ApoER2/reelin signaling regulates LRP3 expression, whose levels are affected in AD; LRP3 is involved in the regulation of APP levels.
Collapse
Affiliation(s)
- Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Matthew P Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sergio Escamilla
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Trinidad Mata-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lucía Valverde-Vozmediano
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Neuropatología, Hospital Universitario de Bellvitge, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
5
|
Grochowska MM, Carreras Mascaro A, Boumeester V, Natale D, Breedveld GJ, Geut H, van Cappellen WA, Boon AJW, Kievit AJA, Sammler E, Parchi P, Cortelli P, Alessi DR, van de Berg WDJ, Bonifati V, Mandemakers W. LRP10 interacts with SORL1 in the intracellular vesicle trafficking pathway in non-neuronal brain cells and localises to Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol 2021; 142:117-137. [PMID: 33913039 PMCID: PMC8217053 DOI: 10.1007/s00401-021-02313-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
Loss-of-function variants in the low-density lipoprotein receptor-related protein 10 (LRP10) gene have been associated with autosomal-dominant Parkinson's disease (PD), PD dementia, and dementia with Lewy bodies (DLB). Moreover, LRP10 variants have been found in individuals diagnosed with progressive supranuclear palsy and amyotrophic lateral sclerosis. Despite this genetic evidence, little is known about the expression and function of LRP10 protein in the human brain under physiological or pathological conditions. To better understand how LRP10 variants lead to neurodegeneration, we first performed an in-depth characterisation of LRP10 expression in post-mortem brains and human-induced pluripotent stem cell (iPSC)-derived astrocytes and neurons from control subjects. In adult human brain, LRP10 is mainly expressed in astrocytes and neurovasculature but undetectable in neurons. Similarly, LRP10 is highly expressed in iPSC-derived astrocytes but cannot be observed in iPSC-derived neurons. In astrocytes, LRP10 is present at trans-Golgi network, plasma membrane, retromer, and early endosomes. Interestingly, LRP10 also partially co-localises and interacts with sortilin-related receptor 1 (SORL1). Furthermore, although LRP10 expression and localisation in the substantia nigra of most idiopathic PD and DLB patients and LRP10 variant carriers diagnosed with PD or DLB appeared unchanged compared to control subjects, significantly enlarged LRP10-positive vesicles were detected in a patient carrying the LRP10 p.Arg235Cys variant. Last, LRP10 was detected in Lewy bodies (LB) at late maturation stages in brains from idiopathic PD and DLB patients and in LRP10 variant carriers. In conclusion, high LRP10 expression in non-neuronal cells and undetectable levels in neurons of control subjects indicate that LRP10-mediated pathogenicity is initiated via cell non-autonomous mechanisms, potentially involving the interaction of LRP10 with SORL1 in vesicle trafficking pathways. Together with the specific pattern of LRP10 incorporation into mature LBs, these data support an important mechanistic role for disturbed vesicle trafficking and loss of LRP10 function in neurodegenerative diseases.
Collapse
Affiliation(s)
- Martyna M Grochowska
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Domenico Natale
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Centre (OIC), Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Neurology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto di Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto di Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
- Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Uemura T, Waguri S. Emerging roles of Golgi/endosome-localizing monomeric clathrin adaptors GGAs. Anat Sci Int 2019; 95:12-21. [DOI: 10.1007/s12565-019-00505-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023]
|
7
|
Zhang Y, Xie H, Tang W, Zeng X, Lin Y, Xu L, Xiao L, Xu J, Wu Z, Yuan D. Trichostatin A, a Histone Deacetylase Inhibitor, Alleviates Eosinophilic Meningitis Induced by Angiostrongylus cantonensis Infection in Mice. Front Microbiol 2019; 10:2280. [PMID: 31636619 PMCID: PMC6787401 DOI: 10.3389/fmicb.2019.02280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylase inhibitor (HDACi) has been used in the treatment of neurodegenerative or autoimmune diseases. Angiostrongyliasis cantonensis caused by Angiostrongylus cantonensis infection is an emerging zoonosis of human eosinophilic meningitis or meningoencephalitis. Progressive neuronal apoptosis is the pathological basis of behavioral dysfunctions in angiostrongyliasis cantonensis. Neurological defects after anthelmintic treatment for angiostrongyliasis cantonensis are still common. In this study, we examined the effects of trichostatin A (TSA), a HDACi, on eosinophilic meningitis induced by A. cantonensis in mice. Intragastric administration of TSA significantly ameliorated brain injury and decreased cognitive impairments in mice at 15 days post-infection. TSA administration effectively reduced the inflammatory factor levels of iNOS, TNF-α, IL-5, IL-6, and IL-13 in infected mice. TSA treatment counteracted apoptosis with reduced expression levels of cleaved caspase-3, -4, -6, and RIP3 in A. cantonensis infected mice. In addition, TSA administration reduced total HDAC activity and increased the acetylation of histone H3 and H4 in the brain tissue of infected mice. The underlying mechanism of TSA on eosinophilic meningitis might be associated with decreased NF-κB p65 nuclear accumulation by inhibiting IκB phosphorylation. Furthermore, a co-expressive network of NF-κB p65 with 22 other genes was constructed according to our previous transcriptomic data in infected mice. We identified the correlations in the gene expression of NF-κB p65 with Lrp10, Il12rb1, Nfkbia, Ube2n, and Ube2d1 in infected mice after TSA administration. Thus, TSA has a protective effect on the progression of eosinophilic meningitis induced by A. cantonensis in mice.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Hui Xie
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Wenyan Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingda Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yu Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lian Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Dongjuan Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
A Naturally Occurring Splice Variant of GGA1 Inhibits the Anterograde Post-Golgi Traffic of α 2B-Adrenergic Receptor. Sci Rep 2019; 9:10378. [PMID: 31316103 PMCID: PMC6637153 DOI: 10.1038/s41598-019-46547-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/29/2019] [Indexed: 11/08/2022] Open
Abstract
The regulatory mechanisms of cell surface targeting of nascent G protein-coupled receptors (GPCRs) en route from the endoplasmic reticulum through the Golgi remain poorly understood. We have recently demonstrated that three Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding proteins (GGAs) mediate the post-Golgi export of α2B-adrenergic receptor (α2B-AR), a prototypic GPCR, and directly interact with the receptor. In particular, GGA1 interaction with α2B-AR is mediated via its hinge domain. Here we determined the role of a naturally occurring truncated form of GGA1 (GGA1t) which lacks the N-terminal portion of the hinge domain in α2B-AR trafficking and elucidated the underlying mechanisms. We demonstrated that both GGA1 and GGA1t were colocalized and mainly expressed at the Golgi. In marked contrast to GGA1, the expression of GGA1t significantly attenuated the cell surface export of newly synthesized α2B-AR from the Golgi and in parallel receptor-mediated signaling. Furthermore, we found that GGA1t formed homodimers and heterodimers with GGA1. More interestingly, GGA1t was unable to bind the cargo α2B-AR and to recruit clathrin onto the trans-Golgi network. These data provide evidence implicating that the truncated form of GGA1 behaviors as a dominant-negative regulator for the cell surface export of α2B-AR and this function of GGA1t is attributed to its abilities to dimerize with its wide type counterpart and to inhibit cargo interaction and clathrin recruitment to form specialized transport vesicles.
Collapse
|
9
|
Quadri M, Mandemakers W, Grochowska MM, Masius R, Geut H, Fabrizio E, Breedveld GJ, Kuipers D, Minneboo M, Vergouw LJM, Carreras Mascaro A, Yonova-Doing E, Simons E, Zhao T, Di Fonzo AB, Chang HC, Parchi P, Melis M, Correia Guedes L, Criscuolo C, Thomas A, Brouwer RWW, Heijsman D, Ingrassia AMT, Calandra Buonaura G, Rood JP, Capellari S, Rozemuller AJ, Sarchioto M, Fen Chien H, Vanacore N, Olgiati S, Wu-Chou YH, Yeh TH, Boon AJW, Hoogers SE, Ghazvini M, IJpma AS, van IJcken WFJ, Onofrj M, Barone P, Nicholl DJ, Puschmann A, De Mari M, Kievit AJ, Barbosa E, De Michele G, Majoor-Krakauer D, van Swieten JC, de Jong FJ, Ferreira JJ, Cossu G, Lu CS, Meco G, Cortelli P, van de Berg WDJ, Bonifati V. LRP10 genetic variants in familial Parkinson's disease and dementia with Lewy bodies: a genome-wide linkage and sequencing study. Lancet Neurol 2018; 17:597-608. [PMID: 29887161 DOI: 10.1016/s1474-4422(18)30179-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Most patients with Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies do not carry mutations in known disease-causing genes. The aim of this study was to identify a novel gene implicated in the development of these disorders. METHODS Our study was done in three stages. First, we did genome-wide linkage analysis of an Italian family with dominantly inherited Parkinson's disease to identify the disease locus. Second, we sequenced the candidate gene in an international multicentre series of unrelated probands who were diagnosed either clinically or pathologically with Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies. As a control, we used gene sequencing data from individuals with abdominal aortic aneurysms (who were not examined neurologically). Third, we enrolled an independent series of patients diagnosed clinically with Parkinson's disease and controls with no signs or family history of Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies from centres in Portugal, Sardinia, and Taiwan, and screened them for specific variants. We also did mRNA and brain pathology studies in three patients from the international multicentre series carrying disease-associated variants, and we did functional protein studies in in-vitro models, including neurons from induced pluripotent stem-like cells. FINDINGS Molecular studies were done between Jan 1, 2008, and Dec 31, 2017. In the initial kindred of ten affected Italian individuals (mean age of disease onset 59·8 years [SD 8·7]), we detected significant linkage of Parkinson's disease to chromosome 14 and nominated LRP10 as the disease-causing gene. Among the international series of 660 probands, we identified eight individuals (four with Parkinson's disease, two with Parkinson's disease dementia, and two with dementia with Lewy bodies) who carried different, rare, potentially pathogenic LRP10 variants; one carrier was found among 645 controls with abdominal aortic aneurysms. In the independent series, two of these eight variants were detected in three additional Parkinson's disease probands (two from Sardinia and one from Taiwan) but in none of the controls. Of the 11 probands from the international and independent cohorts with LRP10 variants, ten had a positive family history of disease and DNA was available from ten affected relatives (in seven of these families). The LRP10 variants were present in nine of these ten relatives, providing independent-albeit limited-evidence of co-segregation with disease. Post-mortem studies in three patients carrying distinct LRP10 variants showed severe Lewy body pathology. Of nine variants identified in total (one in the initial family and eight in stage 2), three severely affected LRP10 expression and mRNA stability (1424+5delG, 1424+5G→A, and Ala212Serfs*17, shown by cDNA analysis), four affected protein stability (Tyr307Asn, Gly603Arg, Arg235Cys, and Pro699Ser, shown by cycloheximide-chase experiments), and two affected protein localisation (Asn517del and Arg533Leu; shown by immunocytochemistry), pointing to loss of LRP10 function as a common pathogenic mechanism. INTERPRETATION Our findings implicate LRP10 gene defects in the development of inherited forms of α-synucleinopathies. Future elucidation of the function of the LRP10 protein and pathways could offer novel insights into mechanisms, biomarkers, and therapeutic targets. FUNDING Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw-Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands-Ligue Européene Contre la Maladie d'Alzheimer (LECMA).
Collapse
Affiliation(s)
- Marialuisa Quadri
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Roy Masius
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Hanneke Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands; Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Edito Fabrizio
- Department of Neurological Sciences, "Sapienza" Università degli Studi di Roma, Rome, Italy
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Demy Kuipers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Michelle Minneboo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Leonie J M Vergouw
- Department of Neurology and Alzheimer Center, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Ekaterina Yonova-Doing
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Medical Research Council/British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Erik Simons
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Avans Hogeschool, Breda, Netherlands
| | - Tianna Zhao
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessio B Di Fonzo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Hsiu-Chen Chang
- Neuroscience Research Centre, Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Marta Melis
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Leonor Correia Guedes
- Department of Neurosciences and Mental Health, Neurology, Santa Maria Hospital, Centro Hospitalar Lisboa Norte (CHLN), Lisbon, Portugal; Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging, and Medical Sciences, Gabriele d'Annunzio University, Chieti-Pescara, Italy; Aging Research Centre, Centro di Scienze dell'invecchiamento, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | | | - Daphne Heijsman
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Angela M T Ingrassia
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Giovanna Calandra Buonaura
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Janneke P Rood
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sabina Capellari
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; UOC Clinica Neurologica, Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, Bologna, Italy
| | - Annemieke J Rozemuller
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Marianna Sarchioto
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Hsin Fen Chien
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Nicola Vanacore
- National Centre for Disease Prevention and Health Promotion, National Institute of Health, Rome, Italy
| | - Simone Olgiati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands; Bluebee, Rijswijk, Netherlands
| | - Yah-Huei Wu-Chou
- Human Molecular Genetics Laboratory, Department of Medical Research, Chang Gung Memorial Hospital and Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, and School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Agnita J W Boon
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Susanne E Hoogers
- Department of Neurology and Alzheimer Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mehrnaz Ghazvini
- Department of Developmental Biology, iPS Core Facility, Erasmus Medical Center, Rotterdam, Netherlands
| | - Arne S IJpma
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Marco Onofrj
- Department of Neuroscience, Imaging, and Medical Sciences, Gabriele d'Annunzio University, Chieti-Pescara, Italy; Aging Research Centre, Centro di Scienze dell'invecchiamento, Gabriele d'Annunzio University Foundation, Chieti, Italy
| | - Paolo Barone
- Centre for Neurodegenerative Diseases (CEMAND), Neuroscience Section, University of Salerno, Salerno, Italy
| | | | - Andreas Puschmann
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | | | - Anneke J Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Egberto Barbosa
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | | | | | - Frank J de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
| | - Giovanni Cossu
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Chin-Song Lu
- Neuroscience Research Centre, Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Giuseppe Meco
- Department of Neurology and Psychiatry, Research Centre for Social Diseases (CIMS), "Sapienza" Università degli Studi di Roma, Rome, Italy; Neurological Centre of Latium [Gruppo NEUROMED]) Centro Studi Clinici Malattia di Parkinson, Rome, Italy
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Institute of Neurological Sciences of Bologna (ISBN), Bologna, Italy; Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy AO2
- M, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands.
| | | |
Collapse
|
10
|
A novel link between trafficking and Lewy body disorders. Lancet Neurol 2018; 17:571-573. [PMID: 29887160 DOI: 10.1016/s1474-4422(18)30214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
|
11
|
Gonias SL, Karimi-Mostowfi N, Murray SS, Mantuano E, Gilder AS. Expression of LDL receptor-related proteins (LRPs) in common solid malignancies correlates with patient survival. PLoS One 2017; 12:e0186649. [PMID: 29088295 PMCID: PMC5663383 DOI: 10.1371/journal.pone.0186649] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
LDL receptor-related proteins (LRPs) are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown. Herein, we mined provisional databases in The Cancer Genome Atlas (TCGA) to compare expression of thirteen LRPs in ten common solid malignancies in patients. Our first goal was to determine the abundance of LRP mRNAs in each type of cancer. Our second goal was to determine whether expression of LRPs is associated with improved or worsened patient survival. In total, data from 4,629 patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP was LRP1; however, a correlation between LRP1 mRNA expression and patient survival was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1 mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR) mRNA were associated with decreased patient survival in pancreatic adenocarcinoma. High levels of LRP10 mRNA were associated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the only LRP for which high levels of mRNA expression correlated with improved patient survival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene expression in human cancers and their effects on patient survival should guide future research.
Collapse
Affiliation(s)
- Steven L. Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Nicki Karimi-Mostowfi
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Sarah S. Murray
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- The Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrew S. Gilder
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
13
|
Regulation of α 2B-Adrenergic Receptor Cell Surface Transport by GGA1 and GGA2. Sci Rep 2016; 6:37921. [PMID: 27901063 PMCID: PMC5128807 DOI: 10.1038/srep37921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms that control the targeting of newly synthesized G protein-coupled receptors (GPCRs) to the functional destinations remain poorly elucidated. Here, we have determined the role of Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding proteins 1 and 2 (GGA1 and GGA2) in the cell surface transport of α2B-adrenergic receptor (α2B-AR), a prototypic GPCR, and studied the underlying mechanisms. We demonstrated that knockdown of GGA1 and GGA2 by shRNA and siRNA significantly reduced the cell surface expression of inducibly expressed α2B-AR and arrested the receptor in the perinuclear region. Knockdown of each GGA markedly inhibited the dendritic expression of α2B-AR in primary cortical neurons. Consistently, depleting GGA1 and GGA2 attenuated receptor-mediated signal transduction measured as ERK1/2 activation and cAMP inhibition. Although full length α2B-AR associated with GGA2 but not GGA1, its third intracellular loop was found to directly interact with both GGA1 and GGA2. More interestingly, further mapping of interaction domains showed that the GGA1 hinge region and the GGA2 GAE domain bound to multiple subdomains of the loop. These studies have identified an important function and revealed novel mechanisms of the GGA family proteins in the forward trafficking of a cell surface GPCR.
Collapse
|
14
|
Larkin H, Costantino S, Seaman MNJ, Lavoie C. Calnuc Function in Endosomal Sorting of Lysosomal Receptors. Traffic 2016; 17:416-32. [DOI: 10.1111/tra.12374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Heidi Larkin
- Department of Pharmacology, Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke QC Canada
| | - Santiago Costantino
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont; Université de Montréal; Montréal H1T 2M Canada
| | - Matthew N. J. Seaman
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, Wellcome Trust/MRC Building, Addenbrookes Hospital; University of Cambridge; Cambridge CB2 0XY UK
| | - Christine Lavoie
- Department of Pharmacology, Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke QC Canada
| |
Collapse
|
15
|
Wu J, Leng T, Jing L, Jiang N, Chen D, Hu Y, Xiong ZG, Zha XM. Two di-leucine motifs regulate trafficking and function of mouse ASIC2a. Mol Brain 2016; 9:9. [PMID: 26819004 PMCID: PMC4729175 DOI: 10.1186/s13041-016-0190-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Acid-sensing ion channels (ASICs) are proton-gated cation channels that mediate acid-induced responses in neurons. ASICs are important for mechanosensation, learning and memory, fear, pain, and neuronal injury. ASIC2a is widely expressed in the nervous system and modulates ASIC channel trafficking and activity in both central and peripheral systems. Here, to better understand mechanisms regulating ASIC2a, we searched for potential protein motifs that regulate ASIC2a trafficking. RESULTS AND CONCLUSIONS We identified a LLDLL sequence in the C-terminal juxtamembrane region of ASIC2a. Deleting or mutating the LLDLL sequence increased total expression and surface levels of ASIC2a in CHO cells. Mutating either of the two LL motifs had a similar effect. We further assessed ASIC2a localization in organotypic hippocampal slice neurons. The LL motif mutants exhibited increased dendritic trafficking and elevated targeting to dendritic spines. Consistent with an efficient trafficking, the LL motif mutants increased acid-activated current density. In addition, mutating the second LL motif increased pH sensitivity of the channel. These data identify the LL motifs as a negative regulator of ASIC2a trafficking and function, and suggest novel regulatory mechanisms in acid signaling.
Collapse
Affiliation(s)
- Junjun Wu
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Tiandong Leng
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, 30310, GA, USA.
| | - Lan Jing
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 1320 West Beijing Rd, Shanghai, 200040, China.
| | - Nan Jiang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA. .,Shanghai University School of Life Sciences, Shanghai, China.
| | - Daijie Chen
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, 30310, GA, USA.
| | - Xiang-ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 5851 USA Dr N, MSB3074, Mobile, AL, 36688, USA.
| |
Collapse
|
16
|
Zhang M, Davis JE, Li C, Gao J, Huang W, Lambert NA, Terry AV, Wu G. GGA3 Interacts with a G Protein-Coupled Receptor and Modulates Its Cell Surface Export. Mol Cell Biol 2016; 36:1152-63. [PMID: 26811329 PMCID: PMC4800796 DOI: 10.1128/mcb.00009-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor.
Collapse
Affiliation(s)
- Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jason E Davis
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Chunman Li
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jie Gao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
17
|
Li X, Lavigne P, Lavoie C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol Biol Cell 2015; 26:4412-26. [PMID: 26446845 PMCID: PMC4666136 DOI: 10.1091/mbc.e15-02-0087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/29/2015] [Indexed: 01/11/2023] Open
Abstract
GGA3 binds directly to the TrkA internal DXXLL motif and mediates TrkA endocytic recycling. This effect is dependent on the activation of Arf6. GGA3 is a key player in a novel DXXLL-mediated recycling machinery for TrkA, where it prolongs the activation of Akt signaling and survival responses. Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses.
Collapse
Affiliation(s)
- Xuezhi Li
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
18
|
Wu G, Davis JE, Zhang M. Regulation of α2B-Adrenerigc Receptor Export Trafficking by Specific Motifs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:227-44. [PMID: 26055061 PMCID: PMC4827153 DOI: 10.1016/bs.pmbts.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular trafficking and precise targeting to specific locations of G protein-coupled receptors (GPCRs) control the physiological functions of the receptors. Compared to the extensive efforts dedicated to understanding the events involved in the endocytic and recycling pathways, the molecular mechanisms underlying the transport of the GPCR superfamily from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane are relatively less well defined. Over the past years, we have used α(2B)-adrenergic receptor (α(2B)-AR) as a model to define the factors that control GPCR export trafficking. In this chapter, we will review specific motifs identified to mediate the export of nascent α(2B)-AR from the ER and the Golgi and discuss the possible underlying mechanisms. As these motifs are highly conserved among GPCRs, they may provide common mechanisms for export trafficking of these receptors.
Collapse
Affiliation(s)
- Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA.
| | - Jason E Davis
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
19
|
Santonico E, Mattioni A, Panni S, Belleudi F, Mattei M, Torrisi MR, Cesareni G, Castagnoli L. RNF11 is a GGA protein cargo and acts as a molecular adaptor for GGA3 ubiquitination mediated by Itch. Oncogene 2014; 34:3377-90. [DOI: 10.1038/onc.2014.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 11/09/2022]
|
20
|
Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 2014; 9:6. [PMID: 24410826 PMCID: PMC3891995 DOI: 10.1186/1750-1326-9-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-wu Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
21
|
Doray B, Misra S, Qian Y, Brett TJ, Kornfeld S. Do GGA adaptors bind internal DXXLL motifs? Traffic 2012; 13:1315-25. [PMID: 22762444 PMCID: PMC3443260 DOI: 10.1111/j.1600-0854.2012.01396.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 12/01/2022]
Abstract
The GGA family of clathrin adaptor proteins mediates the intracellular trafficking of transmembrane proteins by interacting with DXXLL-type sorting signals on the latter. These signals were originally identified at the carboxy-termini of the transmembrane cargo proteins. Subsequent studies, however, showed that internal DXXLL sorting motifs occur within the N- or C-terminal cytoplasmic domains of cargo molecules. The GGAs themselves also contain internal DXXLL motifs that serve to auto-regulate GGA function. A recent study challenged the notion that internal DXXLL signals are competent for binding to GGAs. Since the question of whether GGA adaptors interact with internal DXXLL motifs is fundamental to the identification of bona fide GGA cargo, and to an accurate understanding of GGA regulation within cells, we have extended our previous findings. We now present additional evidence confirming that GGAs do interact with internal DXXLL motifs. We also summarize the recent reports from other laboratories documenting internal GGA binding motifs.
Collapse
Affiliation(s)
- Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Saurav Misra
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195
| | - Yi Qian
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Tom J. Brett
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
22
|
Brodeur J, Thériault C, Lessard-Beaudoin M, Marcil A, Dahan S, Lavoie C. LDLR-related protein 10 (LRP10) regulates amyloid precursor protein (APP) trafficking and processing: evidence for a role in Alzheimer's disease. Mol Neurodegener 2012; 7:31. [PMID: 22734645 PMCID: PMC3520120 DOI: 10.1186/1750-1326-7-31] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/11/2012] [Indexed: 02/01/2023] Open
Abstract
Background The Aβ peptide that accumulates in Alzheimer’s disease (AD) is derived from amyloid precursor protein (APP) following proteolysis by β- and γ-secretases. Substantial evidence indicates that alterations in APP trafficking within the secretory and endocytic pathways directly impact the interaction of APP with these secretases and subsequent Aβ production. Various members of the low-density lipoprotein receptor (LDLR) family have been reported to play a role in APP trafficking and processing and are important risk factors in AD. We recently characterized a distinct member of the LDLR family called LDLR-related protein 10 (LRP10) that shuttles between the trans-Golgi Network (TGN), plasma membrane (PM), and endosomes. Here we investigated whether LRP10 participates in APP intracellular trafficking and Aβ production. Results In this report, we provide evidence that LRP10 is a functional APP receptor involved in APP trafficking and processing. LRP10 interacts directly with the ectodomain of APP and colocalizes with APP at the TGN. Increased expression of LRP10 in human neuroblastoma SH-SY5Y cells induces the accumulation of mature APP in the Golgi and reduces its presence at the cell surface and its processing into Aβ, while knockdown of LRP10 expression increases Aβ production. Mutations of key motifs responsible for the recycling of LRP10 to the TGN results in the aberrant redistribution of APP with LRP10 to early endosomes and a concomitant increase in APP β-cleavage into Aβ. Furthermore, expression of LRP10 is significantly lower in the post-mortem brain tissues of AD patients, supporting a possible role for LRP10 in AD. Conclusions The present study identified LRP10 as a novel APP sorting receptor that protects APP from amyloidogenic processing, suggesting that a decrease in LRP10 function may contribute to the pathogenesis of Alzheimer’s disease.
Collapse
Affiliation(s)
- Julie Brodeur
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5 N4, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Govero J, Doray B, Bai H, Kornfeld S. Analysis of Gga null mice demonstrates a non-redundant role for mammalian GGA2 during development. PLoS One 2012; 7:e30184. [PMID: 22291915 PMCID: PMC3266899 DOI: 10.1371/journal.pone.0030184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
Numerous studies using cultured mammalian cells have shown that the three GGAs (Golgi-localized, gamma-ear containing, ADP-ribosylation factor- binding proteins) function in the transport of cargo proteins between the trans- Golgi network and endosomes. However, the in vivo role(s) of these adaptor proteins and their possible functional redundancy has not been analyzed. In this study, the genes encoding GGAs1-3 were disrupted in mice by insertional mutagenesis. Loss of GGA1 or GGA3 alone was well tolerated whereas the absence of GGA2 resulted in embryonic or neonatal lethality, depending on the genetic background of the mice. Thus, GGA2 mediates a vital function that cannot be compensated for by GGA1and/or GGA3. The combined loss of GGA1 and GGA3 also resulted in a high incidence of neonatal mortality but in this case the expression level of GGA2 may be inadequate to compensate for the loss of the other two GGAs. We conclude that the three mammalian GGAs are essential proteins that are not fully redundant.
Collapse
Affiliation(s)
- Jennifer Govero
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hongdong Bai
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
24
|
Anterograde trafficking of nascent α(2B)-adrenergic receptor: structural basis, roles of small GTPases. CURRENT TOPICS IN MEMBRANES 2012; 67:79-100. [PMID: 21771486 DOI: 10.1016/b978-0-12-384921-2.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
25
|
Abstract
Anterograde trafficking of newly synthesized G protein-coupled -receptors (GPCRs) from the endoplasmic reticulum to the cell surface represents a crucial checkpoint in controlling the amount of the functional receptors at the cell surface and the strength of signaling initiated by the receptors. In contrast to the extensively studied, well-understood endocytic and recycling pathways, the molecular mechanisms underlying the cell-surface targeting of the receptors remain poorly defined. In this chapter, I will discuss current advances in understanding post-Golgi transport of GPCRs by focusing on specific motifs or sequences that may function as sorting signals regulating export from the Golgi and subsequent transport to the plasma membrane of GPCRs.
Collapse
|
26
|
Two dileucine motifs mediate late endosomal/lysosomal targeting of transmembrane protein 192 (TMEM192) and a C-terminal cysteine residue is responsible for disulfide bond formation in TMEM192 homodimers. Biochem J 2011; 434:219-31. [PMID: 21143193 DOI: 10.1042/bj20101396] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TMEM192 (transmembrane protein 192) is a novel constituent of late endosomal/lysosomal membranes with four potential transmembrane segments and an unknown function that was initially discovered by organellar proteomics. Subsequently, localization in late endosomes/lysosomes has been confirmed for overexpressed and endogenous TMEM192, and homodimers of TMEM192 linked by disulfide bonds have been reported. In the present study the molecular determinants of TMEM192 mediating its transport to late endosomes/lysosomes were analysed by using CD4 chimaeric constructs and mutagenesis of potential targeting motifs in TMEM192. Two directly adjacent N-terminally located dileucine motifs of the DXXLL-type were found to be critical for transport of TMEM192 to late endosomes/lysosomes. Whereas disruption of both dileucine motifs resulted in mistargeting of TMEM192 to the plasma membrane, each of the two motifs was sufficient to ensure correct targeting of TMEM192. In order to study disulfide bond formation, mutagenesis of cysteine residues was performed. Mutation of Cys266 abolished disulfide bridge formation between TMEM192 molecules, indicating that TMEM192 dimers are linked by a disulfide bridge between their C-terminal tails. According to the predicted topology, Cys266 would be localized in the reductive milieu of the cytosol where disulfide bridges are generally uncommon. Using immunogold labelling and proteinase protection assays, the localization of the N- and C-termini of TMEM192 on the cytosolic side of the late endosomal/lysosomal membrane was experimentally confirmed. These findings may imply close proximity of the C-termini in TMEM192 dimers and a possible involvement of this part of the protein in dimer assembly.
Collapse
|
27
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
28
|
Cramer JF, Gustafsen C, Behrens MA, Oliveira CLP, Pedersen JS, Madsen P, Petersen CM, Thirup SS. GGA autoinhibition revisited. Traffic 2009; 11:259-73. [PMID: 20015111 DOI: 10.1111/j.1600-0854.2009.01017.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cytosolic adaptors GGA1-3 mediate sorting of transmembrane proteins displaying a C-terminal acidic dileucine motif (DXXLL) in their cytosolic domain. GGA1 and GGA3 contain similar but intrinsic motifs that are believed to serve as autoinhibitory sites activated by the phosphorylation of a serine positioned three residues upstream of the DXXLL motif. In the present study, we have subjected the widely acknowledged concept of GGA1 autoinhibition to a thorough structural and functional examination. We find that (i) the intrinsic motif of GGA1 is inactive, (ii) only C-terminal DXXLL motifs constitute active GGA binding sites, (iii) while aspartates and phosphorylated serines one or two positions upstream of the DXXLL motif increase GGA1 binding, phosphoserines further upstream have little or no influence and (iv) phosphorylation of GGA1 does not affect its conformation or binding to Sortilin and SorLA. Taken together, our findings seem to refute the functional significance of GGA autoinhibition in particular and of intrinsic GGA binding motifs in general.
Collapse
Affiliation(s)
- Jacob F Cramer
- MIND Centre, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
del Castillo FJ, Cohen-Salmon M, Charollais A, Caille D, Lampe PD, Chavrier P, Meda P, Petit C. Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins. Hum Mol Genet 2009; 19:262-75. [PMID: 19864490 DOI: 10.1093/hmg/ddp490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Targeting of numerous transmembrane proteins to the cell surface is thought to depend on their recognition by cargo receptors that interact with the adaptor machinery for anterograde traffic at the distal end of the Golgi complex. We report here on consortin, a novel integral membrane protein that is predicted to be intrinsically disordered, i.e. that contains large segments whose native state is unstructured. We identified consortin as a binding partner of connexins, the building blocks of gap junctions. Consortin is located at the trans-Golgi network (TGN), in tubulovesicular transport organelles, and at the plasma membrane. It directly interacts with the TGN clathrin adaptors GGA1 and GGA2, and disruption of this interaction by expression of a consortin mutant lacking the acidic cluster-dileucine (DXXLL) GGA interaction motif causes an intracellular accumulation of several connexins. RNA interference-mediated silencing of consortin expression in HeLa cells blocks the cell surface targeting of these connexins, which accumulate intracellularly, whereas partial depletion and redistribution of the consortin pool slows down the intracellular degradation of gap junction plaques. Altogether, our results show that, by studying connexin trafficking, we have identified the first TGN cargo receptor for the targeting of transmembrane proteins to the plasma membrane. The identification of consortin provides in addition a potential target for therapies aimed at diseases in which connexin traffic is altered, including cardiac ischemia, peripheral neuropathies, cataracts and hearing impairment. Sequence accession numbers. GenBank: Human CNST cDNA, NM_152609; mouse Cnst cDNA, NM_146105.
Collapse
|
30
|
A novel GGA-binding site is required for intracellular sorting mediated by stabilin-1. Mol Cell Biol 2009; 29:6097-105. [PMID: 19752197 DOI: 10.1128/mcb.00505-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stabilin-1 is a unique scavenger receptor that combines endocytic and intracellular sorting functions in macrophages. Stabilin-1 mediates the endocytosis of acetylated low-density lipoprotein (acLDL), SPARC, and growth hormone family member placental lactogen (PL). At the same time, stabilin-1 is involved in trans-Golgi network-to-endosome routing of the endogenous chitinase-like protein SI-CLP (stabilin-interacting chitinase-like protein). A DDSLL motif in the cytoplasmic tail of stabilin-1 interacts with GGA adaptors; however, the deletion of DDSLL reduces but does not abrogate this interaction. Here, we identified a novel GGA-binding site, EDDADDD, in the cytoplasmic tail of stabilin-1. The deletion of EDDADDD impaired and the deletion of both the DDSLL and EDDADDD sites abrogated the interaction of stabilin-1 with GGAs. The surface exposure of stabilin-1 and stabilin-1-mediated endocytosis of acLDL, SPARC, and PL were not affected by the deletion either of DDSLL or EDDADDD or both. At the same time, both GGA-binding sites were necessary for the intracellular sorting of SI-CLP performed by stabilin-1. Our data indicate that the novel GGA-binding site EDDADDD is essential for stabilin-1-mediated intracellular sorting but is not required for endocytosis.
Collapse
|
31
|
Brodeur J, Larkin H, Boucher R, Thériault C, St-Louis SC, Gagnon H, Lavoie C. Calnuc Binds to LRP9 and Affects its Endosomal Sorting. Traffic 2009; 10:1098-114. [DOI: 10.1111/j.1600-0854.2009.00933.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|