1
|
Greatbatch CJ, Lu Q, Hung S, Barnett AJ, Wing K, Liang H, Han X, Zhou T, Siggs OM, Mackey DA, Cook AL, Senabouth A, Liu GS, Craig JE, MacGregor S, Powell JE, Hewitt AW. High throughput functional profiling of genes at intraocular pressure loci reveals distinct networks for glaucoma. Hum Mol Genet 2024; 33:739-751. [PMID: 38272457 PMCID: PMC11031357 DOI: 10.1093/hmg/ddae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 04/06/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.
Collapse
Affiliation(s)
- Connor J Greatbatch
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sandy Hung
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Alexander J Barnett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Helena Liang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Owen M Siggs
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Short Street, St George Hospital KOGARAH UNSW, Sydney 2217, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, 2 Verdun Street Nedlands WA 6009, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| |
Collapse
|
2
|
Wu X, Pan X, Zhou Y, Pan J, Kang J, Yu JJJ, Cao Y, Quan C, Gong L, Li Y. Identification of key genes for atherosclerosis in different arterial beds. Sci Rep 2024; 14:6543. [PMID: 38503760 PMCID: PMC10951242 DOI: 10.1038/s41598-024-55575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Atherosclerosis (AS) is the pathologic basis of various cardiovascular and cerebrovascular events, with a high degree of heterogeneity among different arterial beds. However, mechanistic differences between arterial beds remain unexplored. The aim of this study was to explore key genes and potential mechanistic differences between AS in different arterial beds through bioinformatics analysis. Carotid atherosclerosis (CAS), femoral atherosclerosis (FAS), infrapopliteal atherosclerosis (IPAS), abdominal aortic atherosclerosis (AAS), and AS-specific differentially expressed genes (DEGs) were screened from the GSE100927 and GSE57691 datasets. Immune infiltration analysis was used to identify AS immune cell infiltration differences. Unsupervised cluster analysis of AS samples from different regions based on macrophage polarization gene expression profiles. Weighted gene co-expression network analysis (WGCNA) was performed to identify the most relevant module genes with AS. Hub genes were then screened by LASSO regression, SVM-REF, and single-gene differential analysis, and a nomogram was constructed to predict the risk of AS development. The results showed that differential expression analysis identified 5, 4, 121, and 62 CAS, FAS, IPAS, AAS-specific DEGs, and 42 AS-common DEGs, respectively. Immune infiltration analysis demonstrated that the degree of macrophage and mast cell enrichment differed significantly in different regions of AS. The CAS, FAS, IPAS, and AAS could be distinguished into two different biologically functional and stable molecular clusters based on macrophage polarization gene expression profiles, especially for cardiomyopathy and glycolipid metabolic processes. Hub genes for 6 AS (ADAP2, CSF3R, FABP5, ITGAX, MYOC, and SPP1), 4 IPAS (CLECL1, DIO2, F2RL2, and GUCY1A2), and 3 AAS (RPL21, RPL26, and RPL10A) were obtained based on module gene, gender stratification, machine learning algorithms, and single-gene difference analysis, respectively, and these genes were effective in differentiating between different regions of AS. This study demonstrates that there are similarities and heterogeneities in the pathogenesis of AS between different arterial beds.
Collapse
Affiliation(s)
- Xize Wu
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - J J Jiajia Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Yingyue Cao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Chao Quan
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No. 41 Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 33, Beiling Street, Huanggu District, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
3
|
Cassani M, Fernandes S, Oliver‐De La Cruz J, Durikova H, Vrbsky J, Patočka M, Hegrova V, Klimovic S, Pribyl J, Debellis D, Skladal P, Cavalieri F, Caruso F, Forte G. YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302965. [PMID: 37946710 PMCID: PMC10787066 DOI: 10.1002/advs.202302965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jorge Oliver‐De La Cruz
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)BarcelonaSpain
| | - Helena Durikova
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Jan Vrbsky
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Marek Patočka
- NenoVisionPurkynova 649/127Brno61200Czech Republic
- Faculty of Mechanical EngineeringBrno University of TechnologyTechnicka 2896/2Brno61669Czech Republic
| | | | - Simon Klimovic
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Jan Pribyl
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Doriana Debellis
- Electron Microscopy FacilityFondazione Istituto Italiano Di TecnologiaVia Morego 30Genoa16163Italy
| | - Petr Skladal
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Francesca Cavalieri
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourne3000VictoriaAustralia
- Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma “Tor Vergata”Via Della Ricerca ScientificaRome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
4
|
Saccuzzo EG, Youngblood HA, Lieberman RL. Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res 2023; 95:101188. [PMID: 37217093 PMCID: PMC10330797 DOI: 10.1016/j.preteyeres.2023.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
5
|
Transgenic Overexpression of Myocilin Leads to Variable Ocular Anterior Segment and Retinal Alterations Associated with Extracellular Matrix Abnormalities in Adult Zebrafish. Int J Mol Sci 2022; 23:ijms23179989. [PMID: 36077382 PMCID: PMC9456529 DOI: 10.3390/ijms23179989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Myocilin is an enigmatic glaucoma-associated glycoprotein whose biological role remains incompletely understood. To gain novel insight into its normal function, we used transposon-mediated transgenesis to generate the first zebrafish line stably overexpressing myocilin [Tg(actb1:myoc-2A-mCherry)]. qPCR showed an approximately four-fold increased myocilin expression in transgenic zebrafish embryos (144 hpf). Adult (13 months old) transgenic animals displayed variable and age-dependent ocular anterior segment alterations. Almost 60% of two-year-old male, but not female, transgenic zebrafish developed enlarged eyes with severe asymmetrical and variable abnormalities in the anterior segment, characterized by corneal limbus hypertrophy, and thickening of the cornea, iris, annular ligament and lens capsule. The most severe phenotype presented small or absent ocular anterior chamber and pupils, due to iris overgrowth along with dysplastic retinal growth and optic nerve hypertrophy. Immunohistochemistry revealed increased presence of myocilin in most altered ocular tissues of adult transgenic animals, as well as signs of retinal gliosis and expanded ganglion cells and nerve fibers. The preliminary results indicate that these cells contributed to retinal dysplasia. Visual impairment was demonstrated in all old male transgenic zebrafish. Transcriptomic analysis of the abnormal transgenic eyes identified disrupted expression of genes involved in lens, muscular and extracellular matrix activities, among other processes. In summary, the developed transgenic zebrafish provides a new tool to investigate this puzzling protein and provides evidence for the role of zebrafish myocilin in ocular anterior segment and retinal biology, through the influence of extracellular matrix organization and cellular proliferation.
Collapse
|
6
|
Prostate Cancer Secretome and Membrane Proteome from Pten Conditional Knockout Mice Identify Potential Biomarkers for Disease Progression. Int J Mol Sci 2022; 23:ijms23169224. [PMID: 36012492 PMCID: PMC9409251 DOI: 10.3390/ijms23169224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins—PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa.
Collapse
|
7
|
Folkesson E, Turkiewicz A, Rydén M, Hughes HV, Ali N, Tjörnstrand J, Önnerfjord P, Englund M. Proteomic characterization of the normal human medial meniscus body using data-independent acquisition mass spectrometry. J Orthop Res 2020; 38:1735-1745. [PMID: 31989678 PMCID: PMC7610686 DOI: 10.1002/jor.24602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 02/04/2023]
Abstract
Recent research suggests an important role of the meniscus in the development of knee osteoarthritis. We, therefore, aimed to analyze the proteome of the normal human meniscus body, and specifically to gain new knowledge on global protein expression in the different radial zones. Medial menisci were retrieved from the right knees of 10 human cadaveric donors, from which we cut a 2 mm radial slice from the mid-portion of the meniscal body. This slice was further divided into three zones: inner, middle, and peripheral. Proteins were extracted and prepared for mass spectrometric analysis using data-independent acquisition. We performed subsequent data searches using Spectronaut Pulsar and used fixed-effect linear regression models for statistical analysis. We identified 638 proteins and after statistical analysis, we observed the greatest number of differentially expressed proteins between the inner and peripheral zones (163 proteins) and the peripheral and middle zones (136 proteins), with myocilin being the protein with the largest fold-change in both comparisons. Chondroadherin was one of eight proteins that differed between the inner and middle zones. Functional enrichment analyses showed that the peripheral one-third of the medial meniscus body differed substantially from the two more centrally located zones, which were more similar to each other. This is probably related to the higher content of cells and vascularization in the peripheral zone, whereas the middle and inner zones of the meniscal body appear to be more similar to hyaline cartilage, with high levels of extracellular matrix proteins such as aggrecan and collagen type II.
Collapse
Affiliation(s)
- Elin Folkesson
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology UnitLund UniversityLund Sweden
- Faculty of Medicine, Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal BiologyLund UniversityLund Sweden
| | - Aleksandra Turkiewicz
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology UnitLund UniversityLund Sweden
| | - Martin Rydén
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology UnitLund UniversityLund Sweden
- Faculty of Medicine, Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal BiologyLund UniversityLund Sweden
| | - Harini Velocity Hughes
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology UnitLund UniversityLund Sweden
| | - Neserin Ali
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology UnitLund UniversityLund Sweden
| | - Jon Tjörnstrand
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology UnitLund UniversityLund Sweden
- Department of OrthopaedicsSkåne University HospitalLund Sweden
| | - Patrik Önnerfjord
- Faculty of Medicine, Department of Clinical Sciences Lund, Rheumatology and Molecular Skeletal BiologyLund UniversityLund Sweden
| | - Martin Englund
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology UnitLund UniversityLund Sweden
- Clinical Epidemiology Research and Training UnitBoston University School of MedicineBoston Massachusetts
| |
Collapse
|
8
|
Aroca-Aguilar JD, Fernández-Navarro A, Ontañón J, Coca-Prados M, Escribano J. Identification of myocilin as a blood plasma protein and analysis of its role in leukocyte adhesion to endothelial cell monolayers. PLoS One 2018; 13:e0209364. [PMID: 30557320 PMCID: PMC6296516 DOI: 10.1371/journal.pone.0209364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Myocilin is an extracellular glycoprotein with a poorly understood biological function and typically known because of its association with glaucoma. In this study, we analyzed the expression and biological activity of human myocilin in some non-ocular tissues. Western immunoblot showed the presence of myocilin in blood plasma as well as in liver and lymphoid tissues (thymus and lymph node). Quantitative PCR confirmed the expression of MYOC in these lymphoid organs and revealed that its mRNA is also present in T-lymphocytes and leukocytes. In addition, detection of 30 kDa C-terminal myocilin fragments in thymus and liver suggested that myocilin undergoes an in vivo proteolytic processing that might regulate its biological activity. The presence of myocilin in blood was further corroborated by peptide mass fingerprinting of the HPLC-isolated protein, and gross estimation of its concentration by Western immunoblot indicated that it is a medium-abundance serum protein with an approximate concentration of 0.85 mg/ml (15.5 μM). Finally, in vitro analyses indicated that myocilin acts as an anti-adhesive protein for human circulating leukocytes incubated with endothelial cell monolayers. Altogether, these data provide insightful information on new biological properties of myocilin and suggest its putative role as a blood matricellular protein.
Collapse
Affiliation(s)
- José-Daniel Aroca-Aguilar
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
- Cooperative Research Network on Prevention, Early Detection and Treatment of Prevalent Degenerative and Chronic Ocular Pathology (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Fernández-Navarro
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jesús Ontañón
- Servicio de Inmunología, Complejo Hospitalario Universitario de Albacete, Castilla la Mancha, Spain
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States of America
- Fundación de Investigación Oftalmológica Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
| | - Julio Escribano
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
- Cooperative Research Network on Prevention, Early Detection and Treatment of Prevalent Degenerative and Chronic Ocular Pathology (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
9
|
Hill SE, Nguyen E, Donegan RK, Patterson-Orazem AC, Hazel A, Gumbart JC, Lieberman RL. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin. Structure 2017; 25:1697-1707.e5. [PMID: 29056483 PMCID: PMC5685557 DOI: 10.1016/j.str.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023]
Abstract
Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shannon E Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elaine Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Faralli JA, Clark RW, Filla MS, Peters DM. NFATc1 activity regulates the expression of myocilin induced by dexamethasone. Exp Eye Res 2014; 130:9-16. [PMID: 25450062 DOI: 10.1016/j.exer.2014.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/24/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Mutations in the myocilin gene (MYOC) account for 10% of juvenile open-angle glaucoma cases and 3-4% of adult onset primary open-angle glaucoma cases. It is a secreted glycoprotein found in many ocular and non-ocular tissues and has been linked to elevated intraocular pressure. In human trabecular meshwork (HTM) cells, MYOC expression can be induced by the glucocorticoid dexamethasone (DEX). In this study we examined the role of the calcineurin/NFATc1 (Nuclear Factor of Activated T-cells) pathway in the DEX induction of MYOC in HTM cells. In post-confluent HTM cells treated with either 500 nM DEX or 0.1% ethanol (EtOH; vehicle control) for 0-6 days both protein and mRNA levels of MYOC were increased while DEX was present. The protein and mRNA levels remained elevated for an additional 12 days after the removal of DEX. Only 1 day of DEX treatment was sufficient to trigger a sustained increase in MYOC mRNA that lasted for 4 days after the removal of DEX. Similar to other studies, myocilin protein expression was not seen until the second day of DEX treatment while mRNA increased within one day of DEX indicating that this is a secondary glucocorticoid response. To determine if MYOC gene expression was regulated by calcineurin/NFATc1, HTM cells were pre-treated for 1 h with the calcineurin inhibitors cyclosporin A or INCA-6 prior to the addition of DEX or EtOH for 2 days. NFATc1 siRNA was used to determine if NFATc1 was required for MYOC mRNA expression. Cells were also treated with the ionophone ionomycin to determine if increased cytosolic calcium affected MYOC expression. These studies showed that the DEX induced increase in MYOC mRNA could be inhibited with either cyclosporin A or INCA-6 or by transfection with NFATc1 siRNA and that ionomycin was unable to increase MYOC mRNA. Immunofluorescence microscopy was also performed to determine if DEX caused the nuclear translocation of NFATc1. Immunostaining showed that NFATc1 relocated to the nucleus within 15 min of DEX treatment and remained there for up to 2 h. The data suggest that the DEX-induced increase in MYOC expression activates a calcineurin and NFATc1 pathway in a calcium independent mechanism.
Collapse
Affiliation(s)
- Jennifer A Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | - Ross W Clark
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Mark S Filla
- Departments of Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; Departments of Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
11
|
Koch MA, Rosenhammer B, Koschade SE, Braunger BM, Volz C, Jägle H, Tamm ER. Myocilin modulates programmed cell death during retinal development. Exp Eye Res 2014; 125:41-52. [PMID: 24837143 DOI: 10.1016/j.exer.2014.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 11/20/2022]
Abstract
Mutations in the myocilin gene (MYOC) are causative for 10% of cases with juvenile open-angle glaucoma and 3-4% of those with primary open-angle glaucoma. Myocilin is a secreted protein with relatively ill-defined matricellular properties. Despite its high expression in the eye, myocilin-deficient mice have originally been reported to have no obvious ocular phenotype. Here we revisited the ocular phenotype of myocilin-deficient mice and detected a higher number of neurons in their inner (INL) and outer (ONL) nuclear layers, as well as a higher number of retinal ganglion cells (RGC) and their axons. The increase in retinal neurons appears to be caused by a decrease in programmed developmental cell death, as apoptosis of retinal neurons between postnatal days 4 and 10 was found to be attenuated when compared to that of wildtype littermates. In contrast, when Myoc(-/-) mice were crossed with βB1-crystallin-MYOC mice with ectopic overexpression of myocilin in the eye, no differences in developmental apoptosis, RGC number and INL thickness were observed when compared to wildtype littermates. The amounts of the anti-apoptotic Bcl-2-like protein 1 (BCL2L1, Bcl-xL) and its mRNA were increased in retinae of Myoc(-/-) mice, while lower amounts of BCL2L1 and its mRNA were detected in mixed Myoc(-/-)/βB1-crystallin-MYOC mice. The structural differences between Myoc(-/-) mice and wildtype littermates did not result in functional differences as measured by electroretinography. Noteworthy though mixed Myoc(-/-)/βB1-crystallin-MYOC mice with ocular overexpression of myocilin had significant cone function deficits. Myocilin appears to modulate apoptotic death of retinal neurons likely by interacting with the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Marcus A Koch
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Bernd Rosenhammer
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Sebastian E Koschade
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Barbara M Braunger
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Cornelia Volz
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
12
|
Anholt RRH. Olfactomedin proteins: central players in development and disease. Front Cell Dev Biol 2014; 2:6. [PMID: 25364714 PMCID: PMC4206993 DOI: 10.3389/fcell.2014.00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022] Open
Abstract
Olfactomedin proteins are characterized by a conserved domain of \texorpdfstring~\textasciitilde250 amino acids corresponding to the olfactomedin archetype first discovered in olfactory neuroepithelium. They arose early in evolution and occur throughout the animal kingdom. In mice and humans olfactomedin proteins comprise a diverse array of glycoproteins, many of which are critical for early development and functional organization of the nervous system as well as hematopoiesis. Olfactomedin domains appear to facilitate protein-protein interactions, intercellular interactions, and cell adhesion. Several members of the family have been implicated in various common diseases, notably myocilin in glaucoma and OLFM4 in cancer. This review highlights this important, hitherto understudied family of proteins.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
13
|
Anholt RRH, Carbone MA. A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol Med 2013; 19:586-93. [PMID: 23876925 PMCID: PMC3795998 DOI: 10.1016/j.molmed.2013.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/20/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Primary open angle glaucoma (POAG) is a common late-onset neurodegenerative disease. Ocular hypertension represents a major risk factor, but POAG etiology remains poorly understood. Some cases of early-onset congenital glaucoma and adult POAG are linked to mutations in myocilin, a secreted protein of poorly defined function. Transgenic overexpression of myocilin in Drosophila and experiments in mice and human populations implicate the unfolded protein response (UPR) in the pathogenesis of glaucoma. We postulate that compromised ability of the UPR to eliminate misfolded mutant or damaged proteins, including myocilin, causes endoplasmic reticulum stress, resulting in functional impairment of trabecular meshwork cells that regulate intraocular pressure. This mechanism of POAG is reminiscent of other age-dependent neurodegenerative diseases that involve accumulation of protein aggregates.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA.
| | | |
Collapse
|
14
|
Donegan RK, Hill SE, Turnage KC, Orwig SD, Lieberman RL. The glaucoma-associated olfactomedin domain of myocilin is a novel calcium binding protein. J Biol Chem 2012; 287:43370-7. [PMID: 23129764 DOI: 10.1074/jbc.m112.408906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myocilin is a protein found in the trabecular meshwork extracellular matrix tissue of the eye that plays a role in regulating intraocular pressure. Both wild-type and certain myocilin variants containing mutations in the olfactomedin (OLF) domain are linked to the optic neuropathy glaucoma. Because calcium ions are important biological cofactors that play numerous roles in extracellular matrix proteins, we examined the calcium binding properties of the myocilin OLF domain (myoc-OLF). Our study reveals an unprecedented high affinity calcium binding site within myoc-OLF. The calcium ion remains bound to wild-type OLF at neutral and acidic pH. A glaucoma-causing OLF variant, myoc-OLF(D380A), is calcium-depleted. Key differences in secondary and tertiary structure between myoc-OLF(D380A) and wild-type myoc-OLF, as well as limited access to chelators, indicate that the calcium binding site is largely buried in the interior of the protein. Analysis of six conserved aspartate or glutamate residues and an additional 18 disease-causing variants revealed two other candidate residues that may be involved in calcium coordination. Our finding expands our knowledge of calcium binding in extracellular matrix proteins; provides new clues into domain structure, function, and pathogenesis for myocilin; and offers insights into highly conserved, biomedically relevant OLF domains.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | |
Collapse
|
15
|
Ying H, Shen X, Yue BYJT. Establishment of inducible wild type and mutant myocilin-GFP-expressing RGC5 cell lines. PLoS One 2012; 7:e47307. [PMID: 23082156 PMCID: PMC3474840 DOI: 10.1371/journal.pone.0047307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
Background Myocilin is a gene linked directly to juvenile- and adult-onset open angle glaucoma. Mutations including Gln368stop (Q368X) and Pro370Leu (P370L) have been identified in patients. The exact role of myocilin and its functional association with glaucoma are still unclear. In the present study, we established tetracycline-inducible (Tet-on) wild type and mutant myocilin-green fluorescence protein (GFP) expressing RGC5 stable cell lines and studied the changes in cell migration and barrier function upon induction. Methodology/Principal Findings After several rounds of selection, clones that displayed low, moderate, or high expression of wild type, Q368X or P370L myocilin-GFP upon doxycycline (Dox) induction were obtained. The levels of wild type and mutant myocilin-GFP in various clones were confirmed by Western blotting. Compared to non-induced controls, the cell migration was retarded, the actin stress fibers were fewer and shorter, and the trypsinization time needed for cells to round up was reduced when wild type or mutant myocilin was expressed. The barrier function was in addition aberrant following induced expression of wild type, Q368X or P370L myocilin. Immunoblotting further showed that tight junction protein occludin was downregulated in induced cells. Conclusions/Significance Tet-on inducible, stable RGC5 cell lines were established. These cell lines, expressing wild type or mutant (Q368X or P370L) myocilin-GFP upon Dox induction, are valuable in facilitating studies such as proteomics, as well as functional and pathogenesis investigations of disease-associated myocilin mutants. The barrier function was found impaired and the migration of cells was hindered with induced expression of wild type and mutant myocilin in RGC5 cell lines. The reduction in barrier function might be related to the declined level of occludin. The retarded cell migration was consistent with demonstrated myocilin phenotypes including the loss of actin stress fibers, lowered RhoA activities and compromised cell-matrix adhesiveness.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Beatrice Y. J. T. Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wnt activation downregulates olfactomedin-1 in Fallopian tubal epithelial cells: a microenvironment predisposed to tubal ectopic pregnancy. J Transl Med 2012; 92:256-64. [PMID: 21968811 PMCID: PMC3272473 DOI: 10.1038/labinvest.2011.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ectopic pregnancy (EP) occurs when the embryo fails to transit to the uterus and attach to the luminal epithelium of the Fallopian tube (FT). Tubal EP is a common gynecological emergency and more than 95% of EP occurs in the ampullary region of the FT. In humans, Wnt activation and downregulation of olfactomedin-1 (Olfm-1) occur in the receptive endometrium and coincided with embryo implantation in vivo. Whether similar molecular changes happen in the FT leading to EP remains unclear. We hypothesized that activation of Wnt signaling downregulates Olfm-1 expression predisposes to EP. We investigated the spatiotemporal expression of Olfm-1 in FT from non-pregnant women and women with EP, and used a novel trophoblastic spheroid (embryo surrogate)-FT epithelial cell co-culture model (JAr and OE-E6/E7 cells) to study the role of Olfm-1 on spheroid attachment. Olfm-1 mRNA expression in the ampullary region of non-pregnant FT was higher (P<0.05) in the follicular phase than in the luteal phase. Ampullary tubal Olfm-1 expression was lower in FT from women with EP compared to normal controls at the luteal phase (histological scoring (H-SCORE)=1.3±0.2 vs 2.4±0.5; P<0.05). Treatment of OE-E6/E7 with recombinant Olfm-1 (0.2-5 μg/ml) suppressed spheroid attachment to OE-E6/E7 cells, while activation of Wnt-signaling pathway by Wnt3a or LiCl reduced endogenous Olfm-1 expression and increased spheroid attachment. Conversely, suppression of Olfm-1 expression by RNAi increased spheroid attachment to OE-E6/E7 cells. Taken together, Wnt activation suppresses Olfm-1 expression, and this may predispose a favorable microenvironment of the retained embryo in the FT, leading to EP in humans.
Collapse
|
17
|
Orwig SD, Perry CW, Kim LY, Turnage KC, Zhang R, Vollrath D, Schmidt-Krey I, Lieberman RL. Amyloid fibril formation by the glaucoma-associated olfactomedin domain of myocilin. J Mol Biol 2011; 421:242-55. [PMID: 22197377 DOI: 10.1016/j.jmb.2011.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/02/2011] [Accepted: 12/07/2011] [Indexed: 12/30/2022]
Abstract
Myocilin is a protein found in the extracellular matrix of trabecular meshwork tissue, the anatomical region of the eye involved in regulating intraocular pressure. Wild-type (WT) myocilin has been associated with steroid-induced glaucoma, and variants of myocilin have been linked to early-onset inherited glaucoma. Elevated levels and aggregation of myocilin hasten increased intraocular pressure and glaucoma-characteristic vision loss due to irreversible damage to the optic nerve. In spite of reports on the intracellular accumulation of mutant and WT myocilin in vitro, cell culture, and model organisms, these aggregates have not been structurally characterized. In this work, we provide biophysical evidence for the hallmarks of amyloid fibrils in aggregated forms of WT and mutant myocilin localized to the C-terminal olfactomedin (OLF) domain. These fibrils are grown under a variety of conditions in a nucleation-dependent and self-propagating manner. Protofibrillar oligomers and mature amyloid fibrils are observed in vitro. Full-length mutant myocilin expressed in mammalian cells forms intracellular amyloid-containing aggregates as well. Taken together, this work provides new insights into and raises new questions about the molecular properties of the highly conserved OLF domain, and suggests a novel protein-based hypothesis for glaucoma pathogenesis for further testing in a clinical setting.
Collapse
Affiliation(s)
- Susan D Orwig
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kwon HS, Tomarev SI. Myocilin, a glaucoma-associated protein, promotes cell migration through activation of integrin-focal adhesion kinase-serine/threonine kinase signaling pathway. J Cell Physiol 2011; 226:3392-402. [PMID: 21656515 DOI: 10.1002/jcp.22701] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The MYOCILIN gene encodes a secreted glycoprotein which is highly expressed in eye drainage structures. Mutations in this gene may lead to juvenile open-angle glaucoma and adult onset primary open-angle glaucoma, one of the leading causes of irreversible blindness in the world. Functions of wild-type myocilin are still unclear. We have recently demonstrated that myocilin is a modulator of Wnt signaling and may affect actin cytoskeleton organization. Here we report that myocilin and its naturally occurring proteolytic fragments, similar to Wnt3a, are able to stimulate trabecular meshwork, NIH3T3, and FHL124 cell migration with the N-terminal proteolytic fragment of myocilin lacking the olfactomedin domain producing the highest stimulatory effect. Stimulation of cell migration occurs through activation of the integrin-focal adhesion kinase (FAK)-serine/threonine kinase (AKT) signaling pathway. Inhibition of FAK by siRNA reduced the stimulatory action of myocilin by threefold. Activation of several components of this signaling pathway was also demonstrated in the eyes of transgenic mice expressing elevated levels of myocilin in the eye drainage structures. These data extend the similarities between actions of myocilin and Wnt proteins acting through a β-catenin-independent mechanism. The modification of the migratory ability of cells by myocilin may play a role in normal functioning of the eye anterior segment and its pathology including glaucoma.
Collapse
Affiliation(s)
- Heung Sun Kwon
- Molecular Mechanisms of Glaucoma Section, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, Bethesda, Maryland 20892-9303, USA
| | | |
Collapse
|
19
|
Anderssohn AM, Cox K, O'Malley K, Dees S, Hosseini M, Boren L, Wagner A, Bradley JM, Kelley MJ, Acott TS. Molecular chaperone function for myocilin. Invest Ophthalmol Vis Sci 2011; 52:7548-55. [PMID: 21873671 DOI: 10.1167/iovs.11-7723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Myocilin is thought to be a stress response protein, but its exact molecular functions have not been established. Studies were conducted to see whether myocilin can act as a general molecular chaperone. METHODS Myocilin was isolated and purified from porcine trabecular meshwork (TM) cell culture media. Its ability to protect citrate synthase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the restriction endonuclease DrdI from thermal inactivation was evaluated. Light scattering was used to evaluate thermally induced aggregation of citrate synthase. Myocilin induction was assessed after exposure of TM cells to several types of stress treatments. RESULTS Levels of extracellular myocilin expressed by TM cells were increased in response to mechanical stretch, heat shock, TNFα, or IL-1α. Myocilin protected citrate synthase activity against thermal inactivation for 5 minutes at 55°C in a concentration-dependent manner, with nearly full protection of 1.5 μM citrate synthase in the presence of 650 nM myocilin. Myocilin significantly reduced thermal aggregation of citrate synthase to levels 36% to 44% of control levels. Myocilin also protected GAPDH from thermal inactivation for 10 minutes at 45°C. Myocilin at 18 nM was more effective than 1 μM bovine serum albumin at protecting DrdI from thermal inactivation. CONCLUSIONS Myocilin is induced in response to several cellular stresses and displays general molecular chaperone activity by protecting DrdI, citrate synthase, and GAPDH from thermal inactivation. Myocilin also suppresses the thermal aggregation of citrate synthase. One function of myocilin may be to serve as a molecular chaperone.
Collapse
Affiliation(s)
- Ann Marie Anderssohn
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Orwig SD, Lieberman RL. Biophysical characterization of the olfactomedin domain of myocilin, an extracellular matrix protein implicated in inherited forms of glaucoma. PLoS One 2011; 6:e16347. [PMID: 21283635 PMCID: PMC3026022 DOI: 10.1371/journal.pone.0016347] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/11/2010] [Indexed: 12/20/2022] Open
Abstract
Myocilin is an eye protein found in the trabecular extracellular matrix (TEM), within the anatomic region that controls fluid flow. Variants of myocilin, localized to its olfactomedin (OLF) domain, have been linked to inherited forms of glaucoma, a disease associated with elevated intraocular pressure. OLF domains have also been implicated in psychiatric diseases and cancers by their involvement in signaling, neuronal growth, and development. However, molecular characterization of OLFs has been hampered by challenges in recombinant expression, a hurdle we have recently overcome for the myocilin OLF domain (myoc-OLF). Here, we report the first detailed solution biophysical characterization of myoc-OLF to gain insight into its structure and function. Myoc-OLF is stable in the presence of glycosaminoglycans, as well as in a wide pH range in buffers with functional groups reminiscent of such glycosaminoglycans. Circular dichroism (CD) reveals significant β-sheet and β-turn secondary structure. Unexpectedly, the CD signature is reminiscent of α-chymotrypsin as well as another ocular protein family, the βγ-crystallins. At neutral pH, intrinsic tryptophan fluorescence and CD melts indicate a highly cooperative transition with a melting temperature of ∼55°C. Limited proteolysis combined with mass spectrometry reveals that the compact core structural domain of OLF consists of approximately residues 238-461, which retains the single disulfide bond and is as stable as the full myoc-OLF construct. The data presented here inform new testable hypotheses for interactions with specific TEM components, and will assist in design of therapeutic agents for myocilin glaucoma.
Collapse
Affiliation(s)
- Susan D. Orwig
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Aroca-Aguilar JD, Sánchez-Sánchez F, Ghosh S, Fernández-Navarro A, Coca-Prados M, Escribano J. Interaction of recombinant myocilin with the matricellular protein SPARC: functional implications. Invest Ophthalmol Vis Sci 2011; 52:179-89. [PMID: 20926826 DOI: 10.1167/iovs.09-4866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Myocilin is an extracellular glycoprotein with unknown function that is associated with glaucoma. Calpain II cleaves recombinant myocilin within the linker region of the protein, releasing the C-terminal olfactomedin domain from the N-terminal domain. The authors previously reported that myocilin interacts with the C-terminal region of hevin, a secretory glycoprotein belonging to the SPARC family of matricellular proteins. This study aims to investigate the interaction of myocilin with SPARC. METHODS Protein-protein interactions were evaluated by the yeast two-hybrid system. The positive interactions were confirmed by solid-phase binding assays using Ni-chelating HPLC purified recombinant proteins and coexpression of recombinant proteins in HEK-293T cells. Coexpression of myocilin, SPARC, and hevin in ocular tissues was identified by immunoflorescence microscopy, Western blot, and array-based gene profiling. RESULTS Yeast two-hybrid analyses showed that myocilin interacted with the highly conserved C-terminal extracellular calcium binding (EC) domain within SPARC and hevin. Solid-phase binding assays confirmed these interactions and showed that both myocilin and its C-terminal olfactomedin fragment interacted noncovalently with SPARC and a peptide containing the EC domain of SPARC. Full-length myocilin interacted with higher affinity with SPARC and its EC domain than the myocilin C-terminal fragment. Coexpression of the two recombinant proteins in HEK-293T cells also indicated their intracellular interaction. CONCLUSIONS Recombinant myocilin and SPARC interact through their C-terminal domains. The data suggest that the proteolytic processing of myocilin modulates this interaction as well as the interactions of myocilin with other extracellular matrix and matricellular proteins, further supporting a functional role for this proteolytic cleavage.
Collapse
|
22
|
Bohr DC, Koch M, Kritzenberger M, Fuchshofer R, Tamm ER. Increased expression of olfactomedin-1 and myocilin in podocytes during puromycin aminonucleoside nephrosis. Nephrol Dial Transplant 2010; 26:83-92. [PMID: 20595200 DOI: 10.1093/ndt/gfq366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The olfactomedin domain proteins Olfm-1 and myocilin are expressed in podocytes. Myocilin stimulates the formation of focal contacts and actin stress fibres in podocytes and other cell types, effects that are mediated through the Wnt signalling pathway. Here, we tested if the expression of both proteins is modified during puromycin aminonucleoside (PAN) nephrosis, which leads to structural changes in the actin cytoskeleton of podocytes. METHODS Rats were treated with PAN, and the effectiveness of treatment was analysed by electron microscopy of podocytes and protein detection in the urine. The expression of Olfm-1 and myocilin was studied by immunohistochemistry, western blot analysis of glomerular proteins and real-time RT-PCR of glomerular proteins. In parallel experiments, the expression of Olfm-1 was studied in cultured podocytes treated with dexamethasone, TGF-β, TNF-α and PAN. RESULTS Between Days 5 and 22 after treatment, the amounts of the BMZ and BMY splice variants of Olfm-1 and their mRNA were markedly elevated in proteins and mRNA from isolated glomeruli. Immunohistochemistry showed that the expression of Olfm-1 was confined to podocytes. Essentially, comparable results were obtained for myocilin. The BMZ variant of Olfm-1 appeared to be secreted from podocytes and was found in high amounts in urine of treated animals. Treatment of cultured podocytes with dexamethasone and PAN caused an increase in Olfm-1 expression, while treatment with recombinant Olfm-1 increased the formation of actin stress fibres. CONCLUSIONS Olfm-1 and myocilin are markedly induced in podocytes during PAN nephrosis and appear to be involved in the processes that govern the reorganization of the actin cytoskeleton during podocyte repair.
Collapse
Affiliation(s)
- Daniela C Bohr
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Burns JN, Orwig SD, Harris JL, Watkins JD, Vollrath D, Lieberman RL. Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones. ACS Chem Biol 2010; 5:477-87. [PMID: 20334347 DOI: 10.1021/cb900282e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutations in myocilin cause an inherited form of open angle glaucoma, a prevalent neurodegenerative disorder associated with increased intraocular pressure. Myocilin forms part of the trabecular meshwork extracellular matrix presumed to regulate intraocular pressure. Missense mutations, clustered in the olfactomedin (OLF) domain of myocilin, render the protein prone to aggregation in the endoplasmic reticulum of trabecular meshwork cells, causing cell dysfunction and death. Cellular studies have demonstrated temperature-sensitive secretion of myocilin mutants, but difficulties in expression and purification have precluded biophysical characterization of wild-type (wt) myocilin and disease-causing mutants in vitro. We have overcome these limitations by purifying wt and select glaucoma-causing mutant (D380A, I477N, I477S, K423E) forms of the OLF domain (228-504) fused to a maltose binding protein (MBP) from E. coli . Monomeric fusion proteins can be isolated in solution. To determine the relative stability of wt and mutant OLF domains, we developed a fluorescence thermal stability assay without removal of MBP and provide the first direct evidence that mutated OLF is folded but less thermally stable than wt. We tested the ability of seven chemical chaperones to stabilize mutant myocilin. Only sarcosine and trimethylamine N-oxide were capable of shifting the melting temperature of all mutants tested to near that of wt OLF. Our work lays the foundation for the identification of tailored small molecules capable of stabilizing mutant myocilin and promoting secretion to the extracellular matrix, to better control intraocular pressure and to ultimately delay the onset of myocilin glaucoma.
Collapse
Affiliation(s)
- J. Nicole Burns
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - Susan D. Orwig
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - Julia L. Harris
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - J. Derrick Watkins
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - Douglas Vollrath
- Departments of Genetics and Ophthalmology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| |
Collapse
|
24
|
Koga T, Shen X, Park JS, Qiu Y, Park BC, Shyam R, Yue BYJT. Differential effects of myocilin and optineurin, two glaucoma genes, on neurite outgrowth. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:343-52. [PMID: 19959812 DOI: 10.2353/ajpath.2010.090194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons. To investigate the effects of force-expressed wild-type and mutant myocilin and optineurin on neurite outgrowth in neuronal cells, we transiently transfected cells with pEGFP-N1 (mock control) as well as myocilin and optineurin plasmids including pMYOC(WT)-EGFP, pMYOC(P370L)-EGFP, pMYOC(1-367)-EGFP, pOPTN(WT)-EGFP, and pOPTN(E50K)-EGFP. PC12 cells transfected with pEGFP-N1 produced, as anticipated, long and extensive neuritis on nerve growth factor induction. The neurite length in those cells transfected with myocilin constructs was shortened and the number of neurites was also reduced. A similar inhibitory effect on neurite outgrowth was also elicited by myocilin transfection in RGC5 cells. In contrast, neither transfection of the optineurin constructs pOPTN(WT)-EGFP and pOPTN(E50K)-EGFP nor the myocilin and optineurin small-interfering RNA treatments induced significant alterations in neurite outgrowth. Transfection with the wild-type optineurin construct, but not with that of the wild-type myocilin, increased the apoptotic activity in cells. These results demonstrated that the two glaucoma genes, myocilin and optineurin, exhibited differential effects on neurite outgrowth. They may contribute to the development of neurodegenerative glaucoma via distinct mechanisms.
Collapse
Affiliation(s)
- Takahisa Koga
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|