1
|
Zakariah M, Majama YB, Gazali YA, Musa EZ, Dasa JJ, Molele RA, Mahdy MAA. Ultrastructural changes in the spermatogenic cells of domestic chicken (Gallus gallus domesticus) observed at different reproductive stages. Micron 2024; 187:103717. [PMID: 39298890 DOI: 10.1016/j.micron.2024.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Spermatogenesis is a complex process. It is the modification of progenitor spermatogonia into mature spermatozoa. The stages are similar in all-male vertebrates, as well as avian species. However, studies on spermatogenesis in birds are fewer compared to mammals. The current study investigated the ultrastructural changes in the spermatogenic cells of domestic chickens in different reproductive stages. Thirty (30) male birds, ten (10) in each of the three reproductive stages: pre-pubertal, pubertal, and adult were used in the study. Testicular tissues from all age groups were processed for transmission electron microscopy (TEM). TEM results showed spermatogonia and primary spermatocytes in the pre-pubertal testis, and the seminiferous tubule lumen was wide and empty. Also, the nuclei of spermatogonia at this stage did not contain condensed chromatin material at the center nor scattered at the periphery of the nuclear membrane. There were slight differences between the spermatogenic cells in the pubertal and adult age groups. The spermatogonia, primary and secondary spermatocytes, and round spermatids with scanty chromatin material were observed in both age groups. In the adult age group, round and elongated spermatids with condensed chromatin materials were observed besides the other spermatogenic cells. Also, the seminiferous tubule lumen was filled with sperm cells and cellular debris, unlike in the pre-pubertal and pubertal age groups where they were wide and empty. The presence of numerous oval mitochondria were observed in all age groups. This signifies the active process of spermatogenesis in pre-pubertal, pubertal, and adult male domestic chickens.
Collapse
Affiliation(s)
- Musa Zakariah
- Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, P. M. B. 28, Zuru, Kebbi, Nigeria; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, P. M. B 1069 University of Maiduguri, Maiduguri, Nigeria.
| | - Yagana B Majama
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, P. M. B 1069 University of Maiduguri, Maiduguri, Nigeria
| | - Yagana A Gazali
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, P. M. B 1069 University of Maiduguri, Maiduguri, Nigeria
| | - Esther Z Musa
- Department of Biological Science, College of Science, Federal University of Agriculture, P.M. B. 28, Zuru, Kebbi, Nigeria
| | - Josephine J Dasa
- Department of Biological Science, College of Science, Federal University of Agriculture, P.M. B. 28, Zuru, Kebbi, Nigeria
| | - Reneilwe A Molele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa
| | - Mohammed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt; Department of Anatomy and Histology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| |
Collapse
|
2
|
Olotu O, Koskenniemi AR, Ma L, Paramonov V, Laasanen S, Louramo E, Bourgery M, Lehtiniemi T, Laasanen S, Rivero-Müller A, Löyttyniemi E, Sahlgren C, Westermarck J, Ventelä S, Visakorpi T, Poutanen M, Vainio P, Mäkelä JA, Kotaja N. Germline-specific RNA helicase DDX4 forms cytoplasmic granules in cancer cells and promotes tumor growth. Cell Rep 2024; 43:114430. [PMID: 38963760 DOI: 10.1016/j.celrep.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cells undergo major epigenetic alterations and transcriptomic changes, including ectopic expression of tissue- and cell-type-specific genes. Here, we show that the germline-specific RNA helicase DDX4 forms germ-granule-like cytoplasmic ribonucleoprotein granules in various human tumors, but not in cultured cancer cells. These cancerous DDX4 complexes contain RNA-binding proteins and splicing regulators, including many known germ granule components. The deletion of DDX4 in cancer cells induces transcriptomic changes and affects the alternative splicing landscape of a number of genes involved in cancer growth and invasiveness, leading to compromised capability of DDX4-null cancer cells to form xenograft tumors in immunocompromised mice. Importantly, the occurrence of DDX4 granules is associated with poor survival in patients with head and neck squamous cell carcinoma and higher histological grade of prostate cancer. Taken together, these results show that the germ-granule-resembling cancerous DDX4 granules control gene expression and promote malignant and invasive properties of cancer cells.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Anna-Riina Koskenniemi
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Valeriy Paramonov
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sini Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Elina Louramo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sami Ventelä
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department for Otorhinolaryngology, Head, and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland; FICAN West Cancer Center, University of Turku, Turku University Hospital, 20500 Turku, Finland
| | - Paula Vainio
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
3
|
Chukrallah LG, Potgieter S, Chueh L, Snyder EM. Two RNA binding proteins, ADAD2 and RNF17, interact to form a heterogeneous population of novel meiotic germ cell granules with developmentally dependent organelle association. PLoS Genet 2023; 19:e1010519. [PMID: 37428816 PMCID: PMC10359003 DOI: 10.1371/journal.pgen.1010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/20/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
Mammalian male germ cell differentiation relies on complex RNA biogenesis events, many of which occur in non-membrane bound organelles termed RNA germ cell granules that are rich in RNA binding proteins (RBPs). Though known to be required for male germ cell differentiation, we understand little of the relationships between the numerous granule subtypes. ADAD2, a testis specific RBP, is required for normal male fertility and forms a poorly characterized granule in meiotic germ cells. This work aimed to understand the role of ADAD2 granules in male germ cell differentiation by clearly defining their molecular composition and relationship to other granules. Biochemical analyses identified RNF17, a testis specific RBP that forms meiotic male germ cell granules, as an ADAD2-interacting protein. Phenotypic analysis of Adad2 and Rnf17 mutants identified a rare post-meiotic chromatin defect, suggesting shared biological roles. ADAD2 and RNF17 were found to be dependent on one another for granularization and together form a previously unstudied set of germ cell granules. Based on co-localization studies with well-characterized granule RBPs and organelle-specific markers, a subset of the ADAD2-RNF17 granules are found to be associated with the intermitochondrial cement and piRNA biogenesis. In contrast, a second, morphologically distinct population of ADAD2-RNF17 granules co-localized with the translation regulators NANOS1 and PUM1, along with the molecular chaperone PDI. These large granules form a unique funnel-shaped structure that displays distinct protein subdomains and is tightly associated with the endoplasmic reticulum. Developmental studies suggest the different granule populations represent different phases of a granule maturation process. Lastly, a double Adad2-Rnf17 mutant model suggests the interaction between ADAD2 and RNF17, as opposed to loss of either, is the likely driver of the Adad2 and Rnf17 mutant phenotypes. These findings shed light on the relationship between germ cell granule pools and define new genetic approaches to their study.
Collapse
Affiliation(s)
- Lauren G. Chukrallah
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sarah Potgieter
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Lisa Chueh
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
4
|
Chukrallah LG, Snyder EM. Modern tools applied to classic structures: Approaches for mammalian male germ cell RNA granule research. Andrology 2023; 11:872-883. [PMID: 36273399 DOI: 10.1111/andr.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
First reported in the 1800s, germ cell granules are small nonmembrane bound RNA-rich regions of the cytoplasm. These sites of critical RNA processing and storage in the male germ cell are essential for proper differentiation and development and are present in a wide range of species from Caenorhabditis elegans through mammals. Initially characterized by light and electron microscopy, more modern techniques such as immunofluorescence and genetic models have played a major role in expanding our understanding of the composition of these structures. While these methods have given light to potential granule functions, much work remains to be done. The current expansion of imaging technologies and omics-scale analyses to germ cell granule research will drive the field forward considerably. Many of these methods, both current and upcoming, have considerable caveats and limitations that necessitate a holistic approach to the study of germ granules. By combining and balancing different techniques, the field is poised to elucidate the nature of these critical structures.
Collapse
Affiliation(s)
- Lauren G Chukrallah
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Elizabeth M Snyder
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
5
|
Lehtiniemi T, Bourgery M, Ma L, Ahmedani A, Mäkelä M, Asteljoki J, Olotu O, Laasanen S, Zhang FP, Tan K, Chousal JN, Burow D, Koskinen S, Laiho A, Elo L, Chalmel F, Wilkinson M, Kotaja N. SMG6 localizes to the chromatoid body and shapes the male germ cell transcriptome to drive spermatogenesis. Nucleic Acids Res 2022; 50:11470-11491. [PMID: 36259644 PMCID: PMC9723633 DOI: 10.1093/nar/gkac900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.
Collapse
Affiliation(s)
- Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Margareeta Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho Asteljoki
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- GM-Unit, Helsinki Institute of Life Science, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Dana Burow
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Frédéric Chalmel
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine (IGM), University of California, San Diego, La Jolla, CA 92093, USA
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Carro MDLM, Grimson A, Cohen PE. Small RNAs and their protein partners in animal meiosis. Curr Top Dev Biol 2022; 151:245-279. [PMID: 36681472 DOI: 10.1016/bs.ctdb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Meiosis is characterized by highly regulated transitions in gene expression that require diverse mechanisms of gene regulation. For example, in male mammals, transcription undergoes a global shut-down in early prophase I of meiosis, followed by increasing transcriptional activity into pachynema. Later, as spermiogenesis proceeds, the histones bound to DNA are replaced with transition proteins, which are themselves replaced with protamines, resulting in a highly condensed nucleus with repressed transcriptional activity. In addition, two specialized gene silencing events take place during prophase I: meiotic silencing of unsynapsed chromatin (MSUC), and the sex chromatin specific mechanism, meiotic sex chromosome inactivation (MSCI). Notably, conserved roles for the RNA binding protein (RBP) machinery that functions with small non-coding RNAs have been described as participating in these meiosis-specific mechanisms, suggesting that RNA-mediated gene regulation is critical for fertility in many species. Here, we review roles of small RNAs and their associated RBPs in meiosis-related processes such as centromere function, silencing of unpaired chromatin and meiotic recombination. We will discuss the emerging evidence of non-canonical functions of these components in meiosis.
Collapse
Affiliation(s)
- María de Las Mercedes Carro
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States
| | - Andrew Grimson
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, United States.
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States.
| |
Collapse
|
7
|
Wang X, Yin L, Wen Y, Yuan S. Mitochondrial regulation during male germ cell development. Cell Mol Life Sci 2022; 79:91. [PMID: 35072818 PMCID: PMC11072027 DOI: 10.1007/s00018-022-04134-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Jiang Y, Li S, Xu W, Ying J, Qu Y, Jiang X, Zhang A, Yue Y, Zhou R, Ruan T, Li J, Mu D. Critical Roles of the Circadian Transcription Factor BMAL1 in Reproductive Endocrinology and Fertility. Front Endocrinol (Lausanne) 2022; 13:818272. [PMID: 35311235 PMCID: PMC8924658 DOI: 10.3389/fendo.2022.818272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2022] [Indexed: 12/31/2022] Open
Abstract
Brain and muscle aryl-hydrocarbon receptor nuclear translocator like protein1 (BMAL1), a core component of circadian oscillation, is involved in many physiological activities. Increasing evidence has demonstrated the essential role of BMAL1 in reproductive physiology. For instance, BMAL1-knockout (KO) mice were infertile, with impaired reproductive organs and gametes. Additionally, in BMAL1-KO mice, hormone secretion and signaling of hypothalamus-pituitary-gonadal (H-P-G) hormones were also disrupted, indicating that H-P-G axis was impaired in BMAL1-KO mice. Moreover, both BMAL1-KO mice and BMAL1-knockdown by small interfering RNA (siRNA) in vitro cultured steroidogenic cells showed that BMAL1 was associated with gonadal steroidogenesis and expression of related genes. Importantly, BMAL1 also participates in pathogenesis of human reproductive diseases. In this review, we elaborate on the impaired reproduction of BMAL1-KO mice including the reproductive organs, reproductive endocrine hormones, and reproductive processes, highlighting the vital role of BMAL1 in fertility and reproductive endocrinology.
Collapse
Affiliation(s)
- Yin Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ayuan Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Jinhui Li, ; Dezhi Mu,
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Jinhui Li, ; Dezhi Mu,
| |
Collapse
|
9
|
Different fixatives influence morphology, antigen preservation, and TUNEL staining in chicken (Gallus gallus) testis. Acta Histochem 2021; 123:151822. [PMID: 34861475 DOI: 10.1016/j.acthis.2021.151822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
The optimized fixative for testis is still controversial. This study investigated the effects of Modified Davidson's Fluid (mDF), 4% Paraformaldehyde (4% PFA), and Bouin's Fluid (BF) fixatives on chicken testes in normal/cadmium (Cd) feeding groups using hematoxylin and eosin (HE), immunohistochemistry (IHC), and Terminal Transferase dUTP Nick End Labeling (TUNEL) staining. Compared to the mDF, we established that the testes fixed with 4% PFA and BF in the normal group had severe shrinkage in tubular and interstitial compartments. Moreover, compared with 4% PFA, the number of GATA4-positive Sertoli cells/mm2 reduced by 67.61% in mDF and 80.57% in BF for one seminiferous tubule. The TUNEL assay illustrated that more positive cells/mm2 in mDF group (28.47 ± 11.38) than in 4% PFA (10.49 ± 7.89). In Cd-treated testes, mDF showed more morphological details than 4% PFA and BF. In contrast, the number of GATA4-positive Sertoli cells/mm2 of 4% PFA was higher than that of mDF by 65.78% and BF by 64.80% in a seminiferous tubule. The number of TUNEL positive cells/mm2 in mDF (272.60 ± 34.41) were higher than in 4% PFA (175.91 ± 19.87). These results suggest that mDF fixative is suitable for normal and Cd-treated testis fixation for HE and TUNEL staining in chicken, whereas 4% PFA fixative is better for IHC examination.
Collapse
|
10
|
Liu WS, Lu C, Mistry BV. Subcellular localization of the mouse PRAMEL1 and PRAMEX1 reveals multifaceted roles in the nucleus and cytoplasm of germ cells during spermatogenesis. Cell Biosci 2021; 11:102. [PMID: 34074333 PMCID: PMC8170798 DOI: 10.1186/s13578-021-00612-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal gametogenic tissues and a variety of tumors. Members of the PRAME gene family encode leucine-rich repeat (LRR) proteins that provide a versatile structural framework for the formation of protein-protein interactions. As a nuclear receptor transcriptional regulator, PRAME has been extensively studied in cancer biology and is believed to play a role in cancer cell proliferation by suppressing retinoic acid (RA) signaling. The role of the PRAME gene family in germline development and spermatogenesis has been recently confirmed by a gene knockout approach. To further understand how PRAME proteins are involved in germ cell development at a subcellular level, we have conducted a systematic immunogold electron microscopy (IEM) analysis on testis sections of adult mice with gene-specific antibodies from two members of the mouse Prame gene family: Pramel1 and Pramex1. Pramel1 is autosomal, while Pramex1 is X-linked, both genes are exclusively expressed in the testis. RESULTS Our IEM data revealed that both PRAMEL1 and PRAMEX1 proteins were localized in various cell organelles in different development stages of spermatogenic cells, including the nucleus, rER, Golgi, mitochondria, germ granules [intermitochondrial cement (IMC) and chromatoid body (CB)], centrioles, manchette, and flagellum. Unlike other germ cell-specific makers, such as DDX4, whose proteins are evenly distributed in the expressed-organelle(s), both PRAMEL1 and PRAMEX1 proteins tend to aggregate together to form clusters of protein complexes. These complexes were highly enriched in the nucleus and cytoplasm (especially in germ granules) of spermatocytes and spermatids. Furthermore, dynamic distribution of the PRAMEL1 protein complexes were observed in the microtubule-based organelles, such as acroplaxome, manchette, and flagellum, as well as in the nuclear envelope and nuclear pore. Dual staining with PRAMEL1 and KIF17B antibodies further revealed that the PRAMEL1 and KIF17B proteins were co-localized in germ granules. CONCLUSION Our IEM data suggest that the PRAMEL1 and PRAMEX1 proteins are not only involved in transcriptional regulation in the nucleus, but may also participate in nucleocytoplasmic transport, and in the formation and function of germ cell-specific organelles during spermatogenesis.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
| | - Chen Lu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
- Present Address: Fudan University, Shanghai, People’s Republic of China
| | - Bhavesh V. Mistry
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802 USA
- Present Address: Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
12
|
Wang WY, Meng LJ, Xu YJ, Gong T, Yang Y. Effects of 4% paraformaldehyde and modified Davidson's fluid on the morphology and immunohistochemistry of Xiang pig testes. J Toxicol Pathol 2020; 33:97-104. [PMID: 32425342 PMCID: PMC7218235 DOI: 10.1293/tox.2019-0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023] Open
Abstract
Modified Davidson’s fluid (mDF) is a good fixative for morphological and antigen
preservation. However, recent studies have shown that 4% paraformaldehyde (PFA) can better
preserve the actin structure in rodent testes. It remains controversial which of these
fixatives is best for testicular tissue. This study investigated the effects of both mDF
and 4% PFA on the morphology and antigen preservation of Xiang pig testes using
hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). The stronger testis
penetration of mDF compared with that of 4% PFA was primarily manifested as testicular
color change and decrease in tissue weight loss. Testes fixed with 4% PFA displayed a
severe shrinkage of both the tubular and interstitial compartments and the seminiferous
tubule area decreased by 12.02% compared with that in mDF-fixed tissues. In contrast, IHC
results showed that 4% PFA fixation achieved better IHC-positive performance than mDF
fixation for antigens specifically expressed in germ cells, Leydig cells and Sertoli
cells. Due to this improved antigen preservation by 4% PFA fixation, the relative
immunoreactions intensity significantly increased by 39.8%, 27.8%, and 76.4%,
respectively, compared with that in mDF fixation. In summary, fixation of Xiang pig testes
with mDF was suitable for HE staining, while fixation with 4% PFA was more suitable for
IHC.
Collapse
Affiliation(s)
- Wei-Yong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Li-Jie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Yong-Jian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| | - Yi Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China.,College of Animal Science, Guizhou University, No. 515 Jiaxiu South Road, Guiyang, 550025 China
| |
Collapse
|
13
|
Mitochondria Associated Germinal Structures in Spermatogenesis: piRNA Pathway Regulation and Beyond. Cells 2020; 9:cells9020399. [PMID: 32050598 PMCID: PMC7072634 DOI: 10.3390/cells9020399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple specific granular structures are present in the cytoplasm of germ cells, termed nuage, which are electron-dense, non-membranous, close to mitochondria and/or nuclei, variant size yielding to different compartments harboring different components, including intermitochondrial cement (IMC), piP-body, and chromatoid body (CB). Since mitochondria exhibit different morphology and topographical arrangements to accommodate specific needs during spermatogenesis, the distribution of mitochondria-associated nuage is also dynamic. The most relevant nuage structure with mitochondria is IMC, also called pi-body, present in prospermatogonia, spermatogonia, and spermatocytes. IMC is primarily enriched with various Piwi-interacting RNA (piRNA) proteins and mainly functions as piRNA biogenesis, transposon silencing, mRNA translation, and mitochondria fusion. Importantly, our previous work reported that mitochondria-associated ER membranes (MAMs) are abundant in spermatogenic cells and contain many crucial proteins associated with the piRNA pathway. Provocatively, IMC functionally communicates with other nuage structures, such as piP-body, to perform its complex functions in spermatogenesis. Although little is known about the formation of both IMC and MAMs, its distinctive characters have attracted considerable attention. Here, we review the insights gained from studying the structural components of mitochondria-associated germinal structures, including IMC, CB, and MAMs, which are pivotal structures to ensure genome integrity and male fertility. We discuss the roles of the structural components in spermatogenesis and piRNA biogenesis, which provide new insights into mitochondria-associated germinal structures in germ cell development and male reproduction.
Collapse
|
14
|
Identification of piRNAs and piRNA clusters in the testes of the Mongolian horse. Sci Rep 2019; 9:5022. [PMID: 30903011 PMCID: PMC6430771 DOI: 10.1038/s41598-019-41475-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
P-element induced wimpy testis-interacting RNAs (piRNAs) are essential for testicular development and spermatogenesis in mammals. Comparative analyses of the molecular mechanisms of spermatogenesis among different organisms are therefore dependent on accurate characterizations of piRNAs. At present, little is known of piRNAs in non-model organisms. Here, we characterize piRNAs in the Mongolian horse, a hardy breed that reproduces under extreme circumstances. A thorough understanding of spermatogenesis and reproduction in this breed may provide insights for the improvement of fecundity and reproductive success in other breeds. We identified 4,936,717 piRNAs and 7,890 piRNA clusters across both testicular developmental stages. Of these, 2,236,377 putative piRNAs were expressed in the mature samples only, and 2,391,271 putative piRNAs were expressed in the immature samples only. Approximately 3,016 piRNA clusters were upregulated in the mature testes as compared to the immature testes, and 4,874 piRNA clusters were downregulated. Functional and pathway analyses indicated that the candidate generating genes of the predicted piRNAs were likely involved in testicular development and spermatogenesis. Our results thus provide information about differential expression patterns in genes associated with testicular development and spermatogenesis in a non-model animal.
Collapse
|
15
|
Gomes Fernandes M, He N, Wang F, Van Iperen L, Eguizabal C, Matorras R, Roelen BAJ, Chuva De Sousa Lopes SM. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis. Hum Reprod 2019; 33:258-269. [PMID: 29237021 PMCID: PMC5850288 DOI: 10.1093/humrep/dex365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/23/2017] [Indexed: 01/30/2023] Open
Abstract
STUDY QUESTION What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? SUMMARY ANSWER PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. WHAT IS KNOWN ALREADY In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. STUDY DESIGN, SIZE, DURATION This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). PARTICIPANTS/MATERIALS, SETTING, METHODS Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. MAIN RESULTS AND THE ROLE OF CHANCE PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers associated with piRNAs biogenesis like the TDRDs and HENMT1 in fetal GC. LARGE SCALE DATA Non-applicable. LIMITATIONS, REASONS FOR CAUTION This study is limited by the restricted number of samples and consequently stages analyzed. WIDER IMPLICATIONS OF THE FINDINGS In the germline, PIWILs ensure the integrity of the human genome protecting it from ‘parasitic sequences’. This study offers novel insights on the expression dynamics of PIWILs during the window of epigenetic remodeling and meiosis, and highlights important differences between humans and mice, which may prove particularly important to understand causes of infertility and improve both diagnosis and treatment in humans. STUDY FUNDING/COMPETING INTEREST(S) M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011]; N.H. by China Scholarship Council (CSC) [No. 201307040026] and F.W. by Medical Personnel Training Abroad Project of Henan Province [No. 2015022] and S.M.C.d.S.L. by the Netherlands Organization of Scientific Research (NWO) [ASPASIA 015.007.037] and the Interuniversity Attraction Poles-Phase VII [IUAP/PAI P7/14]. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Maria Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Fang Wang
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Reproductive Medical Centre, First Affiliated Hospital Zhengzhou University, No.1 Jianshe east road, Zhengzhou 450052, China
| | - Liesbeth Van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Cristina Eguizabal
- Cell Therapy and Stem Cells Group, Basque Centre for Blood Transfusion and Human Tissues, Barrio Labeaga s/n, Galdakao 48960, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo 48903, Spain
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht3584 CM, The Netherlands
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
16
|
Liu W, Zhang H, Xiang Y, Jia K, Luo M, Yi M. Molecular characterization of vasa homologue in marbled goby, Oxyeleotris marmorata: Transcription and localization analysis during gametogenesis and embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:42-50. [PMID: 30590176 DOI: 10.1016/j.cbpb.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Identification of germ cell markers is important for investigating reproduction biology in fish. Vasa is one of the most studied germ cell markers in mammals and lower vertebrates including fish. Here, we characterized a vasa homologue from the fish marbled goby (Oxyeleotris marmorata), termed omvasa. The full length of omvasa cDNA is 2344 bp and encodes 658 amino acids, sharing high identities with Vasa homologues of other vertebrates. OmVasa protein contains 15 RG/RGG repeats at N-terminus, 2 ATPase motifs, as well as RNA unwinding and RNA binding domains at C-terminus. Phylogenetic tree showed that omVasa had the closest relationship with the Vasa homologue from the fish Boleophthalmus pectinirostris, the great blue-spotted mudskipper. qRT-PCR analysis indicated that omvasa was specifically transcribed in gonads, and the transcription level was gradually increased during oocyte development. The germ cell-specific distribution of omvasa mRNA was revealed by fluorescent in situ hybridization. In ovary, the signal of omvasa RNA displayed strong-weak-strong dynamics from oogonia over pre-vitellogenic oocytes to vitellogenic oocytes. In testis, omvasa signal was strong in spermatogonia, modest in spermatocytes but undetectable in spermatids and somatic cells. During embryogenesis, the transcription of omvasa mRNA was high at blastula stage, gradually decreased from gastrula stage and maintained at a low level in later developmental stages. Whole mount in situ hybridization indicated that omvasa mRNA was specific to primordial germ cells (PGCs). In summary, marbled goby vasa is a germ cell-specific transcript during gametogenesis, and can be used as an ideal marker for tracing PGC formation and migration, which is pivotal to germ cell manipulation in this species.
Collapse
Affiliation(s)
- Wei Liu
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Hong Zhang
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Yangxi Xiang
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Kuntong Jia
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Mingfei Luo
- Zhuhai Modern Agriculture Development Center, Guangdong, China.
| | - Meisheng Yi
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
17
|
Grandi G, Astolfi G, Chicca M, Pezzi M. Ultrastructural investigations on spermatogenesis and spermatozoan morphology in the endangered Adriatic sturgeon, Acipenser naccarii (Chondrostei, Acipenseriformes). J Morphol 2018; 279:1376-1396. [PMID: 30194707 DOI: 10.1002/jmor.20847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 05/20/2018] [Indexed: 11/07/2022]
Abstract
Spermatogenesis was investigated in the Adriatic sturgeon, Acipenser naccarii, by light and electron microscopy. The testis of the unrestricted type had a germinal compartment composed of lobules containing germ cells and Sertoli cells, and separated by a basal lamina from the interstitial compartment, in which Leydig and myoid cells were detected for the first time in Acipenseridae. Spermatogenesis occurred in spermatocysts produced when Sertoli cells became associated with type A spermatogonia of subsequent generations, which produced a clone of synchronized aligned spermatogonia. In primary spermatocytes at zygo-pachytene stage, the large spherical nucleus contained synaptonemal complexes. The smaller secondary spermatocytes were ovoid with a central round nucleus and scarce cytoplasm. Spermatids were interconnected by cytoplasmic bridges until early spermiogenesis. Chromatin initially condensed as long, twisted, and nonhomogeneous fibers and finally as a compact structure made of thick filaments. Early spermatids showed the flagellum, the primordia of centriole complex and of "implantation fossa," followed by the acrosomal vesicle formed by Golgi complexes and a fibrous body associated to centriole complex. The spermatozoan head had 10 postero-lateral projections and a trapezoidal nucleus, a cylindrical midpiece with six to eight mitochondria, the centriole complex, and a "9 + 2" flagellum with a pair of lateral fins. Three helical endonuclear canals crossed the nucleus from the acrosome base to the implantation fossa; their spiralization and that of chromatin fibers suggest a spiral twisting of the nucleus during spermiogenesis. The Sertoli cells performed phagocytosis of degenerating spermatids and spermatozoa. Significant interindividual differences were detected in most morphological parameters of spermatozoa. Data on spermatogenesis in A. naccarii and morphometric measurements on mature spermatozoa provide information about the reproductive biology of the species useful not only for phylogenetic studies but also for evaluation of sperm quality for artificial reproduction projects and restocking of this and other critically endangered sturgeon species.
Collapse
Affiliation(s)
- Gilberto Grandi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Gianni Astolfi
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marco Pezzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Zhu W, Wang T, Zhao C, Wang D, Zhang X, Zhang H, Chi M, Yin S, Jia Y. Evolutionary conservation and divergence of Vasa, Dazl and Nanos1 during embryogenesis and gametogenesis in dark sleeper (Odontobutis potamophila). Gene 2018; 672:21-33. [PMID: 29885464 DOI: 10.1016/j.gene.2018.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022]
Abstract
Germline-specific genes, Vasa, Dazl and Nanos1, have highly conserved functions in germline development and fertility across animal phyla. In this study, the full-length sequences of Opvasa, Opdazl and Opnanos1 were cloned and characterized from the dark sleeper (Odontobutis potamophila). Gonad-specific expression patterns of Opvasa and Opdazl were confirmed in adult tissues by quantitative real-time PCR (qRT-PCR). Different from Opvasa and Opdazl, the expression of Opnanos1 was ubiquitously detected in all examined tissues except for the liver and spleen. Time-course dynamic expressions during embryogenesis were assessed, and all three genes (Opvasa, Opdazl and Opnanos1) persisted at a high level until gastrulation. qRT-PCR and Western blotting analyses revealed that all three genes were highly expressed throughout gametogenesis. In testis, the expressions of all three genes at the mRNA and protein levels were down-regulated during spermatogenesis. In ovary, different expression patterns were found, and all three genes had a differential role in translational regulation during oogenesis. The expressions of Opvasa, Opdazl and Opnanos1 at the mRNA but not the protein level were high in stage IV. Different expression patterns were found in premeiotic gonads treated by HPG axis hormones (HCG and LHRH-A). Immunolocalization analysis demonstrated that in testis, Opvasa, Opdazl and Opnanos1 were detected in spermatogonia and spermatocytes but absent in the meiotic products, such as spermatids and spermatozoa. In ovary, Opvasa, Opdazl and Opnanos1 persisted at a high level throughout oogenesis. These findings indicated that Opvasa, Opdazl and Opnanos1 played an important role in mitotic and early meiotic phases of oogenesis and spermatogenesis, and they functioned as maternal factors in early embryogenesis. Their proteins could be used as three new markers for germ cells during gametogenesis in O. potamophila gonad. Our data laid a good foundation for improving the breeding efficiency of O. potamophila.
Collapse
Affiliation(s)
- Wenxu Zhu
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Tao Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Cheng Zhao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Dan Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Xinyu Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Hongyan Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Meili Chi
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
19
|
Levasseur A, Paquet M, Boerboom D, Boyer A. Yes-associated protein and WW-containing transcription regulator 1 regulate the expression of sex-determining genes in Sertoli cells, but their inactivation does not cause sex reversal. Biol Reprod 2018. [PMID: 28637242 DOI: 10.1093/biolre/iox057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Yes-associated protein (YAP) and WW-containing transcription regulator 1 (WWTR1) are two functionally redundant transcriptional regulators that are downstream effectors of the Hippo signaling pathway, and that act as major regulators of cell growth and differentiation. To elucidate their role in Sertoli cells, primary Sertoli cell culture from Yapflox/flox; Wwtr1flox/flox animals were infected with a Cre recombinase-expressing adenovirus. Concomitant inactivation of Yap and Wwtr1 resulted in a decrease in the mRNA levels of the male sex differentiation genes Dhh, Dmrt1, Sox9, and Wt1, whereas those of genes involved in female differentiation (Wnt4, Rspo1, and Foxl2) were induced. SOX9, FOXL2, and WNT4 proteins were regulated in the same manner as their mRNAs in response to loss of YAP and WWTR1. To further characterize the role of YAP and WWTR1 in Sertoli cells, we generated a mouse model (Yapflox/flox; Wwtr1flox/flox; Amhcre/+) in which Yap and Wwtr1 were conditionally deleted in Sertoli cells. An increase in the number of apoptotic cells was observed in the seminiferous tubules of 4 dpp mutant mice, leading to a reduction in testis weights and a decrease in the number of Sertoli cells in adult animals. Gene expression analyses of testes from 4 dpp Yapflox/flox; Wwtr1flox/flox; Amhcre/+ mice showed that Sertoli cell differentiation is initially altered, as Dhh, Dmrt1, and Sox9 mRNA levels were downregulated, whereas Wnt4 mRNA levels were increased. However, expression of these genes was not changed in older animals. Together, these results suggest a novel role of the Hippo signaling pathway in the mechanisms of sex differentiation.
Collapse
Affiliation(s)
- Adrien Levasseur
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marilène Paquet
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| |
Collapse
|
20
|
Gassei K, Sheng Y, Fayomi A, Mital P, Sukhwani M, Lin CC, Peters KA, Althouse A, Valli H, Orwig KE. DDX4-EGFP transgenic rat model for the study of germline development and spermatogenesis. Biol Reprod 2017; 96:707-719. [PMID: 28339678 PMCID: PMC5803776 DOI: 10.1095/biolreprod.116.142828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSC) are essential for spermatogenesis and male fertility. In addition, these adult tissue stem cells can be used as vehicles for germline modification in animal models and may have application for treating male infertility. To facilitate the investigation of SSCs and germ lineage development in rats, we generated a DEAD-box helicase 4 (DDX4) (VASA) promoter-enhanced green fluorescent protein (EGFP) reporter transgenic rat. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed that EGFP was expressed in the germ cells of the ovaries and testes and was absent in somatic cells and tissues. Germ cell transplantation demonstrated that the EGFP-positive germ cell population from DDX4-EGFP rat testes contained SSCs capable of establishing spermatogenesis in experimentally infertile mouse recipient testes. EGFP-positive germ cells could be easily isolated by fluorescence-activated cells sorting, while simultaneously removing testicular somatic cells from DDX4-EGFP rat pup testes. The EGFP-positive fraction provided an optimal cell suspension to establish rat SSC cultures that maintained long-term expression of zinc finger and BTB domain containing 16 (ZBTB16) and spalt-like transcription factor 4 (SALL4), two markers of mouse SSCs that are conserved in rats. The novel DDX4-EGFP germ cell reporter rat described here combined with previously described GCS-EGFP rats, rat SSC culture and gene editing tools will improve the utility of the rat model for studying stem cells and germ lineage development.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | | | - Payal Mital
- Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Chih-Cheng Lin
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Karen A Peters
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Althouse
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
21
|
Milani L, Pecci A, Ghiselli F, Passamonti M, Bettini S, Franceschini V, Maurizii MG. VASA expression suggests shared germ line dynamics in bivalve molluscs. Histochem Cell Biol 2017; 148:157-171. [PMID: 28386635 PMCID: PMC5508042 DOI: 10.1007/s00418-017-1560-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 11/25/2022]
Abstract
Germ line segregation can occur during embryogenesis or after embryogenesis completion, with multipotent cells able to give rise to both germ and somatic cells in the developing juvenile or even in adulthood. These undifferentiated cells, in some animals, are self-renewing stem cells. In all these cell lineages, the same set of genes, among which vasa, appears to be expressed. We traced VASA expression during the peculiar gonad rebuilding of bivalves to verify its presence from undifferentiated germ cells to mature gametes in an animal taxon in which the mechanism of germ line establishment is still under investigation. We utilized antibodies produced against VASPH, VASA homolog of Ruditapes philippinarum (Subclass Heterodonta), to compare the known expression pattern of R. philippinarum to two species of the Subclass Pteriomorphia, Anadara kagoshimensis and Crassostrea gigas, and another species of the Subclass Heterodonta, Mya arenaria. The immunohistological data obtained support a conserved mechanism of proliferation of "primordial stem cells" among the simple columnar epithelium of the gut, as well as in the connective tissue, contributing to the seasonal gonad reconstitution. Given the taxonomic separation of the analyzed species, we suggest that the process could be shared in bivalve molluscs. The presence of germ cell precursors in the gut epithelium appears to be a feature in common with model organisms, such as mouse, fruit fly, and human. Thus, the comparative study of germ line establishment can add details on bivalve development, but can also help to clarify the role that VASA plays during germ cell specification.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Andrea Pecci
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Marco Passamonti
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Simone Bettini
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Valeria Franceschini
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
22
|
Liu WS, Zhao Y, Lu C, Ning G, Ma Y, Diaz F, O'Connor M. A novel testis-specific protein, PRAMEY, is involved in spermatogenesis in cattle. Reproduction 2017; 153:847-863. [PMID: 28356500 DOI: 10.1530/rep-17-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 11/08/2022]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is predominantly expressed in normal testicular tissues and a variety of tumors. The function of the PRAME family in spermatogenesis remains unknown. This study was designed to characterize the Y-linked PRAME (PRAMEY) protein during spermatogenesis in cattle. We found that PRAMEY is a novel male germ cell-specific, and a germinal granule-associated protein that is expressed in spermatogenic cells during spermatogenesis. The intact PRAMEY protein (58 kDa) was detected in different ages of testes but not in epididymal spermatozoa. A PRAMEY isoform (30 kDa) was highly expressed only in testes after puberty and in epididymal spermatozoa. This isoform interacts with PP1γ2 and is likely the mature protein present in the testes and sperm. Immunofluorescent staining demonstrated that PRAMEY was located predominantly in the acrosome granule of spermatids, and in acrosome and flagellum of spermatozoa. Immunogold electron microscopy further localized the PRAMEY protein complex to the nucleus and several cytoplasmic organelles, including the rough endoplasmic reticulum, some small vesicles, the intermitochondrial cement, the chromatoid body and the centrioles, in spermatogonia, spermatocytes, spermatids and/or spermatozoa. PRAMEY was highly enriched in and structurally associated with the matrix of the acrosomal granule (AG) in round spermatids, and migrated with the expansion of the AG during acrosomal biogenesis. While the function of PRAMEY remains unclear during spermatogenesis, our results suggest that PRAMEY may play an essential role in acrosome biogenesis and spermatogenesis.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC1.FreeSpanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC2.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Yaqi Zhao
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Chen Lu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Gang Ning
- Microscopy and Cytometry FacilityThe Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yun Ma
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences.,College of Life ScienceXinyang Normal University, Xinyang, Henan, China
| | - Francisco Diaz
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Michael O'Connor
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| |
Collapse
|
23
|
Fujii Y, Onohara Y, Fujita H, Yokota S. Argonaute2 Protein in Rat Spermatogenic Cells Is Localized to Nuage Structures and LAMP2-Positive Vesicles Surrounding Chromatoid Bodies. J Histochem Cytochem 2016; 64:268-79. [PMID: 27029769 DOI: 10.1369/0022155416638840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Localization of Argonaute2 (AGO2) protein--an essential component for the processing of small interfering RNA (siRNA)-directed RNA interference (RNAi) in RNA-induced silencing complex (RISC) in nuage of rat spermatogenic cells--was evaluated by immunofluorescence microscopy (IFM) and immunoelectron microscopy (IEM). AGO2 was shown, for the first time, to be localized to four previously classified types of nuage: irregularly shaped perinuclear granules (ISPGs), intermitochondrial cement (IMC), satellite bodies (SBs), and chromatoid bodies (CBs). Dual IEM staining for AGO2/Maelstrom (MAEL) protein or AGO2/MIWI protein demonstrated that AGO2 is colocalized with MAEL or MIWI proteins in these types of nuage. Dual IFM and IEM staining of AGO2/lysosomal-associated membrane protein 2 (LAMP2) showed that CB in round spermatids are in contact with and surrounded by LAMP2-positive vesicles, whereas nuage in pachytene spermatocytes are not. Taken together, our findings indicate that: (i) AGO2 in pachytene spermatocytes functions in ISPGs, IMC, and SBs; (ii) AGO2 in round spermatids functions in CBs, and that CBs are associated with lysosomal compartments.
Collapse
Affiliation(s)
- Yuki Fujii
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| | - Yuko Onohara
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| | - Hideaki Fujita
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| | - Sadaki Yokota
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| |
Collapse
|
24
|
Kaushik R, Singh KP, Bahuguna V, Rameshbabu K, Singh MK, Manik RS, Palta P, Singla SK, Chauhan MS. Molecular characterization and expression of buffalo (Bubalus bubalis) DEAD-box family VASA gene and mRNA transcript variants isolated from testis tissue. Gene 2015; 572:17-26. [PMID: 26127001 DOI: 10.1016/j.gene.2015.06.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 06/01/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022]
Abstract
VASA is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. In the present study, we isolated, sequenced, and characterized VASA gene in buffalo testis. Here, we demonstrated that VASA mRNA is expressed as multiple isoforms and uses four alternative transcriptional start sites (TSSs) and four different polyadenylation sites. The TSSs identified by 5'-RNA ligase-mediated rapid amplification of cDNA ends (RLM-5'-RACE) were positioned at 48, 53, 85, and 88 nucleotides upstream relative to the translation initiation codon. 3'-RACE experiment revealed the presence of tandem polyadenylation signals, which lead to the expression of at least four different 3'-untranslated regions (209, 233, 239 and 605 nucleotides). The full-length coding region of VASA was 2190 bp, which encodes a 729 amino acid (aa) protein containing nine consensus regions of the DEAD box protein family. VASA variants are highly expressed in testis of adult buffalo. We found five variants, one full length VASA (729 aa) and four splice variants VASA 2, 4, 5, 6 (683, 685, 679, 703 aa). The expression level of VASA 1 was significantly higher than rest of all (P < 0.05) except VASA 6. The relative ratio for VASA 1:2:4:5:6 was 100:1.0:1.6:0.9:48.
Collapse
Affiliation(s)
- Ramakant Kaushik
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Karn Pratap Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Vivek Bahuguna
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - K Rameshbabu
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Radhey Shyam Manik
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal - 13200'1, India.
| |
Collapse
|
25
|
Sato K, Siomi MC. Functional and structural insights into the piRNA factor Maelstrom. FEBS Lett 2015; 589:1688-93. [DOI: 10.1016/j.febslet.2015.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
26
|
In mouse oocytes the mitochondrion-originated germinal body-like structures accumulate mouse Vasa homologue (MVH) protein. ZYGOTE 2014; 23:501-6. [DOI: 10.1017/s0967199414000124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryMouse Vasa homologue (MVH) antibodies were applied to mouse Graafian oocytes to clarify if mitochondrion-originated germinal body-like structures, described previously by conventional electron microscopy, were associated with the germ plasm. It was found that both the mitochondrion-like structures with cristae and the germinal body-like structures that lacked any signs of cristae were labelled specifically by the anti-MVH antibody. Moreover, some granules were MVH-positive ultrastructural hybrids of the mitochondria and germinal body-like structures, the presence of which clearly supported the idea of a mitochondrial origin for the germinal body-like structures. This finding is the first evidence that mitochondrion-originated germinal body-like granules represent mouse germ plasm.
Collapse
|
27
|
Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol 2014; 29:84-92. [PMID: 24755166 DOI: 10.1016/j.semcdb.2014.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/22/2023]
Abstract
The spermatogenic process relays in highly regulated gene expression mechanisms at the transcriptional and post-transcriptional levels to generate the male gamete that is needed for the perpetuation of the species. Small non-coding RNA pathways have been determined to participate in the post-transcriptional regulatory processes of germ cells. The most important sncRNA molecules that are critically involved in spermatogenesis belong to the miRNA and piRNAs pathways as illustrated by animal models where ablation of specific protein components displays male infertility. Several elements of these regulatory pathways have been found in the nuage or germ granule, a non-membranous cytoplasmatic structure that can be seen in spermatocytes and spermatids. This notion suggests that germ granules may act as organizer centers for silencing pathways in the germline. In general, miRNAs regulate spermatogenesis through targeting and down-regulation of specific transcripts to eventually promote sperm development. However, piRNAs are powerful repressors of transposon elements expression in the spermatogenic process. Here we describe the suggested functions that miRNA and piRNAs pathways execute in the regulation of spermatogenesis and include some recent studies in the field. Despite major strides on the detailed molecular mechanisms of sncRNAs in relation to spermatogenesis, there is plenty to discover on this fascinating regulatory program.
Collapse
|
28
|
Kawahara C, Yokota S, Fujita H. DDX6 localizes to nuage structures and the annulus of mammalian spermatogenic cells. Histochem Cell Biol 2013; 141:111-21. [PMID: 24141902 DOI: 10.1007/s00418-013-1153-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 12/28/2022]
Abstract
The localization of DEAD (Asp-Glu-Ala-Asp) box helicase 6 (DDX6) in spermatogenic cells from the mouse, rat, and guinea pig was studied by immunofluorescence (IF) and immunoelectron microscopy (IEM). Spermatogenic cells from these species yielded similar DDX6 localization pattern. IF microscopy results showed that DDX6 localizes to both the nucleus and cytoplasm. In the cytoplasm of spermatogenic cells, diffuse cytosolic and discrete granular staining was observed, with the staining pattern changing during cell differentiation. IEM revealed that DDX6 localized to the five different types of nuage structures and non-nuage structures, including small granule aggregate and late spermatid annuli. Nuclear labeling was strongest in leptotene and zygotene spermatocytes and moderately strong in the nuclear pocket of late spermatids. DDX6 also localized to the surface of outer dense fibers, which comprise of flagella. The results show that DDX6 is present in nuage and non-nuage structures as well as nuclei, suggesting that DDX6 has diverse functions in spermatogenic cells.
Collapse
Affiliation(s)
- Chika Kawahara
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch 2825-7, Sasebo, Nagasaki, 859-329, Japan
| | | | | |
Collapse
|
29
|
A C-Terminal Transmembrane Anchor Targets the Nuage-Localized Spermatogenic Protein Gasz to the Mitochondrial Surface. ACTA ACUST UNITED AC 2013; 2013. [PMID: 25419467 DOI: 10.1155/2013/707930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitochondria, normally tubular and distributed throughout the cell, are instead found in spermatocytes in perinuclear clusters in close association with nuage, an amorphous organelle composed of RNA and RNA-processing proteins that generate piRNAs. piRNAs are a form of RNAi required for transposon suppression and ultimately fertility. MitoPLD, another protein required for piRNA production, is anchored to the mitochondrial surface, suggesting that the nuage, also known as intermitochondrial cement, needs to be juxtaposed there to bring MitoPLD into proximity with the remainder of the piRNA-generating machinery. However, the mechanism underlying the juxtaposition is unknown. Gasz, a multidomain protein of known function found in the nuage in vertebrates, is required for piRNA production and interacts with other nuage proteins involved in this pathway. Unexpectedly, we observed that Gasz, in nonspermatogenic mammalian cells lines, localizes to mitochondria and does so through a previously unrecognized conserved C-terminal mitochondrial targeting sequence. Moreover, in this setting, Gasz is able to recruit some of the normally nuage-localized proteins to the mitochondrial surface. Taken together, these findings suggest that Gasz is a nuage-localized protein in spermatocytes that facilitates anchoring of the nuage to the mitochondrial surface where piRNA generation takes place as a collaboration between nuage and mitochondrial-surface proteins.
Collapse
|
30
|
Kleene KC. Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 2013; 146:R1-19. [DOI: 10.1530/rep-12-0362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
mRNA-specific regulation of translational activity plays major roles in directing the development of meiotic and haploid spermatogenic cells in mammals. Although many RNA-binding proteins (RBPs) have been implicated in normal translational control and sperm development, little is known about the keystone of the mechanisms: the interactions of RBPs and microRNAs withcis-elements in mRNA targets. The problems in connecting factors and elements with translational control originate in the enormous complexity of post-transcriptional regulation in mammalian cells. This creates confusion as to whether factors have direct or indirect and large or small effects on the translation of specific mRNAs. This review argues that gene knockouts, heterologous systems, and overexpression of factors cannot provide convincing answers to these questions. As a result, the mechanisms involving well-studied mRNAs (Ddx4/Mvh,Prm1,Prm2, andSycp3) and factors (DICER1, CPEB1, DAZL, DDX4/MVH, DDX25/GRTH, translin, and ELAV1/HuR) are incompletely understood. By comparison, mutations in elements can be used to define the importance of specific pathways in regulating individual mRNAs. However, few elements have been studied, because the only reliable system to analyze mutations in elements, transgenic mice, is considered impractical. This review describes advances that may facilitate identification of the direct targets of RBPs and analysis of mutations incis-elements. The importance of upstream reading frames in the developmental regulation of mRNA translation in spermatogenic cells is also documented.
Collapse
|
31
|
Luo H, Zhou Y, Li Y, Li Q. Splice variants and promoter methylation status of the Bovine Vasa Homology (Bvh) gene may be involved in bull spermatogenesis. BMC Genet 2013; 14:58. [PMID: 23815438 PMCID: PMC3720182 DOI: 10.1186/1471-2156-14-58] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/25/2013] [Indexed: 01/08/2023] Open
Abstract
Background Vasa is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. Bovine vasa homology (Bvh) of Bos taurus has been reported, however, its function in bovine testicular tissue remains obscure. This study aimed to reveal the functions of Bvh and to determine whether Bvh is a candidate gene in the regulation of spermatogenesis in bovine, and to illustrate whether its transcription is regulated by alternative splicing and DNA methylation. Results Here we report the molecular characterization, alternative splicing pattern, expression and promoter methylation status of Bvh. The full-length coding region of Bvh was 2190 bp, which encodes a 729 amino acid (aa) protein containing nine consensus regions of the DEAD box protein family. Bvh is expressed only in the ovary and testis of adult cattle. Two splice variants were identified and termed Bvh-V4 (2112 bp and 703 aa) and Bvh-V45 (2040 bp and 679 aa). In male cattle, full-length Bvh (Bvh-FL), Bvh-V4 and Bvh-V45 are exclusively expressed in the testes in the ratio of 2.2:1.6:1, respectively. Real-time PCR revealed significantly reduced mRNA expression of Bvh-FL, Bvh-V4 and Bvh-V45 in testes of cattle-yak hybrids, with meiotic arrest compared with cattle and yaks with normal spermatogenesis (P < 0.01). The promoter methylation level of Bvh in the testes of cattle-yak hybrids was significantly greater than in cattle and yaks (P < 0.01). Conclusion In the present study, Bvh was isolated and characterized. These data suggest that Bvh functions in bovine spermatogenesis, and that transcription of the gene in testes were regulated by alternative splice and promoter methylation.
Collapse
|
32
|
Daniel-Carlier N, Harscoët E, Thépot D, Auguste A, Pailhoux E, Jolivet G. Gonad differentiation in the rabbit: evidence of species-specific features. PLoS One 2013; 8:e60451. [PMID: 23593221 PMCID: PMC3620232 DOI: 10.1371/journal.pone.0060451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/25/2013] [Indexed: 11/19/2022] Open
Abstract
The rabbit is an attractive species for the study of gonad differentiation because of its 31-day long gestation, the timing of female meiosis around birth and the 15-day delay between gonadal switch and the onset of meiosis in the female. The expression of a series of genes was thus determined by qPCR during foetal life until adulthood, completed by a histological analysis and whenever possible by an immunohistological one. Interesting gene expression profiles were recorded. Firstly, the peak of SRY gene expression that is observed in early differentiated XY gonads in numerous mammals was also seen in the rabbit, but this expression was maintained at a high level until the end of puberty. Secondly, a peak of aromatase gene expression was observed at two-thirds of the gestation in XX gonads as in many other species except in the mouse. Thirdly, the expression of STRA8 and DMC1 genes (which are known to be specifically expressed in germ cells during meiosis) was enhanced in XX gonads around birth but also slightly and significantly in XY gonads at the same time, even though no meiosis occurs in XY gonad at this stage. This was probably a consequence of the synchronous strong NANOS2 gene expression in XY gonad. In conclusion, our data highlighted some rabbit-specific findings with respect to the gonad differentiation process.
Collapse
Affiliation(s)
- Nathalie Daniel-Carlier
- UMR 1198, Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Erwana Harscoët
- UMR 1198, Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Dominique Thépot
- UMR 1198, Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Aurélie Auguste
- UMR 1198, Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Eric Pailhoux
- UMR 1198, Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | - Geneviève Jolivet
- UMR 1198, Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
33
|
Takebe M, Onohara Y, Yokota S. Expression of MAEL in nuage and non-nuage compartments of rat spermatogenic cells and colocalization with DDX4, DDX25 and MIWI. Histochem Cell Biol 2013; 140:169-81. [PMID: 23412502 DOI: 10.1007/s00418-012-1067-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
The functions of MAELSTROM protein (MAEL) in spermatogenesis are gradually being identified but the precise distribution of MAEL in spermatogenic cells during spermatogenesis has not yet been mapped. We studied the expression of MAEL in rat testis by immunofluorescence and immunoelectron microscopy (IEM). Immunofluorescence staining showed that MAEL was localized in intermitochondrial cement, irregularly-shaped perinuclear granules and satellite bodies of pachytene spermatocytes, and in chromatoid bodies of spermatids. The SBs appeared exclusively in pachytene spermatocytes at stages IX-X and were stained strongly for MAEL. In step 12-19 spermatids, many granules stained for MAEL but not DDX4. These granules were confirmed to be non-nuage structures, including mitochondria-associated granules, reticulated body, granulated body by IEM. In the neck region of late spermatids and sperm, MAEL-positive small granules were found. MAEL is colocalized with MIWI in nuage and non-nuage. The results suggest that MAEL seems to function in nuage and non-nuage structures and interacts with MIWI.
Collapse
Affiliation(s)
- Miki Takebe
- Division of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | | | | |
Collapse
|
34
|
Yokota S, Onohara Y. Expression and Localization of NANOS1 in Spermatogenic Cells during Spermatogenesis in Rat. Cell 2013. [DOI: 10.4236/cellbio.2013.21001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Silistino-Souza R, Peruquetti RL, Taboga SR, Vilela de Azeredo-Oliveira MT. Chromatoid body: Remnants of nucleolar proteins during spermatogenesis in triatomine (Heteroptera, Triatominae). Micron 2012; 43:954-60. [DOI: 10.1016/j.micron.2012.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/02/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
36
|
Messina V, Meikar O, Paronetto MP, Calabretta S, Geremia R, Kotaja N, Sette C. The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One 2012; 7:e39729. [PMID: 22745822 PMCID: PMC3382170 DOI: 10.1371/journal.pone.0039729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/25/2012] [Indexed: 12/13/2022] Open
Abstract
The chromatoid body (CB) is a unique structure of male germ cells composed of thin filaments that condense into a perinuclear organelle after meiosis. Due to the presence of proteins involved in different steps of RNA metabolism and of different classes of RNAs, including microRNAs (miRNAs), the CB has been recently suggested to function as an RNA processing centre. Herein, we show that the RNA binding protein SAM68 transiently localizes in the CB, in concomitance with the meiotic divisions of mouse spermatocytes. Precise staging of the seminiferous tubules and co-localization studies with MVH and MILI, two well recognized CB markers, documented that SAM68 transiently associates with the CB in secondary spermatocytes and early round spermatids. Furthermore, although SAM68 co-immunoprecipitated with MVH in secondary spermatocytes, its ablation did not affect the proper localization of MVH in the CB. On the other hand, ablation of the CB constitutive component MIWI did not impair association of SAM68 with the CB. Isolation of CBs from Sam68 wild type and knockout mouse testes and comparison of their protein content by mass spectrometry indicated that Sam68 ablation did not cause overall alterations in the CB proteome. Lastly, we found that SAM68 interacts with DROSHA and DICER in secondary spermatocytes and early round spermatids and that a subset of miRNAs were altered in Sam68−/−germ cells. These results suggest a novel role for SAM68 in the miRNA pathway during spermatogenesis.
Collapse
Affiliation(s)
- Valeria Messina
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Oliver Meikar
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maria Paola Paronetto
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Sara Calabretta
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Digestive and Liver Disease Unit, II Medical School, University of Rome “La Sapienza”, S. Andrea Hospital, Rome, Italy
| | - Raffaele Geremia
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Claudio Sette
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
37
|
Nuage proteins: their localization in subcellular structures of spermatogenic cells as revealed by immunoelectron microscopy. Histochem Cell Biol 2012; 138:1-11. [PMID: 22585039 DOI: 10.1007/s00418-012-0962-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
Chromatoid body (CB) was identified as granules stained by basic dye 130 years ago and called by various names. Electron microscopy revealed that the CB belonged to nuage (cloud in French) specific for germ cells. We described the localization of several proteins, including RNA helicases, in the nuage compartments classified into six types and in several spermatogenic cell-specific structures. All the proteins examined were detected in the nuage, including the CB with different staining intensities. Several proteins were localized to non-nuage structures, suggesting that these nuage proteins structures are related to nuage function.
Collapse
|
38
|
Onohara Y, Yokota S. Expression of DDX25 in nuage components of mammalian spermatogenic cells: immunofluorescence and immunoelectron microscopic study. Histochem Cell Biol 2011; 137:37-51. [PMID: 22038044 DOI: 10.1007/s00418-011-0875-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 12/31/2022]
Abstract
The localization of DDX25/GRTH and gonadotropin-stimulated RNA helicase was studied in the spermatogenic cells of rat, mouse, and guinea pig by immunofluorescence and immunoelectron microscopy (IEM). Immunofluorescence studies identified four kinds of granular staining: (1) fine particles observed in meiotic cells; (2) small granules associated with a mitochondrial marker, appearing in pachytene spermatocytes after stage V; (3) short strands lacking the mitochondrial marker in late spermatocytes; and, (4) large irregularly shaped granules in round spermatids. IEM identified DDX25 signals in nine compartments: (1) fine dense particles in the meiotic cells; (2) intermitochondrial cement; (3) loose aggregates of 70-90 nm particles; (4) chromatoid bodies; (5) late chromatoid bodies; (6) satellite bodies; (7) granulated bodies; (8) mitochondria-associated granules; and, (9) reticulated bodies. Compartments (1) to (6) were previously classified into nuage while (7) to (9) were classified as nuage components by the present study. The results suggest that DDX25 functions in these nine compartments.
Collapse
Affiliation(s)
- Yuko Onohara
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch 2825-7, Nagasaki, Sasebo 859-3298, Japan
| | | |
Collapse
|
39
|
Hickford DE, Frankenberg S, Pask AJ, Shaw G, Renfree MB. DDX4 (VASA) Is Conserved in Germ Cell Development in Marsupials and Monotremes1. Biol Reprod 2011; 85:733-43. [DOI: 10.1095/biolreprod.111.091629] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
40
|
Dastig S, Nenicu A, Otte DM, Zimmer A, Seitz J, Baumgart-Vogt E, Lüers GH. Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress. Histochem Cell Biol 2011; 136:413-25. [PMID: 21898072 DOI: 10.1007/s00418-011-0832-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 12/21/2022]
Abstract
Peroxisomes are organelles with main functions in the metabolism of lipids and of reactive oxygen species. Within the testis, they have different functional profiles depending on the cell types. A dysfunction of peroxisomes interferes with regular spermatogenesis and can lead to infertility due to spermatogenic arrest. However, so far only very little is known about the functions of peroxisomes in germ cells. We have therefore analyzed the peroxisomal compartment in germ cells and its alterations during spermatogenesis by fluorescence and electron microscopy as well as by expression profiling of peroxisome-related genes in purified cell populations isolated from mouse testis. We could show that peroxisomes are present in all germ cells of the germinal epithelium. During late spermiogenesis, the peroxisomes form large clusters that are segregated from the spermatozoa into the residual bodies upon release from the germinal epithelium. Germ cells express genes for proteins involved in numerous metabolic pathways of peroxisomes. Based on the expression profile, we conclude that newly identified functions of germ cell peroxisomes are the synthesis of plasmalogens as well as the metabolism of retinoids, polyunsaturated fatty acids and polyamines. Thus, germ cell peroxisomes are involved in the regulation of the homeostasis of signaling molecules regulating spermatogenesis and they contribute to the protection of germ cells against oxidative stress.
Collapse
Affiliation(s)
- Sandra Dastig
- Department of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011; 142:195-209. [DOI: 10.1530/rep-11-0057] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromatoid body (CB) is a germ granule in the cytoplasm of postmeiotic haploid round spermatids that is loaded with RNA and RNA-binding proteins. Following the discovery of small non-coding RNA-mediated gene regulation and the identification of PIWI-interacting RNAs (piRNAs) that have crucial roles in germ line development, the function of the CB has slowly begun to be revealed. Male germ cells utilise small RNAs to control the complex and specialised process of sperm production. Several microRNAs have been identified during spermatogenesis. In addition, a high number of piRNAs are present both in embryonic and postnatal male germ cells, with their expression being impressively induced in late meiotic cells and haploid round spermatids. At postmeiotic stage of germ cell differentiation, the CB accumulates piRNAs and proteins of piRNA machinery, as well as several other proteins involved in distinct RNA regulation pathways. All existing evidence suggests a role for the CB in mRNA regulation and small RNA-mediated gene control, but the mechanisms remain uncharacterised. In this review, we summarise the current knowledge of the CB and its association with small RNA pathways.
Collapse
|
42
|
Abstract
PIWI-interacting RNAs (piRNAs) are a distinct class of small non-coding RNAs that form the piRNA-induced silencing complex (piRISC) in the germ line of many animal species. The piRISC protects the integrity of the genome from invasion by 'genomic parasites'--transposable elements--by silencing them. Owing to their limited expression in gonads and their sequence diversity, piRNAs have been the most mysterious class of small non-coding RNAs regulating RNA silencing. Now, much progress is being made into our understanding of their biogenesis and molecular functions, including the specific subcellular compartmentalization of the piRNA pathway in granular cytoplasmic bodies.
Collapse
|
43
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|