1
|
Liu X, Xu H, Peng M, Zhou C, Wei C, Hong X, Li W, Chen C, Ji L, Zhu X. Screening of temperature-responsive signalling molecules during sex differentiation in Asian yellow pond turtle (Mauremys mutica). BMC Genomics 2024; 25:383. [PMID: 38637759 PMCID: PMC11025153 DOI: 10.1186/s12864-024-10275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The Asian yellow pond turtle (Mauremys mutica) is an important commercial freshwater aquaculture species in China. This species is a highly sexually dimorphic species, with males growing at a faster rate than females and exhibits temperature-dependent sex determination (TSD), in which the incubation temperature during embryonic development determines the sexual fate. However, the mechanisms of the sex determination or sex differentiation in the Asian yellow pond turtle are remain a mystery. RESULTS Temperature-specific gonadal transcriptomics of the Asian yellow pond turtle were performed during the thermosensitive period (stage 15) using RNA-seq technology to identify candidate genes that initiate gonadal differentiation. We uncovered candidates that were the first to respond to temperature. These candidates were sexually dimorphic in expression, reflecting differences in gonadal (Cirbp, Runx1) and germline differentiation (Vasa, Nanos1, Piwil2), gametogenesis (Hmgb3, Zar1, Ovoinhibitor-like, Kif4), steroid hormone biosynthesis (Hsd17b5, Hsd17b6), heat shock (Dnajb6, Hsp90b1, Hsp90aa1) and transient receptor potential channel genes (Trpm1, Trpm4, Trpm6, Trpv1). CONCLUSIONS Our work will provide important genetic information to elucidate the mechanisms of sex control in the Asian yellow pond turtles, and will contribute important genetic resources for further studies of temperature-dependent sex determination in turtles.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China
| | - Haoyang Xu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China
| | - Mingwei Peng
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- School of Fishery, Zhejiang Ocean University, 316000, Zhoushan, China
| | - Chenyao Zhou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- School of Fishery, Zhejiang Ocean University, 316000, Zhoushan, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510380, Guangzhou, China.
- College of Life Science and Fisheries, Shanghai Ocean University, 201306, Shanghai, China.
- School of Fishery, Zhejiang Ocean University, 316000, Zhoushan, China.
| |
Collapse
|
2
|
Cassani M, Seydoux G. P-body-like condensates in the germline. Semin Cell Dev Biol 2024; 157:24-32. [PMID: 37407370 PMCID: PMC10761593 DOI: 10.1016/j.semcdb.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
P-bodies are cytoplasmic condensates that accumulate low-translation mRNAs for temporary storage before translation or degradation. P-bodies have been best characterized in yeast and mammalian tissue culture cells. We describe here related condensates in the germline of animal models. Germline P-bodies have been reported at all stages of germline development from primordial germ cells to gametes. The activity of the universal germ cell fate regulator, Nanos, is linked to the mRNA decay function of P-bodies, and spatially-regulated condensation of P-body like condensates in embryos is required to localize mRNA regulators to primordial germ cells. In most cases, however, it is not known whether P-bodies represent functional compartments or non-functional condensation by-products that arise when ribonucleoprotein complexes saturate the cytoplasm. We speculate that the ubiquity of P-body-like condensates in germ cells reflects the strong reliance of the germline on cytoplasmic, rather than nuclear, mechanisms of gene regulation.
Collapse
Affiliation(s)
- Madeline Cassani
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
4
|
Ferdous AS, Costa Dos Santos SJ, Kanzler CR, Shin H, Carrick BH, Crittenden SL, Wickens M, Kimble J. The in vivo functional significance of PUF hub partnerships in C. elegans germline stem cells. Development 2023; 150:dev201705. [PMID: 37070766 PMCID: PMC10259659 DOI: 10.1242/dev.201705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1-PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1-PUF and Nanos-Pumilio reveals fundamental molecular differences, making LST-1-PUF a distinct paradigm for PUF partnerships.
Collapse
Affiliation(s)
- Ahlan S. Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Charlotte R. Kanzler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian H. Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah L. Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Ferdous AS, Costa Dos Santos SJ, Kanzler CR, Shin H, Carrick BH, Crittenden SL, Wickens M, Kimble J. Functional significance of PUF partnerships in C. elegans germline stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528708. [PMID: 36824876 PMCID: PMC9949348 DOI: 10.1101/2023.02.15.528708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of C. elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(A m B m ) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(A m B m ) is used to explore the functional significance of the LST-1-PUF partnership. Tethered LST-1 requires the partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs. Comparison of PUF-LST-1 and Pumilio-Nanos reveals fundamental molecular differences, making PUF-LST-1 a distinct paradigm for PUF partnerships. Summary statement Partnerships between PUF RNA-binding proteins and intrinsically disordered proteins are essential for stem cell maintenance and RNA repression.
Collapse
Affiliation(s)
- Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Charlotte R Kanzler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Pu Q, Ma Y, Zhong Y, Guo J, Gui L, Li M. Characterization and expression analysis of sox3 in medaka gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Xie Z, Song P, Zhong Y, Guo J, Gui L, Li M. Medaka gcnf is a component of chromatoid body during spermiogenesis. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Xu L, Zhang B, Li W. Downregulated expression levels of USP46 promote the resistance of ovarian cancer to cisplatin and are regulated by PUM2. Mol Med Rep 2021; 23:263. [PMID: 33576437 PMCID: PMC7893694 DOI: 10.3892/mmr.2021.11902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is a major contributor to cancer‑related mortality in women. Despite numerous drugs being available for the treatment and improving the prognosis of OC, resistance to clinical chemotherapy remains a major obstacle for the treatment of advanced OC. Therefore, determining how to reverse the chemoresistance of OC has become a research hotspot in recent years. The present study aimed to reveal the potential mechanism of OC chemoresistance. Reverse transcription‑quantitative PCR and western blot analysis were performed to detect the expression levels of Ubiquitin‑specific peptidase 46 (USP46) and Pumilio 2 (PUM2) in OC. Cell viability and apoptosis were evaluated by Cell Counting Kit‑8 assay and flow cytometry, respectively. The association between USP46 and PUM2 was assessed by RNA immunoprecipitation. The results of the present study revealed that the expression levels of USP46 which is associated with tumor progression, was downregulated, while PUM2 expression levels were upregulated in cisplatin (DDP)‑resistant OC cells and patient tissues. The downregulation of USP46 expression levels in SKOV3 cells significantly inhibited cell apoptosis and increased cell viability. In SKOV3/DDP cells, the upregulation of USP46 expression levels notably suppressed cell viability and increased cell apoptosis. The results of the RNA immunoprecipitation chip assay demonstrated that PUM2 bound to USP46 and regulated its expression. Furthermore, following the knockdown of USP46 expression, the mRNA and protein expression levels of the cell apoptosis‑related protein, Bcl‑2, were upregulated, whereas the expression levels of caspase‑3, caspase‑9 and Bax were significantly downregulated. In addition, phosphorylated AKT expression levels were notably upregulated. Following the overexpression of USP46 in SKOV3/DDP cells, the opposite trends were observed. In SKOV3 cells, the knockdown of PUM2 could reverse the DDP resistance induced by small interfering RNA‑USP46 as the expression levels of Bcl‑2 were downregulated whereas those of caspase‑3, caspase‑9 and Bax were upregulated compared with the small interfering‑USP46 group. Similarly, in SKOV3/DDP cells, the overexpression of PUM2 could reverse DDP sensitivity induced by the overexpression of USP46. In conclusion, the findings of the present study suggested that the downregulation of USP46 expression levels may promote DDP resistance in OC, which may be regulated by PUM2. Therefore, targeting PUM2/USP46 may be an effective way to reverse DDP resistance in OC.
Collapse
Affiliation(s)
- Lei Xu
- Department of Gynecology, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Bin Zhang
- Department of Surgery, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Wenlan Li
- Department of Outpatient Department, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| |
Collapse
|
9
|
Role of PUM RNA-Binding Proteins in Cancer. Cancers (Basel) 2021; 13:cancers13010129. [PMID: 33401540 PMCID: PMC7796173 DOI: 10.3390/cancers13010129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary PUM1 and PUM2 are RNA-binding Pumilio proteins controlling the accessibility of hundreds of mRNAs for translation in a variety of human tissues. As a result, PUMs exemplify one of the mechanisms safeguarding the cellular proteome. PUM expression is disturbed in cancer, resulting in dysregulation of their target mRNAs. These targets encode factors responsible for processes usually affected in cancer, such as proliferation, apoptosis, and the cell cycle. This review describes PUM1 and PUM2 ribonucleoprotein networks and highlights the mechanisms underlying the regulatory role of PUM proteins and, most importantly, the emerging impact of PUM dysregulation in cancer. It also emphasizes the importance of upcoming studies on PUM proteins in the context of cancer, as they may provide new therapeutic targets in the future. Abstract Until recently, post-transcriptional gene regulation (PTGR), in contrast to transcriptional regulation, was not extensively explored in cancer, even though it seems to be highly important. PUM proteins are well described in the PTGR of several organisms and contain the PUF RNA-binding domain that recognizes the UGUANAUA motif, located mostly in the 3′ untranslated region (3′UTR) of target mRNAs. Depending on the protein cofactors recruited by PUM proteins, target mRNAs are directed towards translation, repression, activation, degradation, or specific localization. Abnormal profiles of PUM expression have been shown in several types of cancer, in some of them being different for PUM1 and PUM2. This review summarizes the dysregulation of PUM1 and PUM2 expression in several cancer tissues. It also describes the regulatory mechanisms behind the activity of PUMs, including cooperation with microRNA and non-coding RNA machineries, as well as the alternative polyadenylation pathway. It also emphasizes the importance of future studies to gain a more complete picture of the role of PUM proteins in different types of cancer. Such studies may result in identification of novel targets for future cancer therapies.
Collapse
|
10
|
Ye M, Chen Y. Zebrafish as an emerging model to study gonad development. Comput Struct Biotechnol J 2020; 18:2373-2380. [PMID: 32994895 PMCID: PMC7498840 DOI: 10.1016/j.csbj.2020.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023] Open
Abstract
The zebrafish (Danio rerio) has emerged as a popular model organism in developmental biology and pharmacogenetics due to its attribute of pathway conservation. Coupled with the availability of robust genetic and transgenic tools, transparent embryos and rapid larval development, studies of zebrafish allow detailed cellular analysis of many dynamic processes. In recent decades, the cellular and molecular mechanisms involved in the process of gonad development have been the subject of intense research using zebrafish models. In this mini-review, we give a brief overview of these studies, and highlight the essential genes involved in sex determination and gonad development in zebrafish.
Collapse
Affiliation(s)
- Mengling Ye
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Zhang L, Chen Y, Li C, Liu J, Ren H, Li L, Zheng X, Wang H, Han Z. RNA binding protein PUM2 promotes the stemness of breast cancer cells via competitively binding to neuropilin-1 (NRP-1) mRNA with miR-376a. Biomed Pharmacother 2019; 114:108772. [PMID: 30909144 DOI: 10.1016/j.biopha.2019.108772] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Others and ours studies have established the promoting roles of NRP-1 (neuropilin-1) in breast cancer, however, the underlying mechanisms by which NRP-1 is regulated are still confused. Here, bioinformatics analysis indicated that RNA binding protein PUM2 could bind to NRP-1 mRNA. Clinical samples showed that PUM2 expression was significantly increased in breast cancer tissues, negatively correlated with the overall survival and relapse-free survival of breast cancer patients, and positively correlated with NRP-1 expression. Meanwhile, PUM2 expression was remarkably increased in non-adherent spheroids. in vitro experiments demonstrated that PUM2 knockdown attenuated the stemness of breast cancer cells, evident by the decrease of spheroid formation capacity, ALDH1 activity and stemness marker expression. Mechanistically, RNA immunoprecipitation (RIP) and luciferase reporter analysis indicated that PUM2 competitively bound to NRP 3'UTR with miR-376a, which had been previously confirmed by us to suppress the stemness of breast cancer cells, and increased NRP-1 mRNA stability and expression. Furthermore, ectopic expression of NRP-1 or miR-376a knockdown rescued the inhibitory effects of NRP-1 knockdown on the stemness of breast cancer cells. Thus, our results suggest that PUM2 could facilitate the stemness of breast cancer cells by competitively binding to NRP-1 3'UTR with miR-376a.
Collapse
Affiliation(s)
- Lansheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Yanwei Chen
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Caihong Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Jinyang Liu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Huiwen Ren
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Lishan Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Xia Zheng
- Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Hui Wang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhengxiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
12
|
Hu R, Zhu X, Chen C, Xu R, Li Y, Xu W. RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs. Cell Prolif 2018; 51:e12508. [PMID: 30084199 DOI: 10.1111/cpr.12508] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES This work aims to reveal the roles and related mechanisms of RNA binding protein PUM2 in osteosarcoma progression. MATERIALS AND METHODS Transcriptome analysis based on RNA sequencing data, real-time quantitative PCR (RT-qPCR), and western blot analysis were used to detect the expression of RBPs and miRNAs in OS and normal adjacent tissues, and the correlation between them in OS tissues. RT-qPCR, western blot, cell viability, transwell migration, tumour spheres formation and in vivo tumour formation assays were used to examine the effects of RBP PUM2 on OS progression. Additionally, RNA immunoprecipitation (RIP) assay combined with RNA sequencing was performed to determine the binding site of RBP PUM2 on STARD13 3'UTR. Luciferase reporter and RIP assays were used to confirm the binding of miRNAs or PUM2 on STARD13 3'UTR. RESULTS PUM2 and STARD13 expression was significantly decreased in OS tissues, and positively correlated. Overexpression of PUM2 or STARD13 3'UTR inhibited OS cells proliferation, migration, and stemness. Mechanistically, PUM2 competitively bound to STARD13 3'UTR with miR-590-3p and miR-9. The inhibition of PUM2 on OS cells progression was attenuated by STARD13 knockdown or related miRNAs overexpression. CONCLUSION PUM2 suppresses OS progression via partly and competitively binding to STARD13 3'UTR with miRNAs.
Collapse
Affiliation(s)
- Ruixi Hu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaodong Zhu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chao Chen
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ruijun Xu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yifan Li
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wei Xu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
13
|
De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci 2018; 75:1929-1946. [PMID: 29397397 PMCID: PMC11105394 DOI: 10.1007/s00018-018-2766-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.
Collapse
Affiliation(s)
- Evi De Keuckelaere
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Paco Hulpiau
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans van Roy
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
14
|
Gribouval L, Sourdaine P, Lareyre JJ, Bellaiche J, Le Gac F, Mazan S, Guiardiere C, Auvray P, Gautier A. The nanos1 gene was duplicated in early Vertebrates and the two paralogs show different gonadal expression profiles in a shark. Sci Rep 2018; 8:6942. [PMID: 29720681 PMCID: PMC5932020 DOI: 10.1038/s41598-018-24643-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/04/2018] [Indexed: 11/23/2022] Open
Abstract
Nanos are RNA-binding proteins playing crucial roles in germ cell development and maintenance. Based on phylogenetic and synteny analyses, this study reveals that nanos1 gene has undergone multiple duplications and gene copies losses in Vertebrates. Chondrichthyan species display two nanos1 genes (named nanos1A/1B), which were both retrieved in some Osteichthyes at basal positions in Sarcopterygii and Actinopterygii lineages. In contrast, Teleosts have lost nanos1A but duplicated nanos1B leading to the emergence of two ohnologs (nanos1Ba/1Bb), whereas Tetrapods have lost nanos1B gene. The two successive nanos gene duplications may result from the second and third whole genome duplication events at the basis of Vertebrates and Teleosts respectively. The expression profiles of nanos1A and nanos1B paralogs were characterized in the dogfish, Scyliorhinus canicula. Nanos1A was strongly expressed in brain and also localized in all germ cell types in the polarized testis. In contrast, nanos1B was detected in testis with the highest expression in the germinative zone. In addition, Nanos1B protein was predominantly located in the nuclei of male germinal cells. In the ovary, both paralogs were detected in germinal and somatic cells. Our study opens new perspectives concerning the complex evolution of nanos1 paralogs and their potential distinct roles in Vertebrates gonads.
Collapse
Affiliation(s)
- Laura Gribouval
- Normandie University, UNICAEN, Sorbonne Universités, MNHN, UPMC University Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
- KELIA, Parc Technopolitain Atalante Saint Malo, 35400, Saint Malo, France
| | - Pascal Sourdaine
- Normandie University, UNICAEN, Sorbonne Universités, MNHN, UPMC University Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Jean-Jacques Lareyre
- INRA UPR1037, Laboratory of Fish Physiology and Genomics, BIOSIT, Ouest-Genopole, Campus de Beaulieu, 35042, Rennes, France
| | - Johanna Bellaiche
- INRA UPR1037, Laboratory of Fish Physiology and Genomics, BIOSIT, Ouest-Genopole, Campus de Beaulieu, 35042, Rennes, France
| | - Florence Le Gac
- INRA UPR1037, Laboratory of Fish Physiology and Genomics, BIOSIT, Ouest-Genopole, Campus de Beaulieu, 35042, Rennes, France
| | - Sylvie Mazan
- CNRS-UPMC-Sorbonne Universités, UMR 7232, Observatoire océanologique, 66650, Banyuls sur mer, France
| | - Cécile Guiardiere
- KELIA, Parc Technopolitain Atalante Saint Malo, 35400, Saint Malo, France
| | - Pierrïck Auvray
- KELIA, Parc Technopolitain Atalante Saint Malo, 35400, Saint Malo, France
| | - Aude Gautier
- Normandie University, UNICAEN, Sorbonne Universités, MNHN, UPMC University Paris 06, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France.
| |
Collapse
|
15
|
Miyamoto T, Minase G, Shin T, Ueda H, Okada H, Sengoku K. Human male infertility and its genetic causes. Reprod Med Biol 2017; 16:81-88. [PMID: 29259455 PMCID: PMC5661822 DOI: 10.1002/rmb2.12017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/11/2023] Open
Abstract
Background Infertility affects about 15% of couples who wish to have children and half of these cases are associated with male factors. Genetic causes of azoospermia include chromosomal abnormalities, Y chromosome microdeletions, and specific mutations/deletions of several Y chromosome genes. Many researchers have analyzed genes in the AZF region on the Y chromosome; however, in 2003 the SYCP3 gene on chromosome 12 (12q23) was identified as causing azoospermia by meiotic arrest through a point mutation. Methods We mainly describe the SYCP3 and PLK4 genes that we have studied in our laboratory, and add comments on other genes associated with human male infertility. Results Up to now, The 17 genes causing male infertility by their mutation have been reported in human. Conclusions Infertility caused by nonobstructive azoospermia (NOA) is very important in the field of assisted reproductive technology. Even with the aid of chromosomal analysis, ultrasonography of the testis, and detailed endocrinology, only MD‐TESE can confirm the presence of immature spermatozoa in the testes. We strongly hope that these studies help clinics avoid ineffective MD‐TESE procedures.
Collapse
Affiliation(s)
- Toshinobu Miyamoto
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Gaku Minase
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Takeshi Shin
- Department of Urology Dokkyo Medical University Koshigaya Hospital Koshigaya City Japan
| | - Hiroto Ueda
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Hiroshi Okada
- Department of Urology Dokkyo Medical University Koshigaya Hospital Koshigaya City Japan
| | - Kazuo Sengoku
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| |
Collapse
|
16
|
Ay OI, Balkan M, Erdal ME, Rustemoğlu A, Atar M, Hatipoğlu NK, Bodakçi MN, Yıldız İ, Akbas H, Karakaş Ü. Association of microRNA-related gene polymorphisms and idiopathic azoospermia in a south-east Turkey population. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1281759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ozlem Izci Ay
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Mahmut Balkan
- Department of Medical Biology and Genetics, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Emin Erdal
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Aydın Rustemoğlu
- Department of Medical Biology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Murat Atar
- Department of Urology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | | | - Mehmet Nuri Bodakçi
- Department of Urology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - İsmail Yıldız
- Department of Biostatistics, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Halit Akbas
- Department of Medical Biology and Genetics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ümit Karakaş
- Department of Medical Biology and Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
17
|
Fanourgakis G, Lesche M, Akpinar M, Dahl A, Jessberger R. Chromatoid Body Protein TDRD6 Supports Long 3' UTR Triggered Nonsense Mediated mRNA Decay. PLoS Genet 2016; 12:e1005857. [PMID: 27149095 PMCID: PMC4858158 DOI: 10.1371/journal.pgen.1005857] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/20/2016] [Indexed: 02/08/2023] Open
Abstract
Chromatoid bodies (CBs) are spermiogenesis-specific organelles of largely unknown function. CBs harbor various RNA species, RNA-associated proteins and proteins of the tudor domain family like TDRD6, which is required for a proper CB architecture. Proteome analysis of purified CBs revealed components of the nonsense-mediated mRNA decay (NMD) machinery including UPF1. TDRD6 is essential for UPF1 localization to CBs, for UPF1-UPF2 and UPF1-MVH interactions. Upon removal of TDRD6, the association of several mRNAs with UPF1 and UPF2 is disturbed, and the long 3’ UTR-stimulated but not the downstream exon-exon junction triggered pathway of NMD is impaired. Reduced association of the long 3’ UTR mRNAs with UPF1 and UPF2 correlates with increased stability and enhanced translational activity. Thus, we identified TDRD6 within CBs as required for mRNA degradation, specifically the extended 3’ UTR-triggered NMD pathway, and provide evidence for the requirement of NMD in spermiogenesis. This function depends on TDRD6-promoted assembly of mRNA and decay enzymes in CBs. Tudor-domain containing protein 6 (TDRD6) is a central component of the chromatoid body (CB) in male germ cells. Chromatoid bodies, which are present in spermatids, contain RNA and protein, are not enclosed by membranes, and typically reside close to the nucleus. Without TDRD6, a much distorted CB structure is observed, and this work asked for the functional contribution of TDRD6 to spermatids. We found that TDRD6 is required for localization of an RNA degradation machinery to the CB. This so-called nonsense mediated decay (NMD) machinery, known from somatic cells, destroys mRNAs that feature premature stop codons. Absence of TDRD6 significantly impairs one specific mechanism of NMD, which depends on long 3’ untranslated regions of the transcripts. Thus, the CB component TDRD6 acts in the assembly of the NMD machinery in the CB.
Collapse
Affiliation(s)
- Grigorios Fanourgakis
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Müge Akpinar
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
18
|
Raisch T, Bhandari D, Sabath K, Helms S, Valkov E, Weichenrieder O, Izaurralde E. Distinct modes of recruitment of the CCR4-NOT complex by Drosophila and vertebrate Nanos. EMBO J 2016; 35:974-90. [PMID: 26968986 PMCID: PMC5207322 DOI: 10.15252/embj.201593634] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/08/2016] [Indexed: 11/09/2022] Open
Abstract
Nanos proteins repress the expression of target mRNAs by recruiting effector complexes through non-conserved N-terminal regions. In vertebrates, Nanos proteins interact with the NOT1 subunit of the CCR4-NOT effector complex through a NOT1 interacting motif (NIM), which is absent in Nanos orthologs from several invertebrate species. Therefore, it has remained unclear whether the Nanos repressive mechanism is conserved and whether it also involves direct interactions with the CCR4-NOT deadenylase complex in invertebrates. Here, we identify an effector domain (NED) that is necessary for the Drosophila melanogaster (Dm) Nanos to repress mRNA targets. The NED recruits the CCR4-NOT complex through multiple and redundant binding sites, including a central region that interacts with the NOT module, which comprises the C-terminal domains of NOT1-3. The crystal structure of the NED central region bound to the NOT module reveals an unanticipated bipartite binding interface that contacts NOT1 and NOT3 and is distinct from the NIM of vertebrate Nanos. Thus, despite the absence of sequence conservation, the N-terminal regions of Nanos proteins recruit CCR4-NOT to assemble analogous repressive complexes.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kevin Sabath
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sigrun Helms
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
19
|
Qi H. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective. ACTA ACUST UNITED AC 2016; 5:1. [PMID: 26839690 PMCID: PMC4736624 DOI: 10.1186/s13619-015-0022-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022]
Abstract
Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.
Collapse
Affiliation(s)
- Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| |
Collapse
|
20
|
Ottesen EW, Howell MD, Singh NN, Seo J, Whitley EM, Singh RN. Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy. Sci Rep 2016; 6:20193. [PMID: 26830971 PMCID: PMC4735745 DOI: 10.1038/srep20193] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of survival motor neuron (SMN), a multifunctional protein essential for higher eukaryotes. While SMN is one of the most scrutinized proteins associated with neurodegeneration, its gender-specific role in vertebrates remains unknown. We utilized a mild SMA model (C/C model) to examine the impact of low SMN on growth and development of mammalian sex organs. We show impaired testis development, degenerated seminiferous tubules, reduced sperm count and low fertility in C/C males, but no overt sex organ phenotype in C/C females. Underscoring an increased requirement for SMN expression, wild type testis showed extremely high levels of SMN protein compared to other tissues. Our results revealed severe perturbations in pathways critical to C/C male reproductive organ development and function, including steroid biosynthesis, apoptosis, and spermatogenesis. Consistent with enhanced apoptosis in seminiferous tubules of C/C testes, we recorded a drastic increase in cells with DNA fragmentation. SMN was expressed at high levels in adult C/C testis due to an adult-specific splicing switch, but could not compensate for low levels during early testicular development. Our findings uncover novel hallmarks of SMA disease progression and link SMN to general male infertility.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Elizabeth M Whitley
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
21
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
22
|
Peruquetti RL. Perspectives on mammalian chromatoid body research. Anim Reprod Sci 2015; 159:8-16. [PMID: 26070909 DOI: 10.1016/j.anireprosci.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
Several genetic and epigenetic events that take place in the nucleus (i.e. meiotic recombination, meiotic silencing, chromatin reorganization and histone replacement) are crucial for the spermatogenesis process, as well as, is the assembling of cytoplasmic bodies (or chromatoid bodies). In this minireview, we give special attention to the most recent research approaches involved in the molecular structure and physiology of the chromatoid body (CB). Though it was described several decades ago, the CB is still a very intriguing cytoplasmic structure of male germ cells. It plays roles in the most important steps of the spermatozoon formation, such as mRNA regulation, smallRNA-mediated gene control, and cell communication among round spermatids. Studies that have been done on the CB largely focus on two main topics: (1) CB proteome, in this minireview focused on 'Evidences linking the nucleolar cycle and the CB assembling; and Circadian proteins found in the CB'; and (2) CB transcriptome, in this minireview focused on 'miRNAs and piRNAs pathways; and X but not Y chromosome transcripts enriching the CB'. Herein, we described the most relevant results produced in each of these subjects in order to clarify the main physiological role played by this intriguing cytoplasmic structure in the germ cells of male mammals, which though long since described, still fascinates researchers in the field.
Collapse
|
23
|
Yuan Y, Li M, Hong Y. Light and electron microscopic analyses of Vasa expression in adult germ cells of the fish medaka. Gene 2014; 545:15-22. [DOI: 10.1016/j.gene.2014.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/20/2014] [Accepted: 05/01/2014] [Indexed: 12/18/2022]
|
24
|
Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev 2014; 28:888-901. [PMID: 24736845 PMCID: PMC4003280 DOI: 10.1101/gad.237289.113] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nanos family RNA-binding proteins play essential roles in metazoan germ cell fate and survival, yet the underlying mechanism has not been elucidated. Bhandari et al. now provide the structural basis for CCR4–NOT complex recruitment by vertebrate Nanos. The authors show that three human Nanos paralogs interact with the CNOT1 C-terminal domain through a short, conserved CNOT1-interacting motif (NIM). This work indicates that NIMs are the major determinants of the translational repression mediated by Nanos and identifies the CCR4–NOT complex as the main effector for Nanos function. The RNA-binding proteins of the Nanos family play an essential role in germ cell development and survival in a wide range of metazoan species. They function by suppressing the expression of target mRNAs through the recruitment of effector complexes, which include the CCR4–NOT deadenylase complex. Here, we show that the three human Nanos paralogs (Nanos1–3) interact with the CNOT1 C-terminal domain and determine the structural basis for the specific molecular recognition. Nanos1–3 bind CNOT1 through a short CNOT1-interacting motif (NIM) that is conserved in all vertebrates and some invertebrate species. The crystal structure of the human Nanos1 NIM peptide bound to CNOT1 reveals that the peptide opens a conserved hydrophobic pocket on the CNOT1 surface by inserting conserved aromatic residues. The substitutions of these aromatic residues in the Nanos1–3 NIMs abolish binding to CNOT1 and abrogate the ability of the proteins to repress translation. Our findings provide the structural basis for the recruitment of the CCR4–NOT complex by vertebrate Nanos, indicate that the NIMs are the major determinants of the translational repression mediated by Nanos, and identify the CCR4–NOT complex as the main effector complex for Nanos function.
Collapse
Affiliation(s)
- Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
25
|
Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol 2014; 29:84-92. [PMID: 24755166 DOI: 10.1016/j.semcdb.2014.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/22/2023]
Abstract
The spermatogenic process relays in highly regulated gene expression mechanisms at the transcriptional and post-transcriptional levels to generate the male gamete that is needed for the perpetuation of the species. Small non-coding RNA pathways have been determined to participate in the post-transcriptional regulatory processes of germ cells. The most important sncRNA molecules that are critically involved in spermatogenesis belong to the miRNA and piRNAs pathways as illustrated by animal models where ablation of specific protein components displays male infertility. Several elements of these regulatory pathways have been found in the nuage or germ granule, a non-membranous cytoplasmatic structure that can be seen in spermatocytes and spermatids. This notion suggests that germ granules may act as organizer centers for silencing pathways in the germline. In general, miRNAs regulate spermatogenesis through targeting and down-regulation of specific transcripts to eventually promote sperm development. However, piRNAs are powerful repressors of transposon elements expression in the spermatogenic process. Here we describe the suggested functions that miRNA and piRNAs pathways execute in the regulation of spermatogenesis and include some recent studies in the field. Despite major strides on the detailed molecular mechanisms of sncRNAs in relation to spermatogenesis, there is plenty to discover on this fascinating regulatory program.
Collapse
|
26
|
Lai F, King ML. Repressive translational control in germ cells. Mol Reprod Dev 2013; 80:665-76. [DOI: 10.1002/mrd.22161] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/02/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Fangfang Lai
- Department of Cell Biology; University of Miami Miller School of Medicine; Miami; Florida
| | - Mary Lou King
- Department of Cell Biology; University of Miami Miller School of Medicine; Miami; Florida
| |
Collapse
|
27
|
Yokota S, Onohara Y. Expression and Localization of NANOS1 in Spermatogenic Cells during Spermatogenesis in Rat. Cell 2013. [DOI: 10.4236/cellbio.2013.21001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Messina V, Meikar O, Paronetto MP, Calabretta S, Geremia R, Kotaja N, Sette C. The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One 2012; 7:e39729. [PMID: 22745822 PMCID: PMC3382170 DOI: 10.1371/journal.pone.0039729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/25/2012] [Indexed: 12/13/2022] Open
Abstract
The chromatoid body (CB) is a unique structure of male germ cells composed of thin filaments that condense into a perinuclear organelle after meiosis. Due to the presence of proteins involved in different steps of RNA metabolism and of different classes of RNAs, including microRNAs (miRNAs), the CB has been recently suggested to function as an RNA processing centre. Herein, we show that the RNA binding protein SAM68 transiently localizes in the CB, in concomitance with the meiotic divisions of mouse spermatocytes. Precise staging of the seminiferous tubules and co-localization studies with MVH and MILI, two well recognized CB markers, documented that SAM68 transiently associates with the CB in secondary spermatocytes and early round spermatids. Furthermore, although SAM68 co-immunoprecipitated with MVH in secondary spermatocytes, its ablation did not affect the proper localization of MVH in the CB. On the other hand, ablation of the CB constitutive component MIWI did not impair association of SAM68 with the CB. Isolation of CBs from Sam68 wild type and knockout mouse testes and comparison of their protein content by mass spectrometry indicated that Sam68 ablation did not cause overall alterations in the CB proteome. Lastly, we found that SAM68 interacts with DROSHA and DICER in secondary spermatocytes and early round spermatids and that a subset of miRNAs were altered in Sam68−/−germ cells. These results suggest a novel role for SAM68 in the miRNA pathway during spermatogenesis.
Collapse
Affiliation(s)
- Valeria Messina
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Oliver Meikar
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maria Paola Paronetto
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Sara Calabretta
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Digestive and Liver Disease Unit, II Medical School, University of Rome “La Sapienza”, S. Andrea Hospital, Rome, Italy
| | - Raffaele Geremia
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Claudio Sette
- Section of Anatomy, Department of Public Health and Cell Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
29
|
Nuage proteins: their localization in subcellular structures of spermatogenic cells as revealed by immunoelectron microscopy. Histochem Cell Biol 2012; 138:1-11. [PMID: 22585039 DOI: 10.1007/s00418-012-0962-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
Chromatoid body (CB) was identified as granules stained by basic dye 130 years ago and called by various names. Electron microscopy revealed that the CB belonged to nuage (cloud in French) specific for germ cells. We described the localization of several proteins, including RNA helicases, in the nuage compartments classified into six types and in several spermatogenic cell-specific structures. All the proteins examined were detected in the nuage, including the CB with different staining intensities. Several proteins were localized to non-nuage structures, suggesting that these nuage proteins structures are related to nuage function.
Collapse
|
30
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
31
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|