1
|
Kato H, Saeki N, Imai M, Onji H, Yano A, Yoshida S, Sakaue T, Fujioka T, Sugiyama T, Imai Y. LIM1 contributes to the malignant potential of endometrial cancer. Front Oncol 2023; 13:1082441. [PMID: 36969081 PMCID: PMC10036843 DOI: 10.3389/fonc.2023.1082441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionThe incidence of endometrial cancer (EC) has been increasing worldwide. However, because there are limited chemotherapeutic options for the treatment of EC, the prognosis of advanced-stage EC is poor.MethodsGene expression profile datasets for EC cases registered in The Cancer Genome Atlas (TCGA) was reanalyzed. Highly expressed genes in advanced-stage EC (110 cases) compared with early-stage EC (255 cases) were extracted and Gene Ontology (GO) enrichment analysis was performed. Among the enriched genes, Kaplan-Meier (KM) plotter analysis was performed. Candidate genes expression was analyzed in HEC50B cells and Ishikawa cells by RT-qPCR. In HEC50B cells, LIM homeobox1 (LIM1) was knocked down (KD) and cell proliferation, migration, and invasion ability of the cells were evaluated. Xenografts were generated using LIM1-KD cells and tumor growth was evaluated. Ingenuity Pathway Analysis (IPA) of RNA-seq data using LIM-KD cells was performed. Expression of phospho-CREB and CREB-related proteins were evaluated in LIM1-KD cells by western blotting and in xenograft tissue by immunofluorescent staining. Two different CREB inhibitors were treated in HEC50B and cell proliferation was evaluated by MTT assay.ResultsReanalysis of TCGA followed by GO enrichment analysis revealed that homeobox genes were highly expressed in advanced-stage EC. Among the identified genes, KM plotter analysis showed that high LIM1 expression was associated with a significantly poorer prognosis in EC. Additionally, LIM1 expression was significantly higher in high-grade EC cell lines, HEC50B cells than Ishikawa cells. Knockdown of LIM1 showed reduced cell proliferation, migration and invasion in HEC50B cells. Xenograft experiments revealed that tumor growth was significantly suppressed in LIM1-KD cells. IPA of RNA-seq data using LIM-KD cells predicted that the mRNA expression of CREB signaling-related genes was suppressed. Indeed, phosphorylation of CREB was decreased in LIM1-KD cells and LIM1-KD cells derived tumors. HEC50B cells treated by CREB inhibitors showed suppression of cell proliferation.Conclusion and discussionCollectively, these results suggested that high LIM1 expression contributed to tumor growth via CREB signaling in EC. Inhibition of LIM1 or its downstream molecules would be new therapeutic strategies for EC.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Noritaka Saeki
- Division of Medical Research Support, Advanced Research Support Center, Ehime University, Toon, Ehime, Japan
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Matome Imai
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroshi Onji
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Akiko Yano
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shuhei Yoshida
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime, Japan
| | - Toru Fujioka
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takashi Sugiyama
- Department of Obstetrics & Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
- Department of Pathophysiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- *Correspondence: Yuuki Imai,
| |
Collapse
|
2
|
Tian Y, Wen F, Wang S, Lv N. LHX1 as a potential biomarker regulates EMT induction and cellular behaviors in uterine corpus endometrial carcinoma. Clinics (Sao Paulo) 2022; 77:100103. [PMID: 36116266 PMCID: PMC9489736 DOI: 10.1016/j.clinsp.2022.100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To investigate the expression of LHX1 and its role as a biomarker in the diagnosis and prognosis of Uterine Corpus Endometrial Carcinoma (UCEC). METHODS The Cancer Genome Atlas (TCGA) database was used to detect the expression level of LHX1 in UCEC cells and tissues, and to find out the effect of LHX1 on prognosis. Co-expressed genes were then identified by Spearman correlation analysis, and the protein-protein interaction network was constructed using Cytoscape software. The R "clusterProfiler" package was used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A series of in vitro experiments were performed to evaluate LHX1 expression and detect UCEC cell proliferation, invasion, and migration. Western blotting was used to determine the effect of LHX1 on expression levels of Epithelial-Mesenchymal Transition (EMT)-related proteins. RESULTS LHX1 was upregulated in UCEC tissues and correlated with poor overall survival and disease-specific survival outcomes. Functional enrichment analysis suggested that genes co-expressed with LHX1 were enriched in cell adhesion. The expression of LHX1 was positively correlated with the expression levels of genes related to EMT induction and invasion. LHX1 can enhance the proliferation, migration, and invasion activities of UCEC cells in vitro, and alter the expression levels of EMT-related proteins. CONCLUSION LHX1 expression was highly upregulated in UCEC cells and tissues, which was correlated with the prognosis of patients with UCEC. LHX1 may regulate UCEC progression at least in part by modulating EMT induction.
Collapse
Affiliation(s)
- Ye Tian
- Department of Gynecology, Liaoning Cancer Hospital, Shenyang, China.
| | - Fang Wen
- Department of Gynecology, The First Hospital, China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Gynecology, Liaoning Cancer Hospital, Shenyang, China
| | - Na Lv
- Blood Collection Center, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Forouzesh F, Ghiaghi M, Rahimi H. Effect of sodium butyrate on HDAC8 mRNA expression in colorectal cancer cell lines and molecular docking study of LHX1 - sodium butyrate interaction. EXCLI JOURNAL 2020; 19:1038-1051. [PMID: 32788915 PMCID: PMC7415931 DOI: 10.17179/excli2020-2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer and the fourth leading cause of cancer related deaths worldwide. The Histone Deacetylase 8 (HDAC8) gene is a gene with unique features which can be used as a potential target for drug design. The LHX1 transcription factor is an important transcription factor for this gene. The aim of this study was to investigate the effect of sodium butyrate (NaB) as a histone deacetylase inhibitor (HDACi) on the expression of the HDAC8 gene in the colorectal cancer cell line, and the molecular docking of the LHX1 transcription factor with NaB. For this purpose, HCT-116 and HT-29 cell lines were treated with different concentrations of NaB (6.25 mM to 150 mM) at 24, 48 and 72 hours. Subsequently, RNA was extracted from the treated and untreated cells and cDNA was synthesized. Quantitative Real-Time-PCR was done to investigate the mRNA expression of HDAC8. Molecular docking was also performed to investigate the interaction between NaB and LHX1. Based on Real-time-PCR results, the concentration of 150 mM of NaB after 24 hours in HT-29 and HCT-116 cell lines caused a significant reduction in mRNA expression of HDAC8 (P<0.05). After 48 hours of treatment, there was a significant decrease in the mRNA expression of HDAC8 at all concentrations (P<0.05). The docking results showed that LHX1 and NaB interacted best at the lowest energy levels. Our results also showed that NaB bonded strongly to LHX1. In addition, our results demonstrated that NaB bound to the LHX1 transcription factor and inhibited the function of this factor and consequently decreased the transcription from the HDAC8 gene which resulted in cell death. Future studies are needed to assess the likely molecular mechanisms of NaB action on gene expression.
Collapse
Affiliation(s)
- Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ghiaghi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Salas‐Huetos A, James ER, Aston KI, Carrell DT, Jenkins TG, Yeste M. The role of miRNAs in male human reproduction: a systematic review. Andrology 2019; 8:7-26. [DOI: 10.1111/andr.12714] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Affiliation(s)
- A. Salas‐Huetos
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - E. R. James
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
| | - K. I. Aston
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - D. T. Carrell
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
- Department of Obstetrics and Gynecology University of Utah School of Medicine Salt Lake City UT USA
| | - T. G. Jenkins
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - M. Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm) Unit of Cell Biology Department of Biology Faculty of Sciences Institute of Food and Agricultural Technology University of Girona Girona Spain
| |
Collapse
|
5
|
Hamaidi I, Coquard C, Danilin S, Dormoy V, Béraud C, Rothhut S, Barthelmebs M, Benkirane-Jessel N, Lindner V, Lang H, Massfelder T. The Lim1 oncogene as a new therapeutic target for metastatic human renal cell carcinoma. Oncogene 2018; 38:60-72. [DOI: 10.1038/s41388-018-0413-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
|
6
|
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2015; 22:137-63. [PMID: 26552890 PMCID: PMC4755439 DOI: 10.1093/humupd/dmv051] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman's syndrome. Endometrial MSCs (eMSCs) and menstrual blood stromal fibroblasts are an attractive source of MSCs for regenerative medicine because of their relative ease of acquisition with minimal morbidity. Their homologous and non-homologous use as autologous and allogeneic cells for therapeutic purposes is currently being assessed in preclinical animal models of pelvic organ prolapse and phase I/II clinical trials for cardiac failure. eMSCs and stromal fibroblasts also exhibit non-stem cell-associated immunomodulatory and anti-inflammatory properties, further emphasizing their desirable properties for cell-based therapies. CONCLUSIONS Much has been learnt about endometrial stem/progenitor cells in the 10 years since their discovery, although several unresolved issues remain. These include rationalizing the terminology and diagnostic characteristics used for distinguishing perivascular stem/progenitor cells from stromal fibroblasts, which also have considerable differentiation potential. The hierarchical relationship between clonogenic epithelial progenitor cells, endometrial and decidual SP cells, CD146+PDGFR-β+ and SUSD2+ cells and menstrual blood stromal fibroblasts still needs to be resolved. Developing more genetic animal models for investigating the role of endometrial stem/progenitor cells in endometrial disorders is required, as well as elucidating which bone marrow cells contribute to endometrial tissue. Deep sequencing and epigenetic profiling of enriched populations of endometrial stem/progenitor cells and their differentiated progeny at the population and single-cell level will shed new light on the regulation and function of endometrial stem/progenitor cells.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| | - Kjiana E Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
7
|
Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril 2014; 102:213-222.e4. [PMID: 24794309 DOI: 10.1016/j.fertnstert.2014.03.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize the microRNA (miRNA) expression profile in spermatozoa from human fertile individuals and their implications in human fertility. DESIGN The expression levels of 736 miRNAs were evaluated using TaqMan arrays. Ontologic analyses were performed to determine the presence of enriched biological processes among their targets. SETTING University research and clinical institutes. PATIENT(S) Ten individuals with normal seminogram, standard karyotype, and proven fertility. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Expression levels of 736 miRNAs, presence of enriched metabolic routes among their targets, homogeneity of the population, influence of demographic features in the results, presence of miRNA stable pairs, and best miRNA normalizing candidates. RESULT(S) A total of 221 miRNAs were consistently present in all individuals, 452 were only detected in some individuals, and 63 did not appear in any sample. The ontologic analysis of the 2,356 potential targets of the ubiquitous miRNAs showed an enrichment of processes related to cell differentiation, development, morphogenesis, and embryogenesis. None of the miRNAs were significantly correlated with age, semen volume, sperm concentration, motility, or morphology. Correlations between samples were statistically significant, indicating a high homogeneity of the population. A set of 48 miRNA pairs displayed a stable expression, a particular behavior that is discussed in relationship to their usefulness as fertility biomarkers. Hsa-miR-532-5p, hsa-miR-374b-5p, and hsa-miR-564 seemed to be the best normalizing miRNA candidates. CONCLUSION(S) Human sperm contain a stable population of miRNAs potentially related to embryogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Joan Blanco
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesca Vidal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Josep M Mercader
- Joint Institution for Research in Biomedicine-Barcelona Supercomputing Center Program on Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Nicolás Garrido
- Laboratorio de Andrología y Banco de Semen, Instituto Valenciano de Infertilidad Valencia, Valencia, Spain
| | - Ester Anton
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
8
|
Regenerating endometrium from stem/progenitor cells: is it abnormal in endometriosis, Asherman's syndrome and infertility? Curr Opin Obstet Gynecol 2013; 25:193-200. [PMID: 23562953 DOI: 10.1097/gco.0b013e32836024e7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Stem/progenitor cells are present in human and rodent endometrium and have a key role in endometrial regeneration in normal cycling and after parturition. We review emerging evidence of multiple types of endometrial stem/progenitor cells, and that abnormalities in their location and function may contribute to endometriosis. RECENT FINDINGS Candidate human endometrial stem/progenitors have been identified as clonogenic, Side Population and possessing tissue reconstitution activity. Markers have been identified for human endometrial mesenchymal stem cells, showing their perivascular location in functionalis and basalis endometrium. Human embryonic stem cells can be induced to develop endometrial epithelium, recapitulating endometrial development. In rodent studies, endometrial stem/progenitor cells were identified as label-retaining cells and their role in endometrial repair and regeneration revealed, perhaps via mesenchymal to epithelial transition. Studies of Wnt signalling in the regulation of endometrial stem/progenitor cells may yield insights into their function in endometrial regeneration. Stem/progenitor cells can be isolated from endometrial biopsy or menstrual blood and may be used autologously to regenerate endometrium in Asherman's syndrome. SUMMARY There is much to be learnt about endometrial stem/progenitor cell biology and their role in endometriosis. Endometrial stem/progenitor cells hold great promise for new treatments for infertility associated disorders, including thin dysfunctional endometrium and Asherman's syndrome.
Collapse
|
9
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology compendium: a review of 2012. Histochem Cell Biol 2013; 139:815-46. [PMID: 23665922 DOI: 10.1007/s00418-013-1098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
Abstract
The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
10
|
Abstract
The functional layer of the human endometrium is a highly regenerative tissue undergoing monthly cycles of growth, differentiation and shedding during a woman's reproductive years. Fluctuating levels of circulating estrogen and progesterone orchestrate this dramatic remodeling of human endometrium. The thin inactive endometrium of postmenopausal women which resembles the permanent basal layer of cycling endometrium retains the capacity to respond to exogenous sex steroid hormones to regenerate into a thick functional endometrium capable of supporting pregnancy. Endometrial regeneration also follows parturition and endometrial resection. In non menstruating rodents, endometrial epithelium undergoes rounds of proliferation and apoptosis during estrus cycles. The recent identification of adult stem cells in both human and mouse endometrium suggests that epithelial progenitor cells and the mesenchymal stem/stromal cells have key roles in the cyclical regeneration of endometrial epithelium and stroma. This review will summarize the evidence for endometrial stem/progenitor cells, examine their role in mouse models of endometrial epithelial repair and estrogen-induced endometrial regeneration, and also describe the generation of endometrial-like epithelium from human embryonic stem cells. With markers now available for identifying endometrial mesenchymal stem/stromal cells, their possible role in gynecological diseases associated with abnormal endometrial proliferation and their potential application in cell-based therapies to regenerate reproductive and other tissues will be discussed.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
11
|
Gargett CE, Ye L. Endometrial reconstruction from stem cells. Fertil Steril 2012; 98:11-20. [PMID: 22657248 DOI: 10.1016/j.fertnstert.2012.05.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/13/2023]
Abstract
Adult stem cells have been identified in the highly regenerative human endometrium on the basis of their functional attributes. They can reconstruct endometrial tissue in vivo suggesting their possible use in treating disorders associated with inadequate endometrium. The identification of specific markers for endometrial mesenchymal stem cells and candidate markers for epithelial progenitor cells enables the potential use of endometrial stem/progenitor cells in reconstructing endometrial tissue in Asherman syndrome and intrauterine adhesions.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia.
| | | |
Collapse
|