1
|
Chukrallah LG, Potgieter S, Chueh L, Snyder EM. Two RNA binding proteins, ADAD2 and RNF17, interact to form a heterogeneous population of novel meiotic germ cell granules with developmentally dependent organelle association. PLoS Genet 2023; 19:e1010519. [PMID: 37428816 PMCID: PMC10359003 DOI: 10.1371/journal.pgen.1010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/20/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
Mammalian male germ cell differentiation relies on complex RNA biogenesis events, many of which occur in non-membrane bound organelles termed RNA germ cell granules that are rich in RNA binding proteins (RBPs). Though known to be required for male germ cell differentiation, we understand little of the relationships between the numerous granule subtypes. ADAD2, a testis specific RBP, is required for normal male fertility and forms a poorly characterized granule in meiotic germ cells. This work aimed to understand the role of ADAD2 granules in male germ cell differentiation by clearly defining their molecular composition and relationship to other granules. Biochemical analyses identified RNF17, a testis specific RBP that forms meiotic male germ cell granules, as an ADAD2-interacting protein. Phenotypic analysis of Adad2 and Rnf17 mutants identified a rare post-meiotic chromatin defect, suggesting shared biological roles. ADAD2 and RNF17 were found to be dependent on one another for granularization and together form a previously unstudied set of germ cell granules. Based on co-localization studies with well-characterized granule RBPs and organelle-specific markers, a subset of the ADAD2-RNF17 granules are found to be associated with the intermitochondrial cement and piRNA biogenesis. In contrast, a second, morphologically distinct population of ADAD2-RNF17 granules co-localized with the translation regulators NANOS1 and PUM1, along with the molecular chaperone PDI. These large granules form a unique funnel-shaped structure that displays distinct protein subdomains and is tightly associated with the endoplasmic reticulum. Developmental studies suggest the different granule populations represent different phases of a granule maturation process. Lastly, a double Adad2-Rnf17 mutant model suggests the interaction between ADAD2 and RNF17, as opposed to loss of either, is the likely driver of the Adad2 and Rnf17 mutant phenotypes. These findings shed light on the relationship between germ cell granule pools and define new genetic approaches to their study.
Collapse
Affiliation(s)
- Lauren G. Chukrallah
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sarah Potgieter
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Lisa Chueh
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
2
|
Chukrallah LG, Snyder EM. Modern tools applied to classic structures: Approaches for mammalian male germ cell RNA granule research. Andrology 2023; 11:872-883. [PMID: 36273399 DOI: 10.1111/andr.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
First reported in the 1800s, germ cell granules are small nonmembrane bound RNA-rich regions of the cytoplasm. These sites of critical RNA processing and storage in the male germ cell are essential for proper differentiation and development and are present in a wide range of species from Caenorhabditis elegans through mammals. Initially characterized by light and electron microscopy, more modern techniques such as immunofluorescence and genetic models have played a major role in expanding our understanding of the composition of these structures. While these methods have given light to potential granule functions, much work remains to be done. The current expansion of imaging technologies and omics-scale analyses to germ cell granule research will drive the field forward considerably. Many of these methods, both current and upcoming, have considerable caveats and limitations that necessitate a holistic approach to the study of germ granules. By combining and balancing different techniques, the field is poised to elucidate the nature of these critical structures.
Collapse
Affiliation(s)
- Lauren G Chukrallah
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Elizabeth M Snyder
- Department of Animal Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Xu C, Cao Y, Bao J. Building RNA-protein germ granules: insights from the multifaceted functions of DEAD-box helicase Vasa/Ddx4 in germline development. Cell Mol Life Sci 2021; 79:4. [PMID: 34921622 PMCID: PMC11072811 DOI: 10.1007/s00018-021-04069-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
The segregation and maintenance of a dedicated germline in multicellular organisms is essential for species propagation in the sexually reproducing metazoan kingdom. The germline is distinct from somatic cells in that it is ultimately dedicated to acquiring the "totipotency" and to regenerating the offspring after fertilization. The most striking feature of germ cells lies in the presence of characteristic membraneless germ granules that have recently proven to behave like liquid droplets resulting from liquid-liquid phase separation (LLPS). Vasa/Ddx4, a faithful DEAD-box family germline marker highly conserved across metazoan species, harbors canonical DEAD-box motifs and typical intrinsically disordered sequences at both the N-terminus and C-terminus. This feature enables it to serve as a primary driving force behind germ granule formation and helicase-mediated RNA metabolism (e.g., piRNA biogenesis). Genetic ablation of Vasa/Ddx4 or the catalytic-dead mutations abolishing its helicase activity led to sexually dimorphic germline defects resulting in either male or female sterility among diverse species. While recent efforts have discovered pivotal functions of Vasa/Ddx4 in somatic cells, especially in multipotent stem cells, we herein summarize the helicase-dependent and -independent functions of Vasa/Ddx4 in the germline, and discuss recent findings of Vasa/Ddx4-mediated phase separation, germ granule formation and piRNA-dependent retrotransposon control essential for germline development.
Collapse
Affiliation(s)
- Caoling Xu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Anhui, China
| | - Yuzhu Cao
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Anhui, China
| | - Jianqiang Bao
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Anhui, China.
| |
Collapse
|
4
|
Anbazhagan R, Kavarthapu R, Coon SL, Dufau ML. Role of Phosphorylated Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25) in the Regulation of Germ Cell Specific mRNAs in Chromatoid Bodies During Spermatogenesis. Front Cell Dev Biol 2020; 8:580019. [PMID: 33425888 PMCID: PMC7786181 DOI: 10.3389/fcell.2020.580019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
GRTH/DDX25 is a member of the DEAD-box family of RNA helicases that play an essential role in spermatogenesis. GRTH knock-in (KI) mice with the human mutant GRTH gene (R242H) show loss of the phospho-species from cytoplasm with preservation of the non-phospho form in the cytoplasm and nucleus. GRTH KI mice are sterile and lack elongated spermatids and spermatozoa, with spermatogenic arrest at step 8 of round spermatids which contain chromatoid body (CB) markedly reduced in size. We observed an absence of phospho-GRTH in CB of GRTH KI mice. RNA-Seq analysis of mRNA isolated from CB revealed that 1,421 genes show differential abundance, of which 947 genes showed a decrease in abundance and 474 genes showed an increase in abundance in GRTH KI mice. The transcripts related to spermatid development, differentiation, and chromatin remodeling (Tnp1/2, Prm1/2/3, Spem1/2, Tssk 2/3/6, Grth, tAce, and Upf2) were reduced, and the transcripts encoding for factors involved in RNA transport, regulation, and surveillance and transcriptional and translational regulation (Eef1a1, Ppp1cc, Pabpc1, Ybx3, Tent5b, H2al1m, Dctn2, and Dync1h1) were increased in the CB of KI mice and were further validated by qPCR. In the round spermatids of wild-type mice, mRNAs of Tnp2, Prm2, and Grth were abundantly co-localized with MVH protein in the CB, while in GRTH KI mice these were minimally present. In addition, GRTH binding to Tnp1/2, Prm1/2, Grth, and Tssk6 mRNAs was found to be markedly decreased in KI. These results demonstrate the importance of phospho-GRTH in the maintenance of the structure of CB and its role in the storage and stability of germ cell-specific mRNAs during spermiogenesis.
Collapse
Affiliation(s)
- Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Steven L Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Maria L Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Kere M, Liu PC, Chen YK, Chao PC, Tsai LK, Yeh TY, Siriboon C, Intawicha P, Lo NW, Chiang HI, Fan YK, Ju JC. Ultrastructural Characterization of Porcine Growing and In Vitro Matured Oocytes. Animals (Basel) 2020; 10:ani10040664. [PMID: 32290459 PMCID: PMC7222836 DOI: 10.3390/ani10040664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary During oocyte growth and maturation, the organelle’s morphology of porcine oocytes changed and populated different compartments depending on the differentiation status. Changes in ultrastructural or subcellular level of porcine oocytes during oogenesis/folliculogenesis were observed, potentially leading to future mitochondrion replacement therapies of oocytes. Abstract This study aimed to investigate ultrastructural changes of growing porcine oocytes and in vitro maturated oocytes. Light microscopy was used to characterize and localize the primordial, primary, secondary, and tertiary follicles. During oocyte growth and maturation, the morphology of mitochondria was roundish or ovoid in shape depending on the differentiation state, whereas their mean diameters oscillated between 0.5 and 0.7 µm, respectively, from primary and secondary follicles. Hooded mitochondria were found in the growing oocytes of the tertiary follicles. In addition to the pleomorphism of mitochondria, changes in the appearance of lipid droplets were also observed, along with the alignment of a single layer of cortical granules beneath the oolemma. In conclusion, our study is apparently the first report to portray morphological alterations of mitochondria that possess the hooded structure during the growth phase of porcine oocytes. The spatiotemporal and intrinsic changes during oogenesis/folliculogenesis are phenomena at the ultrastructural or subcellular level of porcine oocytes, highlighting an in-depth understanding of oocyte biology and impetus for future studies on practical mitochondrion replacement therapies for oocytes.
Collapse
Affiliation(s)
- Michel Kere
- Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan; (M.K.); (H.-I.C.); (Y.-K.F.)
- Institute of Rural Development, Nazi Boni University, 01 P.O. Box 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Pan-Chen Liu
- Department of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan;
| | - Yuh-Kun Chen
- Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan; (Y.-K.C.); (P.-C.C.)
| | - Pei-Chi Chao
- Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan; (Y.-K.C.); (P.-C.C.)
| | - Li-Kuang Tsai
- Bachelor Program of Biotechnology, National Chung Hsing University, No. 250, Kuokuang Rd., Taichung 402, Taiwan;
| | - Ting-Yu Yeh
- Graduate Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
| | - Chawalit Siriboon
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Payungsuk Intawicha
- Department of Animal Science, School of Agriculture and Natural Resources, University of Phayao, 19 Moo 2 Tambon Maeka Amphur Muang Phayao 56000, Thailand;
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, 181 Sec. 3 Taichung Harbor Road, Taichung 407, Taiwan;
| | - Hsing-I Chiang
- Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan; (M.K.); (H.-I.C.); (Y.-K.F.)
| | - Yang-Kwang Fan
- Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan; (M.K.); (H.-I.C.); (Y.-K.F.)
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan; (M.K.); (H.-I.C.); (Y.-K.F.)
- Graduate Institute of Biomedical Sciences, China Medical University, 91 Shueh Shih Rd., Taichung 40402, Taiwan
- Translational Medicine Center, China Medical University Hospital, 91 Shueh Shih Rd., Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-2233-7203
| |
Collapse
|
6
|
Wang SC, Ching YH, Krishnaraj P, Chen GY, Radhakrishnan AS, Lee HM, Tu WC, Lin MD. Oogenesis of Hematophagous Midge Forcipomyia taiwana (Diptera: Ceratopogonidae) and Nuage Localization of Vasa in Germline Cells. INSECTS 2020; 11:E106. [PMID: 32033475 PMCID: PMC7074065 DOI: 10.3390/insects11020106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/24/2023]
Abstract
Forcipomyia taiwana is an irritating hematophagous midge that preferentially attacks humans and affects leisure industries in Taiwan. Understanding the female reproductive biology of such pests would facilitate the development of pest control strategies. However, knowledge about oogenesis in the genus Forcipomyia is unavailable. Accordingly, we examined the ovariole structure and features of oogenesis in terms of the oocyte and the nurse cell. After being blood-fed, we observed a high degree of gonotrophic harmony-the synchronization of developing follicles. The follicle of the F. taiwana has only one nurse cell connected to the oocyte, which is distinct among hematophagous midges. In the nurse cell, we identified the perinuclear localization of the germline marker, Vasa. The Vasa localization is reminiscent of the nuclear envelope-associated nuage observed by electron microscopy. To determine whether F. taiwana Vasa (FtVasa) is an authentic nuage component, we produced transgenic flies expressing FtVasa in the female germline and proved that FtVasa was able to be localized to Drosophila nuage. By characterizing the oogenesis and Vasa expression in the germline cells of F. taiwana, this study extends knowledge about the female reproductive biology of hematophagous midges.
Collapse
Affiliation(s)
- Szu-Chieh Wang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| | - Preethi Krishnaraj
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
| | - Guan-Yu Chen
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
| | - Anna Shiny Radhakrishnan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
| | - Hsien-Min Lee
- Graduate Institute of Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (S.-C.W.); (Y.-H.C.); (P.K.); (A.S.R.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
- Institute of Medical Science, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
7
|
Chen H, Huang Y, Liu T, Haseeb A, Ahmed N, Zhang L, Bian X, Chen Q. Characteristics of seasonal spermatogenesis in the soft-shelled turtle. Anim Reprod Sci 2020; 214:106307. [PMID: 32087920 DOI: 10.1016/j.anireprosci.2020.106307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
Spermatogenesis in reptiles is a seasonally dependent physiological process that is not temporally associated with male mating behavior. Characteristics of seasonal spermatogenesis in reptiles, however, remain largely unknown. In this review, there is a coverage of the characteristics of soft-shelled turtle, Pelodiscus sinensis, during seasonal spermatogenesis that provides insights into spermatogenesis of testudines. The seminiferous epithelium of P. sinensis are undergoing spermatogenesis during the summer and fall, but are quiescent throughout the rest of the year; germ cells progress through spermatogenic stages in a temporal rather than a spatial pattern. While apoptotic germ cells mainly appear in the non-spermatogenic phase, these are seldom present during active spermatogenesis. It is inferred that apoptosis may be one of the reasons for germ cell loss during the resting phase of spermatogenesis. During the period when spermatogenesis is occurring, Sertoli cells become very narrow and are in contact with several round/elongated spermatids. Many residual spermatozoa can be internalized and degraded within Sertoli cells by entosis during the non-spermatogenic phase, which precedes the next reproductive cycle in P. sinensis. In the late spermatogenic phase, round-shaped mitochondria of spermatids become elongated and swollen, subsequently forming a crescent-like shape and develop into "onion-like" shaped mitochondria. As spermiogenesis progresses, the endoplasmic reticulum of spermatids is transferred into a specialized structure called the "Chrysanthemum flower center", which may be a source of autophagosomal membranes. The information provided in this review will help improve understanding of characteristics of seasonal spermatogenesis, which will hopefully promote interest in the study of reptilian species.
Collapse
Affiliation(s)
- Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Tengfei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Abdul Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Nisar Ahmed
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Li Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xunguang Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
8
|
Haseeb A, Chen H, Huang Y, Yang P, Sun X, Iqbal A, Ahmed N, Wang T, Samad Gandahi N, Bai X, Chen Q. Remodelling of mitochondria during spermiogenesis of Chinese soft-shelled turtle (Pelodiscus sinensis). Reprod Fertil Dev 2019; 30:1514-1521. [PMID: 29759112 DOI: 10.1071/rd18010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are vital cellular organelles that have the ability to change their shape under different conditions, such as in response to stress, disease, changes in metabolic rate, energy requirements and apoptosis. In the present study, we observed remodelling of mitochondria during spermiogenesis and its relationship with mitochondria-associated granules (MAG). At the beginning of spermiogenesis, mitochondria are characterised by their round shape. As spermiogenesis progresses, the round-shaped mitochondria change into elongated and then swollen mitochondria, subsequently forming a crescent-like shape and finally developing into onion-like shaped mitochondria. We also noted changes in mitochondrial size, location and patterns of cristae at different stages of spermiogenesis. Significant differences (P<0.0001) were found in the size of the different-shaped mitochondria. In early spermatids transitioning to the granular nucleus stage, the size of the mitochondria decreased, but increased subsequently during spermiogenesis. Changes in size and morphological variations were achieved through marked mitochondrial fusion. We also observed a non-membranous structure (MAG) closely associated with mitochondria that may stimulate or control fusion during mitochondrial remodelling. The end product of this sophisticated remodelling process in turtle spermatozoa is an onion-like mitochondrion. The acquisition of this kind of mitochondrial configuration is one strategy for long-term sperm storage in turtles.
Collapse
Affiliation(s)
- Abdul Haseeb
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Xuejing Sun
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Adeela Iqbal
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Taozhi Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Noor Samad Gandahi
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Xuebing Bai
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
9
|
|
10
|
Castillo J, Knol JC, Korver CM, Piersma SR, Pham TV, de Goeij-de Haas RR, van Pelt AMM, Jimenez CR, Jansen BJH. Human Testis Phosphoproteome Reveals Kinases as Potential Targets in Spermatogenesis and Testicular Cancer. Mol Cell Proteomics 2019; 18:S132-S144. [PMID: 30683686 PMCID: PMC6427237 DOI: 10.1074/mcp.ra118.001278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Spermatogenesis is a complex cell differentiation process that includes marked genetic, cellular, functional and structural changes. It requires tight regulation, because disturbances in any of the spermatogenic processes would lead to fertility deficiencies as well as disorders in offspring. To increase our knowledge of signal transduction during sperm development, we carried out a large-scale identification of the phosphorylation events that occur in the human male gonad. Metal oxide affinity chromatography using TiO2 combined with LC-MS/MS was conducted to profile the phosphoproteome of adult human testes with full spermatogenesis. A total of 8187 phosphopeptides derived from 2661 proteins were identified, resulting in the most complete report of human testicular phosphoproteins to date. Phosphorylation events were enriched in proteins functionally related to spermatogenesis, as well as to highly active processes in the male gonad, such as transcriptional and translational regulation, cytoskeleton organization, DNA packaging, cell cycle and apoptosis. Moreover, 174 phosphorylated kinases were identified. The most active human protein kinases in the testis were predicted both by the number of phosphopeptide spectra identified and the phosphorylation status of the kinase activation loop. The potential function of cyclin-dependent kinase 12 (CDK12) and p21-activated kinase 4 (PAK4) has been explored by in silico, protein-protein interaction analysis, immunodetection in testicular tissue, and a functional assay in a human embryonal carcinoma cell line. The colocalization of CDK12 with Golgi markers suggests a potential crucial role of this protein kinase during sperm formation. PAK4 has been found expressed in human spermatogonia, and a role in embryonal carcinoma cell response to apoptosis has been observed. Together, our protein discovery analysis confirms that phosphoregulation by protein kinases is highly active in sperm differentiation and opens a window to detailed characterization and validation of potential targets for the development of drugs modulating male fertility and tumor behavior.
Collapse
Affiliation(s)
- Judit Castillo
- Lead Pharma BV, Pivot Park, Kloosterstraat 9, 5349 AB Oss, The Netherlands;.
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Cindy M Korver
- Center for Reproductive Medicine, Research Institute Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Richard R de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Research Institute Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Bastiaan J H Jansen
- Lead Pharma BV, Pivot Park, Kloosterstraat 9, 5349 AB Oss, The Netherlands;.
| |
Collapse
|
11
|
Santos EG, Silva MA, Amorim RP, Giordano LDS, Silva DDS, Rasmussen LT, Peruquetti RL. Aging and chromatoid body assembly: Are these two physiological events linked? Exp Biol Med (Maywood) 2018; 243:917-925. [PMID: 29958504 PMCID: PMC6108056 DOI: 10.1177/1535370218784871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
The chromatoid body is a cytoplasmic male germ cell structure that plays a role in the regulation of mRNA transcription during spermatogenesis. A proteomic analysis of this structure has identified the presence of its classic molecular markers (MVH and MIWI), as well as a significant number of transient proteins. Circadian locomotor output cycles protein kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), which are molecular components of the circadian clock, are likely located in the chromatoid body in a transient fashion. This study sought to determine whether aging produces morphological changes in the chromatoid bodies of round spermatids similar to those previously observed in BMAL1 knockout mice. A sample of 30 male mice was divided into three groups: juvenile mice (45 days old), adult mice (120 days old), and old mice (+180 days old). Aging was confirmed by viability and sperm count analyses and testosterone dosage. Squash slides prepared with fragments of seminiferous tubules were immunostained for MVH, MIWI, BMAL1, and CLOCK detection. In juvenile and adult specimens, single round chromatoid bodies were observed using MVH/BMAL1 and MIWI/CLOCK immunostaining. In old specimens, many chromatoid bodies displayed changes in number and morphology, as well as an increase in the interactions between MVH and BMAL1; MIWI and CLOCK. Changes in chromatoid body morphology increased interactions between the proteins analyzed herein, and decreased amounts of these proteins in seminiferous tubules of older mice may indicate that aging influences the assembly and physiology of chromatoid bodies, which may, in turn, affect fertility. Impact statement The results discussed in this paper indicate that aging compromises the structure and physiology of chromatoid bodies (CBs) in post-meiotic male cells. Since CB is a fundamental structure for the differentiation of the mature male germ cell it is possible that this imbalance in CB physiology may play a role in the reduction of fertility in older men. It is important to note that not only the classic CB markers (such as the MIWI and MVH proteins) were used to showcase the structural changes in the CBs but also the main components of circadian cycle control (the CLOCK and BMAL1 proteins), indicating that the reduction of circadian control in aged males may contribute to these changes in CBs as well. Therefore, it is intriguing to evaluate the hypothesis that controlling these physiological/structural changes in CBs may be a way of delaying the effects of aging in males.
Collapse
Affiliation(s)
- Elisa G Santos
- Office of the Associate Dean of Graduate Studies and Research, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
| | - Maraisa A Silva
- School of Health Sciences, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
| | - Renata P Amorim
- Office of the Associate Dean of Graduate Studies and Research, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
| | | | - Dayana de Sales Silva
- Molecular Biology and Cytogenetics Laboratory, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
| | - Lucas T Rasmussen
- Office of the Associate Dean of Graduate Studies and Research, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
- School of Health Sciences, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
- Molecular Biology and Cytogenetics Laboratory, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
| | - Rita L Peruquetti
- Office of the Associate Dean of Graduate Studies and Research, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
- School of Health Sciences, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
- Molecular Biology and Cytogenetics Laboratory, Sagrado Coração University (USC), Bauru, São Paulo 17011-160, Brazil
| |
Collapse
|
12
|
Lehtiniemi T, Kotaja N. Germ granule-mediated RNA regulation in male germ cells. Reproduction 2017; 155:R77-R91. [PMID: 29038333 DOI: 10.1530/rep-17-0356] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
Germ cells have exceptionally diverse transcriptomes. Furthermore, the progress of spermatogenesis is accompanied by dramatic changes in gene expression patterns, the most drastic of them being near-to-complete transcriptional silencing during the final steps of differentiation. Therefore, accurate RNA regulatory mechanisms are critical for normal spermatogenesis. Cytoplasmic germ cell-specific ribonucleoprotein (RNP) granules, known as germ granules, participate in posttranscriptional regulation in developing male germ cells. Particularly, germ granules provide platforms for the PIWI-interacting RNA (piRNA) pathway and appear to be involved both in piRNA biogenesis and piRNA-targeted RNA degradation. Recently, other RNA regulatory mechanisms, such as the nonsense-mediated mRNA decay pathway have also been associated to germ granules providing new exciting insights into the function of germ granules. In this review article, we will summarize our current knowledge on the role of germ granules in the control of mammalian male germ cell's transcriptome and in the maintenance of fertility.
Collapse
Affiliation(s)
| | - Noora Kotaja
- Institute of BiomedicineUniversity of Turku, Turku, Finland
| |
Collapse
|
13
|
Zhang Y, Tang C, Yu T, Zhang R, Zheng H, Yan W. MicroRNAs control mRNA fate by compartmentalization based on 3' UTR length in male germ cells. Genome Biol 2017; 18:105. [PMID: 28615029 PMCID: PMC5471846 DOI: 10.1186/s13059-017-1243-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Background Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents an ideal model for studying post-transcriptional regulation in vivo because it involves a large number of transcripts that are physically sequestered in ribonucleoprotein particles (RNPs) and thus subjected to delayed translation. To explore how small RNAs regulate mRNA fate, we conducted RNA-Seq analyses to determine not only the levels of both mRNAs and small noncoding RNAs, but also their cytoplasmic compartmentalization during spermiogenesis. Result Among all small noncoding RNAs studied, miRNAs displayed the most dynamic changes in both abundance and subcytoplasmic localization. mRNAs with shorter 3′ UTRs became increasingly enriched in RNPs from pachytene spermatocytes to round spermatids, and the enrichment of shorter 3′ UTR mRNAs in RNPs coincided with newly synthesized miRNAs that target these mRNAs at sites closer to the stop codon. In contrast, the translocation of longer 3′ UTR mRNAs from RNPs to polysomes correlated with the production of new miRNAs that target these mRNAs at sites distal to the stop codon. Conclusions miRNAs appear to control cytoplasmic compartmentalization of mRNAs based on 3′ UTR length. Our data suggest that transcripts with longer 3′ UTRs tend to contain distal miRNA binding sites and are thus targeted to polysomes for translation followed by degradation. In contrast, those with shorter 3′ UTRs only possess proximal miRNA binding sites, which, therefore, are targeted into RNPs for enrichment and delayed translation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1243-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA
| | - Ruirui Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA. .,Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA.
| |
Collapse
|
14
|
Fujii Y, Fujita H, Yokota S. Synthesis of β-tubulin occurs within chromatoid body of round spermatids. Cytoskeleton (Hoboken) 2017; 74:197-204. [PMID: 28317275 DOI: 10.1002/cm.21363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/13/2023]
Abstract
mRNAs for proteins required in elongated spermatids are considered to be transcribed at an early stage and stored in cytoplasm, presumably in chromatoid body (CB), one type of nuage component (a unique structure that appears and disappears during spermatogenesis), because transcription of genes does not occur at late stages. In elongated spermatids, a large amount of tubulin molecules is required to form microtubules of manchette and flagellum. To investigate the possible role of CB in translation of tubulin mRNA, we performed immunofluorescence and immunoelectron microscopic localization studies of α- and β-tubulin in rat spermatogenic cells. β-tubulin was detected in CB, but α-tubulin was not. Other nuage components present in pachytene spermatocytes (ISPG, IMC, SB) were negative for both α- and β-tubulin. Our findings suggest that: (i) β-tubulin in round spermatids is translated within the CB, whereas α-tubulin is not; (ii) αβ-heterodimers are formed outside CB and incorporated into microtubules of manchette and flagellum.
Collapse
Affiliation(s)
- Yuki Fujii
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Hideaki Fujita
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | | |
Collapse
|
15
|
Fujii Y, Onohara Y, Fujita H, Yokota S. Argonaute2 Protein in Rat Spermatogenic Cells Is Localized to Nuage Structures and LAMP2-Positive Vesicles Surrounding Chromatoid Bodies. J Histochem Cytochem 2016; 64:268-79. [PMID: 27029769 DOI: 10.1369/0022155416638840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Localization of Argonaute2 (AGO2) protein--an essential component for the processing of small interfering RNA (siRNA)-directed RNA interference (RNAi) in RNA-induced silencing complex (RISC) in nuage of rat spermatogenic cells--was evaluated by immunofluorescence microscopy (IFM) and immunoelectron microscopy (IEM). AGO2 was shown, for the first time, to be localized to four previously classified types of nuage: irregularly shaped perinuclear granules (ISPGs), intermitochondrial cement (IMC), satellite bodies (SBs), and chromatoid bodies (CBs). Dual IEM staining for AGO2/Maelstrom (MAEL) protein or AGO2/MIWI protein demonstrated that AGO2 is colocalized with MAEL or MIWI proteins in these types of nuage. Dual IFM and IEM staining of AGO2/lysosomal-associated membrane protein 2 (LAMP2) showed that CB in round spermatids are in contact with and surrounded by LAMP2-positive vesicles, whereas nuage in pachytene spermatocytes are not. Taken together, our findings indicate that: (i) AGO2 in pachytene spermatocytes functions in ISPGs, IMC, and SBs; (ii) AGO2 in round spermatids functions in CBs, and that CBs are associated with lysosomal compartments.
Collapse
Affiliation(s)
- Yuki Fujii
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| | - Yuko Onohara
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| | - Hideaki Fujita
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| | - Sadaki Yokota
- Nagasaki International University, Sasebo, Japan (YF, YO, HF, SY)
| |
Collapse
|
16
|
Gammoudi M, Salvenmoser W, Harrath AH, Tekaya S, Egger B. Ultrastructure of spermatogenesis and mature spermatozoa in the flatworm
Prosthiostomum siphunculus
(Polycladida, Cotylea). Cell Biol Int 2015; 40:277-88. [DOI: 10.1002/cbin.10562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mehrez Gammoudi
- Université de Tunis El‐ManarFaculté des Sciences de TunisUR11ES12 Biologie de la Reproduction et du Développement AnimalTunis2092Tunisie
| | - Willi Salvenmoser
- Research Unit Evolutionary Developmental Biology, Institute of ZoologyUniversity of InnsbruckTechnikerstr. 25Innsbruck6020Austria
| | - Abdel Halim Harrath
- Department of Zoology, College of ScienceKing Saud UniversityP.O. Box 2455RiyadhSaudi Arabia
| | - Saïda Tekaya
- Université de Tunis El‐ManarFaculté des Sciences de TunisUR11ES12 Biologie de la Reproduction et du Développement AnimalTunis2092Tunisie
| | - Bernhard Egger
- Research Unit Evolutionary Developmental Biology, Institute of ZoologyUniversity of InnsbruckTechnikerstr. 25Innsbruck6020Austria
| |
Collapse
|
17
|
Peruquetti RL. Perspectives on mammalian chromatoid body research. Anim Reprod Sci 2015; 159:8-16. [PMID: 26070909 DOI: 10.1016/j.anireprosci.2015.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
Several genetic and epigenetic events that take place in the nucleus (i.e. meiotic recombination, meiotic silencing, chromatin reorganization and histone replacement) are crucial for the spermatogenesis process, as well as, is the assembling of cytoplasmic bodies (or chromatoid bodies). In this minireview, we give special attention to the most recent research approaches involved in the molecular structure and physiology of the chromatoid body (CB). Though it was described several decades ago, the CB is still a very intriguing cytoplasmic structure of male germ cells. It plays roles in the most important steps of the spermatozoon formation, such as mRNA regulation, smallRNA-mediated gene control, and cell communication among round spermatids. Studies that have been done on the CB largely focus on two main topics: (1) CB proteome, in this minireview focused on 'Evidences linking the nucleolar cycle and the CB assembling; and Circadian proteins found in the CB'; and (2) CB transcriptome, in this minireview focused on 'miRNAs and piRNAs pathways; and X but not Y chromosome transcripts enriching the CB'. Herein, we described the most relevant results produced in each of these subjects in order to clarify the main physiological role played by this intriguing cytoplasmic structure in the germ cells of male mammals, which though long since described, still fascinates researchers in the field.
Collapse
|
18
|
Cullinane DL, Chowdhury TA, Kleene KC. Mechanisms of translational repression of the Smcp mRNA in round spermatids. Reproduction 2014; 149:43-54. [PMID: 25336347 DOI: 10.1530/rep-14-0394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protamine 1 (Prm1) and sperm mitochondria-associated, cysteine-rich protein (Smcp) mRNAs exemplify a widespread pattern of mRNA-specific regulation of mRNA translation in post-meiotic spermatogenic cells, spermatids. Both mRNAs are transcribed and initially stored in free-mRNPs in early spermatids, and translated on polysomes in late spermatids. In this study, we demonstrate that the 5' and 3'-UTRs and the 3' terminus of the Smcp 3'-UTR are required for normal repression of the Smcp mRNA in transgenic mice. RNA affinity chromatography and mass spectrometry sequencing identified Y-box protein 2 (YBX2/MSY2) as the major protein that interacts with the 3' terminus of the Smcp 3'-UTR and a Y-box recognition sequence, GCCACCU, in the translation control element that is necessary for Prm1 mRNA repression. Depletion of YBX2 in Ybx2-null mice prematurely activates Prm1 and Smcp mRNA translation in early spermatids. Fluorescent in situ hybridization reveals that the Smcp intron, the Smcp mRNA, and both Smcp-Gfp transgenic mRNAs are strongly concentrated in the chromatoid body, and that theYbx2-null mutation does not eliminate the Smcp mRNA from the chromatoid body. This and previous findings suggest that the Smcp pre-mRNA is spliced and associates with YBX2 in the chromatoid body, and that repressed free-mRNPs are stored in the general cytoplasm. As YBX2 is the predominant protein in testis free-mRNPs, it likely represses many mRNAs in early spermatids. The mechanisms by which YBX2 represses the Smcp and Prm1 mRNAs are relevant to reproductive medicine because mutations in the human YBX2 gene correlate with abnormal protamine expression and male infertility.
Collapse
Affiliation(s)
- Danielle L Cullinane
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| | - Tamjid A Chowdhury
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| | - Kenneth C Kleene
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| |
Collapse
|
19
|
YUAN LIQIN, XIAO YUZHONG, ZHOU QIUZHI, YUAN DONGMEI, WU BAIPING, CHEN GANNONG, ZHOU JIANLIN. Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells. Oncol Rep 2013; 31:342-50. [DOI: 10.3892/or.2013.2836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022] Open
|
20
|
Kawahara C, Yokota S, Fujita H. DDX6 localizes to nuage structures and the annulus of mammalian spermatogenic cells. Histochem Cell Biol 2013; 141:111-21. [PMID: 24141902 DOI: 10.1007/s00418-013-1153-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 12/28/2022]
Abstract
The localization of DEAD (Asp-Glu-Ala-Asp) box helicase 6 (DDX6) in spermatogenic cells from the mouse, rat, and guinea pig was studied by immunofluorescence (IF) and immunoelectron microscopy (IEM). Spermatogenic cells from these species yielded similar DDX6 localization pattern. IF microscopy results showed that DDX6 localizes to both the nucleus and cytoplasm. In the cytoplasm of spermatogenic cells, diffuse cytosolic and discrete granular staining was observed, with the staining pattern changing during cell differentiation. IEM revealed that DDX6 localized to the five different types of nuage structures and non-nuage structures, including small granule aggregate and late spermatid annuli. Nuclear labeling was strongest in leptotene and zygotene spermatocytes and moderately strong in the nuclear pocket of late spermatids. DDX6 also localized to the surface of outer dense fibers, which comprise of flagella. The results show that DDX6 is present in nuage and non-nuage structures as well as nuclei, suggesting that DDX6 has diverse functions in spermatogenic cells.
Collapse
Affiliation(s)
- Chika Kawahara
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch 2825-7, Sasebo, Nagasaki, 859-329, Japan
| | | | | |
Collapse
|
21
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology compendium: a review of 2012. Histochem Cell Biol 2013; 139:815-46. [PMID: 23665922 DOI: 10.1007/s00418-013-1098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
Abstract
The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
22
|
Takebe M, Onohara Y, Yokota S. Expression of MAEL in nuage and non-nuage compartments of rat spermatogenic cells and colocalization with DDX4, DDX25 and MIWI. Histochem Cell Biol 2013; 140:169-81. [PMID: 23412502 DOI: 10.1007/s00418-012-1067-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
The functions of MAELSTROM protein (MAEL) in spermatogenesis are gradually being identified but the precise distribution of MAEL in spermatogenic cells during spermatogenesis has not yet been mapped. We studied the expression of MAEL in rat testis by immunofluorescence and immunoelectron microscopy (IEM). Immunofluorescence staining showed that MAEL was localized in intermitochondrial cement, irregularly-shaped perinuclear granules and satellite bodies of pachytene spermatocytes, and in chromatoid bodies of spermatids. The SBs appeared exclusively in pachytene spermatocytes at stages IX-X and were stained strongly for MAEL. In step 12-19 spermatids, many granules stained for MAEL but not DDX4. These granules were confirmed to be non-nuage structures, including mitochondria-associated granules, reticulated body, granulated body by IEM. In the neck region of late spermatids and sperm, MAEL-positive small granules were found. MAEL is colocalized with MIWI in nuage and non-nuage. The results suggest that MAEL seems to function in nuage and non-nuage structures and interacts with MIWI.
Collapse
Affiliation(s)
- Miki Takebe
- Division of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | | | | |
Collapse
|