1
|
Colasante C, Jednakowski J, Valerius KP, Li X, Baumgart-Vogt E. Peroxisomal dysfunction interferes with odontogenesis and leads to developmentally delayed teeth and defects in distinct dental cells in Pex11b-deficient mice. PLoS One 2024; 19:e0313445. [PMID: 39652567 PMCID: PMC11627416 DOI: 10.1371/journal.pone.0313445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Human peroxisomal biogenesis disorders of the Zellweger syndrome spectrum affect skeletal development and induce tooth malformations. Whereas several peroxisomal knockout mouse studies elucidated the pathogenesis of skeletal defects, little information is available on how dental pathologies arise in peroxisomal biogenesis disorder patients. To understand the impact of severe peroxisomal dysfunction on early odontogenesis, here we performed morphometric studies on developing molars of new-born Pex11b knockout mice. Immunofluorescence analysis revealed reduced peroxisome number and mistargeting of the peroxisomal matrix enzyme catalase to the cytoplasm in several dental cell types of the Pex11b knockout animals. We also observed secondary mitochondrial alterations, comprising decreased staining of mitochondrial superoxide dismutase and of complex IV in cells of the developing molar. The peroxisomal defect caused by the PEX11b knockout also decreased the staining of cytokeratin intermediate filaments and of the secretory proteins amelogenin, osteopontin and osteocalcin. Interestingly, the staining of the gap junction protein connexin 43, an important modulator of tissue development, was also decreased, possibly causing the observed cellular disarrangement within the inner enamel epithelium and the odontoblast palisade. Taken together, our results show that the severe phenotype associated with the PEX11b knockout results in a reduction of the number of peroxisomes in dental cells and causes a delay odontogenesis. This adds a new component to the already described symptomatic spectrum induced by severe peroxisomal defects.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Julia Jednakowski
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Klaus-Peter Valerius
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Xiaoling Li
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, United States of America
| | | |
Collapse
|
2
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Mechaussier S, Perrault I, Dollfus H, Bloch-Zupan A, Loundon N, Jonard L, Marlin S. Heimler Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:81-87. [PMID: 33417209 DOI: 10.1007/978-3-030-60204-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heimler syndrome is a rare syndrome associating sensorineural hearing loss with retinal dystrophy and amelogenesis imperfecta due to PEX1 or PEX6 biallelic pathogenic variations. This syndrome is one of the less severe forms of peroxisome biogenesis disorders. In this chapter, we will review clinical, biological, and genetic knowledges about the Heimler syndrome.
Collapse
Affiliation(s)
- S Mechaussier
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris University, Paris, France
| | - I Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris University, Paris, France
| | - H Dollfus
- Department of Medical Genetics, Institute of Medical Genetics of Alsace (IGMA), Strasbourg University Hospitals - Hautepierre Hospital, Strasbourg, France.,Laboratory of Medical Genetics, INSERM U1112, Institute of Medical Genetics of Alsace (IGMA), Strasbourg University, Strasbourg, France
| | - A Bloch-Zupan
- Strasbourg University, Faculty of Dental Medicine, Institute for Advanced Study (USIAS), Strasbourg, France.,Strasbourg University Hospitals (HUS), Oral Surgery and Oral Medecine Unit, Dental Clinic, Civil Hospital, Reference Center for Rare Oral and Dental Diseases, O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France.,Strasbourg University, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
| | - N Loundon
- Pediatric ENT Department, Necker-Enfants Malades Hospital, Paris, France.,Reference Center for Rare Diseases "Genetic deafness", Filière Santé Maladies rares SENSGENE, European Reference Network ERN CRANIO, Federation of Genetic, Necker-Enfants Malades Hospital, Paris, France
| | - L Jonard
- Reference Center for Rare Diseases "Genetic deafness", Filière Santé Maladies rares SENSGENE, European Reference Network ERN CRANIO, Federation of Genetic, Necker-Enfants Malades Hospital, Paris, France
| | - S Marlin
- Reference Center for Rare Diseases "Genetic deafness", Filière Santé Maladies rares SENSGENE, European Reference Network ERN CRANIO, Federation of Genetic, Necker-Enfants Malades Hospital, Paris, France. .,Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, Institute of Genetic Diseases, Imagine and Paris University, Paris, France.
| |
Collapse
|
4
|
Karnati S, Oruqaj G, Janga H, Tumpara S, Colasante C, Van Veldhoven PP, Braverman N, Pilatz A, Mariani TJ, Baumgart-Vogt E. PPARα-mediated peroxisome induction compensates PPARγ-deficiency in bronchiolar club cells. PLoS One 2018; 13:e0203466. [PMID: 30212482 PMCID: PMC6136741 DOI: 10.1371/journal.pone.0203466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
Despite the important functions of PPARγ in various cell types of the lung, PPARγ-deficiency in club cells induces only mild emphysema. Peroxisomes are distributed in a similar way as PPARγ in the lung and are mainly enriched in club and AECII cells. To date, the effects of PPARγ-deficiency on the overall peroxisomal compartment and its metabolic alterations in pulmonary club cells are unknown. Therefore, we characterized wild-type and club cell-specific PPARγ knockout-mice lungs and used C22 cells to investigate the peroxisomal compartment and its metabolic roles in the distal airway epithelium by means of 1) double-immunofluorescence labelling for peroxisomal proteins, 2) laser-assisted microdissection of the bronchiolar epithelium and subsequent qRT-PCR, 3) siRNA-transfection of PPARγand PPRE dual-luciferase reporter activity in C22 cells, 4) PPARg inhibition by GW9662, 5) GC-MS based lipid analysis. Our results reveal elevated levels of fatty acids, increased expression of PPARα and PPRE activity, a strong overall upregulation of the peroxisomal compartment and its associated gene expression (biogenesis, α-oxidation, β-oxidation, and plasmalogens) in PPARγ-deficient club cells. Interestingly, catalase was significantly increased and mistargeted into the cytoplasm, suggestive for oxidative stress by the PPARγ-deficiency in club cells. Taken together, PPARα-mediated metabolic induction and proliferation of peroxisomes via a PPRE-dependent mechanism could compensate PPARγ-deficiency in club cells.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
- * E-mail: ,
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Harshavardhan Janga
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Srinu Tumpara
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Claudia Colasante
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Paul P. Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven, Leuven, Belgium
| | - Nancy Braverman
- Depts. of Human Genetics and Pediatrics, McGill University-Montreal Children’s Hospital Research Institute, Montreal, Canada
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas J. Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Eckstein M, Aulestia FJ, Nurbaeva MK, Lacruz RS. Altered Ca 2+ signaling in enamelopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1778-1785. [PMID: 29750989 DOI: 10.1016/j.bbamcr.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Biomineralization requires the controlled movement of ions across cell barriers to reach the sites of crystal growth. Mineral precipitation occurs in aqueous phases as fluids become supersaturated with specific ionic compositions. In the biological world, biomineralization is dominated by the presence of calcium (Ca2+) in crystal lattices. Ca2+ channels are intrinsic modulators of this process, facilitating the availability of Ca2+ within cells in a tightly regulated manner in time and space. Unequivocally, the most mineralized tissue produced by vertebrates, past and present, is dental enamel. With some of the longest carbonated hydroxyapatite (Hap) crystals known, dental enamel formation is fully coordinated by specialized epithelial cells of ectodermal origin known as ameloblasts. These cells form enamel in two main developmental stages: a) secretory; and b) maturation. The secretory stage is marked by volumetric growth of the tissue with limited mineralization, and the opposite is found in the maturation stage, as enamel crystals expand in width concomitant with increased ion transport. Disruptions in the formation and/or mineralization stages result, in most cases, in permanent alterations in the crystal assembly. This introduces weaknesses in the material properties affecting enamel's hardness and durability, thus limiting its efficacy as a biting, chewing tool and increasing the possibility of pathology. Here, we briefly review enamel development and discuss key properties of ameloblasts and their Ca2+-handling machinery, and how alterations in this toolkit result in enamelopathies.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States.
| |
Collapse
|
6
|
Deb R, Nagotu S. Versatility of peroxisomes: An evolving concept. Tissue Cell 2017; 49:209-226. [DOI: 10.1016/j.tice.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
7
|
Smith CEL, Poulter JA, Levin AV, Capasso JE, Price S, Ben-Yosef T, Sharony R, Newman WG, Shore RC, Brookes SJ, Mighell AJ, Inglehearn CF. Spectrum of PEX1 and PEX6 variants in Heimler syndrome. Eur J Hum Genet 2016; 24:1565-1571. [PMID: 27302843 PMCID: PMC5026821 DOI: 10.1038/ejhg.2016.62] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/12/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6, both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G>A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families. Haplotype analysis suggests a common founder variant. All families segregated at least one missense variant, consistent with the hypothesis that HS results from genotypes including milder hypomorphic alleles. The clinical overlap of HS with the more common Usher syndrome and lack of peroxisomal abnormalities on plasma screening suggest that HS may be under-diagnosed. Recognition of AI is key to the accurate diagnosis of HS.
Collapse
Affiliation(s)
- Claire E L Smith
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds, UK
| | - James A Poulter
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Alex V Levin
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.,Children's Hospital of the King's Daughters, Norfolk, VA, USA.,Pediatric Ophthalmology and Ocular Genetics, Philadelphia, PA, USA
| | - Jenina E Capasso
- Pediatric Ophthalmology and Ocular Genetics, Philadelphia, PA, USA
| | - Susan Price
- Department of Clinical Genetics, Northampton General Hospital, NHS Trust, Northampton, UK
| | | | - Reuven Sharony
- The Genetic Institute and Obstetrics and Gynaecology Department, Meir Medical Center, Kfar Saba, Israel
| | - William G Newman
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - Roger C Shore
- School of Dentistry, Department of Oral Biology, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Steven J Brookes
- School of Dentistry, Department of Oral Biology, St. James's University Hospital, University of Leeds, Leeds, UK
| | - Alan J Mighell
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds, UK.,Department of Oral Medicine, School of Dentistry, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Leeds Institute of Biomedical and Clinical Sciences, St. James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Karnati S, Graulich T, Oruqaj G, Pfreimer S, Seimetz M, Stamme C, Mariani TJ, Weissmann N, Mühlfeld C, Baumgart-Vogt E. Postnatal development of the bronchiolar club cells of distal airways in the mouse lung: stereological and molecular biological studies. Cell Tissue Res 2016; 364:543-557. [PMID: 26796206 DOI: 10.1007/s00441-015-2354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
Abstract
Club (Clara) cells are nonciliated secretory epithelial cells present in bronchioles of distal pulmonary airways. So far, no information is available on the postnatal differentiation of club cells by a combination of molecular biological, biochemical, and stereological approaches in the murine lung. Therefore, the present study was designed to investigate the changes in the club cell secretory proteins (CC10, surfactant proteins A, B and D) and club cell abundance within the epithelium of bronchioles of distal airways during the postnatal development of the mouse lung. Perfusion-fixed murine lungs of three developmental stages (newborn, 15-day-old and adult) were used. Frozen, unfixed lungs were used for cryosectioning and subsequent laser-assisted microdissection of bronchiolar epithelial cells and RT-PCR analyses. High resolution analyses of the three-dimensional structures and composition of lung airways were obtained by scanning electron microscopy. Finally, using design-based stereology, the total and average club cell volume and the volume of secretory granules were quantified by light and transmission electron microscopy. Our results reveal that murine club cells are immature at birth and differentiate postnatally. Further, increase of the club cell volume and number of intracellular granules are closely correlated to the total lung volume enlargement. However, secretory granule density was only increased within the first 15 days of postnatal development. The differentiation is accompanied by a decrease in glycogen content, and a close positive relationship between CC10 expression and secretory granule abundance. Taken together, our data are consistent with the concept that the morphological and functional differentiation of club cells is a postnatal phenomenon.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany.
| | - Tilman Graulich
- Department of Trauma, Hannover Medical School, Hannover, Germany
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany
| | - Susanne Pfreimer
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany and Department of Anesthesiology, University of Lübeck, Lübeck, Germany
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Christian Mühlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, D-35385, Giessen, Germany.
| |
Collapse
|
9
|
Zaki MS, Heller R, Thoenes M, Nürnberg G, Stern-Schneider G, Nürnberg P, Karnati S, Swan D, Fateen E, Nagel-Wolfrum K, Mostafa MI, Thiele H, Wolfrum U, Baumgart-Vogt E, Bolz HJ. PEX6 is Expressed in Photoreceptor Cilia and Mutated in Deafblindness with Enamel Dysplasia and Microcephaly. Hum Mutat 2015; 37:170-4. [PMID: 26593283 DOI: 10.1002/humu.22934] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023]
Abstract
Deafblindness is part of several genetic disorders. We investigated a consanguineous Egyptian family with two siblings affected by congenital hearing loss and retinal degeneration, initially diagnosed as Usher syndrome type 1. At teenage, severe enamel dysplasia, developmental delay, and microcephaly became apparent. Genome-wide homozygosity mapping and whole-exome sequencing detected a homozygous missense mutation, c.1238G>T (p.Gly413Val), affecting a highly conserved residue of peroxisomal biogenesis factor 6, PEX6. Biochemical profiling of the siblings revealed abnormal and borderline plasma phytanic acid concentration, and cerebral imaging revealed white matter disease in both. We show that Pex6 localizes to the apical extensions of secretory ameloblasts and differentiated odontoblasts at early stages of dentin synthesis in mice, and to cilia of retinal photoreceptor cells. We propose PEX6, and possibly other peroxisomal genes, as candidate for the rare cooccurrence of deafblindness and enamel dysplasia. Our study for the first time links peroxisome biogenesis disorders to retinal ciliopathies.
Collapse
Affiliation(s)
- Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Gabi Stern-Schneider
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Daniel Swan
- Computational Biology Group, Oxford Gene Technology, Oxford, United Kingdom
| | - Ekram Fateen
- Department of Biochemical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Kerstin Nagel-Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Mostafa I Mostafa
- Department of Orodental Genetics, Orodental Research Division, National Research Centre, Cairo, Egypt
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Hanno J Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.,Bioscientia Center for Human Genetics, Ingelheim, Germany
| |
Collapse
|
10
|
Qian G, Fan W, Ahlemeyer B, Karnati S, Baumgart-Vogt E. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors. PLoS One 2015; 10:e0143439. [PMID: 26630504 PMCID: PMC4668026 DOI: 10.1371/journal.pone.0143439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023] Open
Abstract
Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression and accelerated osteoblast differentiation. Taken together, our results suggest that PPARß regulates the numerical abundance and metabolic function of peroxisomes via Pex11ß in parallel to osteoblast differentiation.
Collapse
Affiliation(s)
- Guofeng Qian
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Wei Fan
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
- * E-mail:
| |
Collapse
|
11
|
The Histochem Cell Biol conspectus: the year 2013 in review. Histochem Cell Biol 2014; 141:337-63. [PMID: 24610091 PMCID: PMC7087837 DOI: 10.1007/s00418-014-1207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Herein, we provide a brief synopsis of all manuscripts published in Histochem Cell Biol in the year 2013. For ease of reference, we have divided the manuscripts into the following categories: Advances in Methodologies; Molecules in Health and Disease; Organelles, Subcellular Structures and Compartments; Golgi Apparatus; Intermediate Filaments and Cytoskeleton; Connective Tissue and Extracellular Matrix; Autophagy; Stem Cells; Musculoskeletal System; Respiratory and Cardiovascular Systems; Gastrointestinal Tract; Central Nervous System; Peripheral Nervous System; Excretory Glands; Kidney and Urinary Bladder; and Male and Female Reproductive Systems. We hope that the readership will find this annual journal synopsis of value and serve as a quick, categorized reference guide for “state-of-the-art” manuscripts in the areas of histochemistry, immunohistochemistry, and cell biology.
Collapse
|