1
|
Deficiency of β-arrestin2 alleviates apoptosis through GRP78-ATF6-CHOP signaling pathway in primary Sjögren's syndrome. Int Immunopharmacol 2021; 101:108281. [PMID: 34710848 DOI: 10.1016/j.intimp.2021.108281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022]
Abstract
The etiology of primary Sjögren's syndrome (pSS) remains unknown, and there is no ideal drug for the specific treatment of pSS. β-arrestin2 is a key protein that mediates desensitization and internalization of G protein-coupled receptors (GPCRs) and it participates in inflammatory and immune responses that have been found to mediate apoptosis in autoimmune disease. In this study, we established an experimental Sjögren's syndrome (ESS) mouse model to elucidate the molecular mechanisms of β-arrestin2 in pSS. First, excessive activation of β-arrestin2 and GRP78-ATF6-CHOP apoptosis signaling were detected in specimens from pSS patients. In vivo, we found that inhibition of GRP78-ATF6-CHOP apoptosis signaling improved ESS symptoms, and the targeted deletion of β-arrestin2 significantly increased saliva flow, alleviated salivary gland indices, and improved tissue integrity in the ESS model by downregulating GRP78-ATF6-CHOP apoptosis signaling. In vitro, we used IFNα to stimulate human salivary gland epithelial cells (HSGECs), and the results showed that IFNα activated GRP78-ATF6-CHOP apoptosis signaling, decreased cell viability, and induced apoptosis, which were negatively regulated by the ERS inhibitor 4-PBA. In addition, β-arrestin2 depletion downregulated GRP78-ATF6-CHOP apoptosis signaling to alleviate cell apoptosis, and the effect depended on the interaction between GRP78 and β-arrestin2. In summary, our results suggest that excessive activation of GRP78-ATF6-CHOP apoptosis signaling is involved in the pathogenesis of pSS and that β-arrestin2 encourages inflammation-induced epithelial apoptosis through GRP78-ATF6-CHOP apoptosis signaling. This research further clarified the underlying role of β-arrestin2 and provided an experimental foundation for β-arrestin2 depletion in the treatment of the human autoimmune disorder pSS.
Collapse
|
2
|
Xu A, Shang W, Wang Y, Sun X, Zhou B, Xie Y, Xu X, Liu T, Han F. ALA protects against ERS-mediated apoptosis in a cochlear cell model with low citrate synthase expression. Arch Biochem Biophys 2020; 688:108402. [PMID: 32418909 DOI: 10.1016/j.abb.2020.108402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 01/04/2023]
Abstract
A/J mouse is a model of age-related hearing loss (AHL). Mutation in the citrate synthase (Cs) gene of the mouse plays an important role in the hearing loss and degeneration of cochlear cells. To investigate the pathogenesis of cochlear cell damage in A/J mice resulted from Cs mutation, we downregulated the expression level of CS in HEI-OC1, a cell line of mouse cochlea, by shRNA. The results showed that low CS expression led to low ability of cell proliferation. Further study revealed an increase level of reactive oxygen species (ROS), activation of ATF6 mediated endoplasmic reticulum stress (ERS) and high expression levels of caspase12 and Bax in the cells. Moreover, the AEBSF, an ATF6 inhibitor, could reduce the expression levels of caspase-12 and Bax by inhibiting the hydrolysis of ATF6 in the cells. Finally, antioxidant alpha-lipoic acid (ALA) reduced the ROS levels and the apoptotic signals in the cell model with low CS expression. We therefore conclude that the ERS mediated apoptosis, which is triggered by ROS, may be involved in the cell degeneration in the cochleae of A/J mice.
Collapse
Affiliation(s)
- Ang Xu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China
| | - Wenjing Shang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yan Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Xiumei Sun
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China
| | - Bingxin Zhou
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yi Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Xiaowen Xu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China
| | - Tingyan Liu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Otolaryngology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Road of Muping District, Yantai, 264100, Shandong, PR China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
| |
Collapse
|
3
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Spaan CN, Smit WL, van Lidth de Jeude JF, Meijer BJ, Muncan V, van den Brink GR, Heijmans J. Expression of UPR effector proteins ATF6 and XBP1 reduce colorectal cancer cell proliferation and stemness by activating PERK signaling. Cell Death Dis 2019; 10:490. [PMID: 31227689 PMCID: PMC6588629 DOI: 10.1038/s41419-019-1729-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
The unfolded protein response (UPR) acts through its downstream branches, PERK-eIF2α signaling, IRE1α-XBP1 signaling and ATF6 signaling. In the intestine, activation of the UPR through the kinase PERK results in differentiation of intestinal epithelial stem cells and colon cancer stem cells, whereas deletion of XBP1 results in increased stemness and adenomagenesis. How downstream activation of XBP1 and ATF6 influences intestinal stemness and proliferation remains largely unknown. We generated colorectal cancer cells (LS174T) that harbor doxycycline inducible expression of the active forms of either XBP1(s) or ATF61-373. Activation of either XBP1 or ATF6 resulted in reduced cellular proliferation and reduced expression of markers of intestinal epithelial stemness. Moreover, XBP1 and ATF6 activation reduced global protein synthesis and lowered the threshold for UPR activation. XBP1-mediated loss of stemness and proliferation resulted from crossactivation of PERK-eIF2α signaling and could be rescued by constitutive expression of eIF2α phosphatase GADD34. We thus find that enforced activation of XBP1 and ATF6 results in reduction of stemness and proliferation. We expose a novel interaction between XBP1 and PERK-eIF2α signaling.
Collapse
Affiliation(s)
- Claudia N Spaan
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 71, Amsterdam, The Netherlands
| | - Wouter L Smit
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 71, Amsterdam, The Netherlands
| | - Jooske F van Lidth de Jeude
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 71, Amsterdam, The Netherlands
| | - Bartolomeus J Meijer
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 71, Amsterdam, The Netherlands
| | - Vanesa Muncan
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 71, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 71, Amsterdam, The Netherlands
- Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Jarom Heijmans
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 71, Amsterdam, The Netherlands.
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine and Hematology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Zheng W, Xie W, Yin D, Luo R, Liu M, Guo F. ATG5 and ATG7 induced autophagy interplays with UPR via PERK signaling. Cell Commun Signal 2019; 17:42. [PMID: 31060556 PMCID: PMC6503447 DOI: 10.1186/s12964-019-0353-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/13/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autophagy and ER stress are involved in maintaining some well-orchestrated mechanisms aimed at either restoring cellular homeostasis or performing cell death. Autophagy is a well-defined process which governs overall cellular stress outcomes. Selective degradation of the ER mediated by autophagy occurs through a specific type of autophagy called ER-phagy, which ensures ER protein homeostasis. METHODS Immunoblotting and RT-PCR were used to evaluate the expression of ATG5 and ATG7 in chondrocyte. Western blotting, Flow cytometry,immunofluorescence cell staining and confocal microscope were used to examine the effect of ATG5 and ATG7 on autophagy, ER stress, cell apoptosis and cell proliferation. Transmission electron microscope and confocal microscope were performed to visualize the autophagy flux and autolysosome formation. The role of ATG5 and ATG7 overexpression on the PERK pathway inhibitor were detected by immunoblotting and treatment with inhibitors. RESULTS In current study, we demonstrated that Tm-induced ER stress can activate autophagy while Rapamycin-induced autophagy can inhibit ER stress in chondrocyte. Autophagy related protein ATG5 or ATG7 can promote autophagy and inhibit ER stress individually, and their combined effect can further improve the autophagy enhancement and the ER stress repression. Moreover, ATG5, ATG7 and ATG5 + ATG7 lead cells into more S phase, increase the number of S phase and inhibit apoptosis as well. ATG5, ATG7 and ATG5 + ATG7 regulate autophagy, ER stress, apoptosis and cell cycle through PERK signaling, a vital UPR branch pathway. CONCLUSIONS ATG5 and ATG7 connect autophagy with ER stress through PERK signaling. The protective effect of ATG5/7 overexpression on chondrocyte survival relys on PERK signaling. The effect of siPERK and siNrf2 on the cytoprotective effect of ATG5/7 are of synergism, while the effect of siPERK and siATF4 are of antagonism. PERK signal may be the pivot for autophagy, ER homeostasis and ER-phagy in chondrocyte.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Weiwei Xie
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Danyang Yin
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Rui Luo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Min Liu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
6
|
Rekha KR, Inmozhi Sivakamasundari R. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease. Neurochem Res 2018; 43:1947-1962. [PMID: 30141137 DOI: 10.1007/s11064-018-2617-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/21/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Dysfunction of autophagy, mitochondrial dynamics and endoplasmic reticulum (ER) stress are currently considered as major contributing factors in the pathogenesis of Parkinson's disease (PD). Accumulation of oxidatively damaged cytoplasmic organelles and unfolded proteins in the lumen of the ER causes ER stress and it is associated with dopaminergic cell death in PD. Rotenone is a pesticide that selectively kills dopaminergic neurons by a variety of mechanism, has been implicated in PD. Geraniol (GE; 3,7-dimethylocta-trans-2,6-dien-1-ol) is an acyclic monoterpene alcohol occurring in the essential oils of several aromatic plants. In this study, we investigated the protective effect of GE on rotenone-induced mitochondrial dysfunction dependent oxidative stress leads to cell death in SK-N-SH cells. In addition, we assessed the involvement of GE on rotenone-induced dysfunction in autophagy machinery via α-synuclein accumulation induced ER stress. We found that pre-treatment of GE enhanced cell viability, ameliorated intracellular redox, preserved mitochondrial membrane potential and improves the level of mitochondrial complex-1 in rotenone treated SK-N-SH cells. Furthermore, GE diminishes autophagy flux by reduced autophagy markers, and decreases ER stress by reducing α-synuclein expression in SK-N-SH cells. Our results demonstrate that GE possess its neuroprotective effect via reduced rotenone-induced oxidative stress by enhanced antioxidant status and maintain mitochondrial function. Furthermore, GE reduced ER stress and improved autophagy flux in the neuroblastomal SK-N-SH cells. The present study could suggest that GE a novel therapeutic avenue for clinical intervention in neurodegenerative diseases especially for PD.
Collapse
Affiliation(s)
- Karamkolly R Rekha
- Division of Biochemistry, Faculty of Medicine, Raja Muthaiah Medical College, Annamalai University, Annamalai Nagar, Tamilnadu, 608 002, India
| | - Ramu Inmozhi Sivakamasundari
- Division of Biochemistry, Faculty of Medicine, Raja Muthaiah Medical College, Annamalai University, Annamalai Nagar, Tamilnadu, 608 002, India.
| |
Collapse
|
7
|
Xiong Y, Chen H, Lin P, Wang A, Wang L, Jin Y. ATF6 knockdown decreases apoptosis, arrests the S phase of the cell cycle, and increases steroid hormone production in mouse granulosa cells. Am J Physiol Cell Physiol 2017; 312:C341-C353. [PMID: 28100484 DOI: 10.1152/ajpcell.00222.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Activating transcription factor 6 (ATF6), a sensor protein located in the endoplasmic reticulum (ER) membrane, is an important factor in the ER stress signaling pathway. ER stress is known to be involved in folliculogenesis, follicular growth, and ovulation; however, the physiological function of ATF6 in mouse granulosa cells remains largely unknown. The aim of this study was to assess the role of ATF6 in mouse granulosa cells with respect to apoptosis, the cell cycle, and steroid hormone production, as well as several key genes related to follicular development, via RNA interference, immunohistochemical staining, real-time quantitative PCR, Western blotting, flow cytometry, terminal deoxynucleotidyltransferase-mediated deoxy-UTP nick end labeling (TUNEL) assay, and ELISA. Immunohistochemical staining revealed that ATF6 was extensively distributed in the granulosa cells of various ovarian follicles and oocytes in adult female mice. FSH or LH treatment significantly increased ATF6 protein levels in mouse granulosa cells. In the meantime, a recombinant plasmid was used to deplete ATF6 successfully using short hairpin RNA-mediated interference technology, which was verified at both the mRNA and protein levels. Flow cytometry and TUNEL assay analysis indicated that ATF6 depletion decreased apoptosis and arrested the S phase of the cell cycle in mouse granulosa cells. Consistent with these results, p53, caspase-3, B cell lymphoma 2 (Bcl-2)-associated X protein, CCAAT-enhancer-binding protein homologous protein, cyclin A1, cyclin B1, and cyclin D2 mRNA expression decreased, whereas Bcl-2 and glucose-regulated protein 78 kDa mRNA expression increased. Interestingly, ATF6 knockdown obviously increased progesterone and estradiol production in mouse granulosa cells. Cytochrome P450 1b1 (Cyp1b1) mRNA levels were downregulated, whereas Cyp11a1, steroidogenic acute regulatory, and Cyp19a1 mRNA levels were upregulated, in keeping with the changes in steroid hormones. Furthermore, ATF6 disruption remarkably increased insulin-like growth factor binding protein4 (Igfbp4) expression and decreased hyaluronan synthase 2 (Has2), prostaglandin-endoperoxide synthase 2 (Ptgs2), and prostaglandin F receptor (Ptgfr) expression in mouse granulosa cells, which are proteins crucial for follicular development. But, after treating with tunicamycin, the levels of Has2, Ptgs2, and Ptgfr increased relatively, whereas Igfbp4 expression decreased. Collectively, these results imply that ATF6, as a key player in ER stress signaling, may regulate apoptosis, the cell cycle, steroid hormone synthesis, and other modulators related to folliculogenesis in mouse granulosa cells, which may indirectly be involved in the development, ovulation, and atresia of ovarian follicles by affecting the physiological function of granulosa cells. The present study extends our understanding and provides new insights into the physiological significance of ATF6, a key signal transducer of ER stress, in ovarian granulosa cells.
Collapse
Affiliation(s)
- Yongjie Xiong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Soni KK, Kim HK, Choi BR, Karna KK, You JH, Cha JS, Shin YS, Lee SW, Kim CY, Park JK. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3959-3968. [PMID: 28003740 PMCID: PMC5161341 DOI: 10.2147/dddt.s120014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin (CIS) is used in the treatment of cancer, but its nonspecific systemic actions lead to toxic effects on other parts of the body. This study investigated the severity of CIS toxicity by increasing its dose over a constant time period. Sprague Dawley rats were divided into five treatment groups and control group with CIS (2, 4, 6, 8, and 10 mg/kg) administered intraperitoneally for 5 days. The body and organs were weighed, epididymal sperm was counted, and sperm motility and sperm apoptosis were evaluated. Blood samples were evaluated for complete blood count, reactive oxygen and nitrogen species, malondialdehyde levels, and total testosterone. The testicular tissue was examined for steroidogenic acute regulatory protein and endoplasmic reticulum stress protein. Epididymal sperm was collected for CatSper Western blot. The toxic effects of different doses of CIS on the testis and kidney were compared histologically. The weights of body, testis, epididymis, prostate, seminal vesicle, and kidney; sperm count; sperm motility; steroidogenic acute regulatory protein level; and epididymal sperm count were significantly lower in the CIS-treated groups than in the control group. In contrast, sperm apoptosis, plasma reactive oxygen and nitrogen species, and malondialdehyde, testosterone, red blood cell, hematocrit, hemoglobin, and endoplasmic reticulum stress protein levels all increased. Though CIS effectively treats cancer, at an increased dose it is toxic and life-threatening to the genitourinary system and other parts of the body.
Collapse
Affiliation(s)
- Kiran Kumar Soni
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju
| | | | - Bo Ram Choi
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju
| | - Keshab Kumar Karna
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju
| | - Jae Hyung You
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju
| | - Jai Seong Cha
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju
| | - Yu Seob Shin
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University Medical School, Seoul
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Jong Kwan Park
- Department of Urology, Institute for Medical Sciences, Chonbuk National University Medical School - Biomedical Research and Institute and Clinical Trial Center for Medical Devices, Chonbuk National University Hospital, Jeonju
| |
Collapse
|
9
|
Park MJ, Oh KS, Nho JH, Kim GY, Kim DI. Asymmetric dimethylarginine (ADMA) treatment induces apoptosis in cultured rat mesangial cells via endoplasmic reticulum stress activation. Cell Biol Int 2016; 40:662-70. [PMID: 26992443 DOI: 10.1002/cbin.10602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
Asymmetric dimethylarginine (ADMA), a high risk factor for endothelial dysfunction and cardiovascular disease (CVD), has been reported to promote cellular dysfunction via endoplasmic reticulum (ER) stress activation in various cells. Additionally, increased serum ADMA levels have been observed in incipient kidney diseases. Previously, we reported that activated ER stress is associated with mesangial cell apoptosis, observed mainly in overt nephropathy or chronic kidney disease (CKD). However, the effect of ADMA on mesangial cell apoptosis is unknown. Thus, we investigated the effects of ADMA on mesangial cell apoptosis and ER stress signaling. ADMA treatment increased caspase-3 activity and activated three branches of ER stress signaling (PERK, IRE1, and ATF6) that induce mesangial cell apoptosis. Pharmacological inhibitors of ER stress (inhibitors of PERK, IRE1, and S1P) attenuated ADMA-induced cleavage of caspase-3 and induced a decrease in the mitochondrial membrane potential. Furthermore, these inhibitors diminished the number of apoptotic cells induced by ADMA treatment. Taken together, our results indicated that ADMA treatment induces mesangial cell apoptosis via ER stress signaling. These results suggest that ADMA-induced mesangial cell apoptosis could contribute to the progression of overt nephropathy and CKD.
Collapse
Affiliation(s)
- Min-Jung Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, 500-757, Korea.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ki-Seok Oh
- College of Veterinary Medicine, Chonnam National University, Gwangju, 500-757, Korea
| | - Jong-Hyun Nho
- College of Veterinary Medicine, Chonnam National University, Gwangju, 500-757, Korea
| | - Gye-Yeop Kim
- Department of Physical Therapy, College of Health and Welfare, Dongshin University, Naju, 520-714, Korea
| | - Dong-Il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 500-757, Korea.,Life Science Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
10
|
Zhang L, Zhang L, Cheng X, Gao Y, Bao J, Yu H, Guan H, Sun Y, Lu R. Curcumin induces cell death of human papillary thyroid carcinoma BCPAP cells through endoplasmic reticulum stress. RSC Adv 2016. [DOI: 10.1039/c6ra01515h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Curcumin induced cell death of BCPAP cells via ER stress with activation of the ATF6/XBP-1 signaling pathway and Ca2+ release.
Collapse
Affiliation(s)
- Lixi Zhang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Li Zhang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Xian Cheng
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Yanyan Gao
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Jiandong Bao
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Haixia Guan
- Department of Endocrinology & Metabolism and Institute of Endocrinology
- The First Hospital of China Medical University
- Shenyang
- China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Rongrong Lu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
11
|
Guo F, Han X, Wu Z, Cheng Z, Hu Q, Zhao Y, Wang Y, Liu C. ATF6a, a Runx2-activable transcription factor, is a new regulator of chondrocyte hypertrophy. J Cell Sci 2015; 129:717-28. [PMID: 26527399 DOI: 10.1242/jcs.169623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
Abstract
Our previous research has shown that the spliced isoform of XBP1 (XBP1s) is an important downstream mediator of BMP2 and is involved in BMP2-stimulated chondrocyte differentiation. Herein, we report that ATF6 and its cleaved N-terminal cytoplasmic domain (known as ATF6a) are expressed in growth plate chondrocytes. We find that these proteins are differentially induced during BMP2-triggered chondrocyte differentiation. This differential expression probably results from the activation of the ATF6 gene by Runx2 and its repression by the Sox6 transcription factor. Runx2 and Sox6 act through their respective binding elements on the ATF6 gene. When overexpressed, ATF6 and ATF6a intensify chondrogenesis; our studies demonstrate that under the stimulation of ATF6 and ATF6a, chondrocytes tend to be hypertrophied and mineralized, a process leading to bone formation. By contrast, lowering expression of ATF6a by use of its specific siRNA suppresses chondrocyte differentiation. Moreover, ATF6a interacts with Runx2 and augments the Runx2-mediated hypertrophication of chondrocytes. Importantly, overexpression and knockdown of ATF6a during the chondrocyte hypertrophy process also led to altered expressions of IHH and PTHrP (also known as PTHLH). Taken together, these findings indicate that ATF6a favorably controls chondrogenesis and bone formation (1) by acting as a co-factor of Runx2 and enhancing Runx2-incited hypertrophic chondrocyte differentiation, and (2) by affecting IHH and PTHrP signaling.
Collapse
Affiliation(s)
- Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaofeng Han
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Zhimeng Wu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Cheng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qin Hu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Chuanju Liu
- Departments of Orthopaedic Surgery and Cell Biology, New York University School of Medicine, New York, 10016 NY, USA
| |
Collapse
|
12
|
Lin P, Weng X, Liu F, Ma Y, Chen H, Shao X, Zheng W, Liu X, Ye H, Li X. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress. Int J Mol Med 2015; 36:1519-28. [PMID: 26497741 PMCID: PMC4678159 DOI: 10.3892/ijmm.2015.2387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type II collagen. The ER stress-mediated apoptosis of tunicamycin (TM)-stimulated chondrocytes was detected using 4-phenylbutyric acid (4-PBA). We found that 4-PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4′,6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM-induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X-box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), caspase-9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase-9, caspase-3 and Bax were significantly decreased, whereas the mRNA and protein expression levels of Xbp1 and Bcl-2 were significantly increased compared with the TM-stimulated chondrocytes not treated with BZD. Additionally, all our findings demonstrated that there was no significant difference between the TM-stimulated chondrocytes treated with BZD and those treated with 4-PBA. Taken together, our results indicate that BZD inhibits TM-induced chondrocyte apoptosis mediated by ER stress. Thus, BZD may be a potential therapeutic agent for use in the treatment of OA.
Collapse
Affiliation(s)
- Pingdong Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaping Weng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Fayuan Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuhuan Ma
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Houhuang Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiang Shao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenwei Zheng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongzhi Ye
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
13
|
Liu L, Yang B, Cheng Y, Lin H. Ameliorative Effects of Selenium on Cadmium-Induced Oxidative Stress and Endoplasmic Reticulum Stress in the Chicken Kidney. Biol Trace Elem Res 2015; 167:308-19. [PMID: 25805271 DOI: 10.1007/s12011-015-0314-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023]
Abstract
The harmful influences of dietary cadmium (Cd) on the chicken kidney and the protective role of selenium (Se) against Cd-induced nephrotoxicity in the chicken are relatively unexplored subjects. The aim of this study was to investigate the ameliorative role of Se on the effects of Cd-induced oxidative stress, endoplasmic reticulum stress, and apoptosis in chicken kidneys. For this study, 100-day-old chickens received Se (as 10 mg Na2SeO3/kg dry weight of diet), Cd (as 150 mg CdCl2/kg dry weight of diet), or Cd + Se in their diets for 60 days. Then, the histopathological changes, Cd and Se contents, levels of oxidative stress, inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity, levels of endoplasmic reticulum (ER) stress, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and expression levels of Bcl-2 and caspase 3 in the kidney were examined. The results showed that Cd exposure caused histopathological and ultrastructural damage and apoptosis of the kidneys. Cd administration significantly increased the accumulation of Cd, the malondialdehyde (MDA) content, NO production, iNOS activity, iNOS expression levels, expression levels of ER stress-related genes (GRP78, GRP94, ATF4, ATF6, and IRE) and the pro-apoptosis gene caspase 3, and the rate of apoptosis. Cd administration markedly decreased the Se content, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, and anti-apoptosis gene Bcl-2 expression levels. Co-treatment with Se and Cd obviously reduced the accumulation of Cd, Cd-induced histopathological and ultrastructural changes, oxidative stress, iNOS-NO system activity, ER stress, caspase 3 expression levels, and the rate of apoptosis in the kidneys. These results suggested that Cd exposure caused renal injury and that Se ameliorated Cd-induced nephrotoxicity in chickens.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Xiong Z, Jiang R, Zhang P, Han X, Guo FJ. Transmission of ER stress response by ATF6 promotes endochondral bone growth. J Orthop Surg Res 2015; 10:141. [PMID: 26374329 PMCID: PMC4571128 DOI: 10.1186/s13018-015-0284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023] Open
Abstract
Background We reported earlier that X-box binding protein1 spliced (XBP1S), a key regulator of the unfolded protein response (UPR), as a bone morphogenetic protein 2 (BMP2)-inducible transcription factor, positively regulates endochondral bone formation by activating granulin-epithelin precursor (GEP) chondrogenic growth factor. Under the stress of misfolded or unfolded proteins in the endoplasmic reticulum (ER), the cells can be protected by the mammalian UPR. However, the influence of activating transcription factor 6 (ATF6), another transcriptional arm of UPR, in BMP2-induced chondrocyte differentiation has not yet been elucidated. In the current study, we investigate and explore the role of ATF6 in endochondral bone formation, focus on associated molecules of hypertrophic chondrocyte differentiation, as well as the molecular events underlying this process. Methods High-cell-density micromass cultures were used to induce ATDC5 and C3H10T1/2 cell differentiation into chondrocytes. Quantitative real-time PCR, immunoblotting analysis, and immunohistochemistry were performed to examine (1) the expression of ATF6, ATF6α, collagen II, collagen X, and matrix metalloproteinase-13 (MMP13) and (2) whether ATF6 stimulates chondrogenesis and whether ATF6 enhances runt-related transcription factor 2 (Runx2)-mediated chondrocyte hypertrophy. Culture of fetal mouse bone explants was to detect whether ATF6 stimulates chondrocyte hypertrophy, mineralization, and endochondral bone growth. Coimmunoprecipitation was employed to determine whether ATF6 associates with Runx2 in chondrocyte differentiation. Results ATF6 is differentially expressed in the course of BMP2-triggered chondrocyte differentiation. Overexpression of ATF6 accelerates chondrocyte differentiation, and the ex vivo studies reveal that ATF6 is a potent stimulator of chondrocyte hypertrophy, mineralization, and endochondral bone growth. Knockdown of ATF6 via a siRNA approach inhibits chondrogenesis. Furthermore, ATF6 associates with Runx2 and enhances Runx2-induced chondrocyte hypertrophy. And, the stimulation effect of ATF6 is reduced during inhibition of Runx2 via a siRNA approach, suggesting that the promoting effect is required for Runx2. Conclusions Our observations demonstrate that ATF6 positively regulates chondrocyte hypertrophy and endochondral bone formation through activating Runx2-mediated hypertrophic chondrocyte differentiation.
Collapse
Affiliation(s)
- Zhangyuan Xiong
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaofeng Han
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Feng-Jin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Xiong Z, Jiang R, Li X, Liu Y, Guo F. Different Roles of GRP78 on Cell Proliferation and Apoptosis in Cartilage Development. Int J Mol Sci 2015; 16:21153-76. [PMID: 26370957 PMCID: PMC4613247 DOI: 10.3390/ijms160921153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic cells possess several mechanisms to adapt to endoplasmic reticulum (ER) stress and thereby survive. ER stress activates a set of signaling pathways collectively termed as the unfolded protein response (UPR). We previously reported that Bone morphogenetic protein 2 (BMP2) mediates mild ER stress and activates UPR signal molecules in chondrogenesis. The mammalian UPR protects the cell against the stress of misfolded proteins in the endoplasmic reticulum. Failure to adapt to ER stress causes the UPR to trigger apoptosis. Glucose regulated protein 78 (GRP78), as an important molecular chaperone in UPR signaling pathways, is responsible for binding to misfolded or unfolded protein during ER stress. However the influence on GRP78 in BMP2-induced chondrocyte differentiation has not yet been elucidated and the molecular mechanism underlyng these processes remain unexplored. Herein we demonstrate that overexpression of GRP78 enhanced cell proliferation in chondrocyte development with G1 phase advance, S phase increasing and G2-M phase transition. Furthermore, overexpression of GRP78 inhibited ER stress-mediated apoptosis and then reduced apoptosis in chondrogenesis induced by BMP2, as assayed by cleaved caspase3, caspase12, C/EBP homologous protein (CHOP/DDIT3/GADD153), p-JNK (phosphorylated c-Jun N-terminal kinase) expression during the course of chondrocyte differentiation by Western blot. In addition, flow cytometry (FCM) assay, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay and immune-histochemistry analysis also proved this result in vitro and in vivo. It was demonstrated that GRP78 knockdown via siRNA activated the ER stress-specific caspase cascade in developing chondrocyte tissue. Collectively, these findings reveal a novel critical role of GRP78 in regulating ER stress-mediated apoptosis in cartilage development and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Zhangyuan Xiong
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xiangzhu Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Yanna Liu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
16
|
Wang X, Karamariti E, Simpson R, Wang W, Xu Q. Dickkopf Homolog 3 Induces Stem Cell Differentiation into Smooth Muscle Lineage via ATF6 Signalling. J Biol Chem 2015; 290:19844-52. [PMID: 26105053 PMCID: PMC4528144 DOI: 10.1074/jbc.m115.641415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
Smooth muscle cells (SMCs) are a key component of healthy and tissue engineered vessels and play a crucial role in vascular development and the pathogenic events of vascular remodeling i.e. restenosis. However, the cell source from which they can be isolated is limited. Embryonic stem (ES) cells that have the remarkable capability to differentiate into vascular SMCs in response to specific stimuli provide a useful model for studying SMC differentiation. Previous studies suggested that dickkopf homolog 3 (DKK3) has a role in human partially induced pluripotent stem cell to SMC differentiation. Here, we demonstrate that the expression of DKK3 is essential for the expression of SMC markers and myocardin at both the mRNA and protein levels during mouse ES cell differentiation into SMCs (ESC-SMC differentiation). Overexpression of DKK3 leads to further up-regulation of the aforementioned markers. Further investigation indicates that DKK3 added as a cytokine activates activating transcription factor 6 (ATF6), leading to the increased binding of ATF6 on the myocardin promoter and increased its expression. In addition, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) promotes the expression of ATF6 and leads to further increase of myocardin transcription. Our findings offer a novel mechanism by which DKK3 regulates ESC-SMC differentiation by activating ATF6 and promoting myocardin expression.
Collapse
Affiliation(s)
- Xiaocong Wang
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and the Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Eirini Karamariti
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| | - Russell Simpson
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| | - Wen Wang
- the Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| |
Collapse
|
17
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|