1
|
Sibgatullina G, Ramazanova I, Salnikov V, Stepanov A, Voloshina A, Sapunova A, Mustafina A, Petrov K, Samigullin D. Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons. Histochem Cell Biol 2024; 161:507-519. [PMID: 38597938 DOI: 10.1007/s00418-024-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.
Collapse
Affiliation(s)
- Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Iliza Ramazanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Konstantin Petrov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia.
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx St., Kazan, 420111, Russia.
| |
Collapse
|
2
|
Goršak T, Jovičić EJ, Tratnjek L, Križaj I, Sepulveda B, Nogues J, Kreft ME, Petan T, Kralj S, Makovec D. The efficient magneto-mechanical actuation of cancer cells using a very low concentration of non-interacting ferrimagnetic hexaferrite nanoplatelets. J Colloid Interface Sci 2024; 657:778-787. [PMID: 38081112 DOI: 10.1016/j.jcis.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Magneto-mechanical actuation (MMA) using the low-frequency alternating magnetic fields (AMFs) of magnetic nanoparticles internalized into cancer cells can be used to irreparably damage these cells. However, nanoparticles in cells usually agglomerate, thus greatly augmenting the delivered force compared to single nanoparticles. Here, we demonstrate that MMA also decreases the cell viability, with the MMA mediated by individual, non-interacting nanoparticles. The effect was demonstrated with ferrimagnetic (i.e., permanently magnetic) barium-hexaferrite nanoplatelets (NPLs, ∼50 nm wide and 3 nm thick) with a unique, perpendicular orientation of the magnetization. Two cancer-cell lines (MDA-MB-231 and HeLa) are exposed to the NPLs in-vitro under different cell-culture conditions and actuated with a uniaxial AMF. TEM analyses show that only a small number of NPLs internalize in the cells, always situated in membrane-enclosed compartments of the endosomal-lysosomal system. Most compartments contain 1-2 NPLs and only seldom are the NPLs found in small groups, but never in close contact or mutually oriented. Even at low concentrations, the single NPLs reduce the cell viability when actuated with AMFs, which is further increased when the cells are in starvation conditions. These results pave the way for more efficient in-vivo MMA at very low particle concentrations.
Collapse
Affiliation(s)
- Tanja Goršak
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Eva Jarc Jovičić
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia; Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Larisa Tratnjek
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Borja Sepulveda
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Josep Nogues
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Darko Makovec
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Banerjee A, Lee D, Jiang C, Wang R, Kutulakos ZB, Lee S, Gao J, Joshi N. Progress and challenges in intravesical drug delivery. Expert Opin Drug Deliv 2024; 21:111-129. [PMID: 38235592 DOI: 10.1080/17425247.2024.2307481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Intravesical drug delivery (IDD) has gained recognition as a viable approach for treating bladder-related diseases over the years. However, it comes with its set of challenges, including voiding difficulties and limitations in mucosal and epithelial penetration. These challenges lead to drug dilution and clearance, resulting in poor efficacy. Various strategies for drug delivery have been devised to overcome these issues, all aimed at optimizing drug delivery. Nevertheless, there has been minimal translation to clinical settings. AREAS COVERED This review provides a detailed description of IDD, including its history, advantages, and challenges. It also explores the physical barriers encountered in IDD, such as voiding, mucosal penetration, and epithelial penetration, and discusses current strategies for overcoming these challenges. Additionally, it offers a comprehensive roadmap for advancing IDD into clinical trials. EXPERT OPINION Physical bladder barriers and limitations of conventional treatments result in unsatisfactory efficacy against bladder diseases. Nevertheless, substantial recent efforts in this field have led to significant progress in overcoming these challenges and have raised important attributes for an optimal IDD system. However, there is still a lack of well-defined steps in the workflow to optimize the IDD system for clinical settings, and further research is required to establish more comprehensive in vitro and in vivo models to expedite clinical translation.
Collapse
Affiliation(s)
- Arpita Banerjee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Dongtak Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Jiang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rong Wang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zoe Bogusia Kutulakos
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sohyung Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingjing Gao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Center for Bioactive Delivery, Institute for Applied Life Sciences, Material Science Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nitin Joshi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Janev A, Ramuta TŽ, Jerman UD, Obradović H, Kamenšek U, Čemažar M, Kreft ME. Human amniotic membrane inhibits migration and invasion of muscle-invasive bladder cancer urothelial cells by downregulating the FAK/PI3K/Akt/mTOR signalling pathway. Sci Rep 2023; 13:19227. [PMID: 37932474 PMCID: PMC10628262 DOI: 10.1038/s41598-023-46091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2023; 160:371-373. [PMID: 37904027 DOI: 10.1007/s00418-023-02246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
6
|
Resnik N, Višnjar T, Smrkolj T, Kreft ME, Romih R, Zupančič D. Selective targeting of lectins and their macropinocytosis in urothelial tumours: translation from in vitro to ex vivo. Histochem Cell Biol 2023; 160:435-452. [PMID: 37535087 PMCID: PMC10624759 DOI: 10.1007/s00418-023-02224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Urinary bladder cancer can be treated by intravesical application of therapeutic agents, but the specific targeting of cancer urothelial cells and the endocytotic pathways of the agents are not known. During carcinogenesis, the superficial urothelial cells exhibit changes in sugar residues on the apical plasma membranes. This can be exploited for selective targeting from the luminal side of the bladder. Here we show that the plant lectins Jacalin (from Artocarpus integrifolia), ACA (from Amaranthus caudatus) and DSA (from Datura stramonium) selectively bind to the apical plasma membrane of low- (RT4) and high-grade (T24) cancer urothelial cells in vitro and urothelial tumours ex vivo. The amount of lectin binding was significantly different between RT4 and T24 cells. Endocytosis of lectins was observed only in cancer urothelial cells and not in normal urothelial cells. Transmission electron microscopy analysis showed macropinosomes, endosome-like vesicles and multivesicular bodies filled with lectins in RT4 and T24 cells and also in cells of urothelial tumours ex vivo. Endocytosis of Jacalin and ACA in cancer cells was decreased in vitro after addition of inhibitor of macropinocytosis 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and increased after stimulation of macropinocytosis with epidermal growth factor (EGF). Clathrin, caveolin and flotillin did not colocalise with lectins. These results confirm that the predominant mechanism of lectin endocytosis in cancer urothelial cells is macropinocytosis. Therefore, we propose that lectins in combination with conjugated therapeutic agents are promising tools for improved intravesical therapy by targeting cancer cells.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Tanja Višnjar
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Veranič P, Križaj I. Interaction of Nanomaterials with Cells and Tissues. Int J Mol Sci 2023; 24:13667. [PMID: 37686473 PMCID: PMC10488087 DOI: 10.3390/ijms241713667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Nanomaterials have gained enormous importance in biomedicine in recent years, both in basic and applied sciences [...].
Collapse
Affiliation(s)
- Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Potrč T, Kralj S, Nemec S, Kocbek P, Erdani Kreft M. The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization. NANOSCALE 2023; 15:8611-8618. [PMID: 37114487 DOI: 10.1039/d2nr06965b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells in vitro. Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation.
Collapse
Affiliation(s)
- Tanja Potrč
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Slavko Kralj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Nanos SCI, Nanos Scientificae d.o.o., Teslova 30, 1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Jiang G, Lou XF, Zuo S, Liu X, Ren TB, Wang L, Zhang XB, Yuan L. Tuning the Cellular Uptake and Retention of Rhodamine Dyes by Molecular Engineering for High-Contrast Imaging of Cancer Cells. Angew Chem Int Ed Engl 2023; 62:e202218613. [PMID: 36855015 DOI: 10.1002/anie.202218613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Probes allowing high-contrast discrimination of cancer cells and effective retention are powerful tools for the early diagnosis and treatment of cancer. However, conventional small-molecule probes often show limited performance in both aspects. Herein, we report an ingenious molecular engineering strategy for tuning the cellular uptake and retention of rhodamine dyes. Introduction of polar aminoethyl leads to the increased brightness and reduced cellular uptake of dyes, and this change can be reversed by amino acetylation. Moreover, these modifications allow cancer cells to take up more dyes than normal cells (16-fold) through active transport. Specifically, we further improve the signal contrast (56-fold) between cancer and normal cells by constructing activatable probes and confirm that the released fluorophore can remain in cancer cells with extended time, enabling long-term and specific tumor imaging.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiao-Feng Lou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Shan Zuo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xixuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P.R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
10
|
Cong VT, Houng JL, Kavallaris M, Chen X, Tilley RD, Gooding JJ. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells? Chem Soc Rev 2022; 51:7531-7559. [PMID: 35938511 DOI: 10.1039/d1cs00707f] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways.
Collapse
Affiliation(s)
- Vu Thanh Cong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacinta L Houng
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, China
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Večerić-Haler Ž, Kojc N, Wechtersbach K, Perše M, Erman A. Cobalt Ferrite Magnetic Nanoparticles for Tracing Mesenchymal Stem Cells in Tissue: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23158738. [PMID: 35955869 PMCID: PMC9368918 DOI: 10.3390/ijms23158738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Therapy with mesenchymal stem cells (MSCs) is promising in many diseases. Evaluation of their efficacy depends on adequate follow-up of MSCs after transplantation. Several studies have shown that MSCs can be labeled and subsequently visualized with magnetic nanoparticles (NPs). We investigated the homing of MSCs labeled with magnetic cobalt ferrite NPs in experimentally induced acute kidney injury in mice. To explore the homing of MSCs after systemic infusion into mice, we developed a pre-infusion strategy for optimal tracing and identification of MSCs with polyacrylic acid-coated cobalt ferrite (CoFe2O4) NPs by light and transmission electron microscopy (TEM) in various organs of mice with cisplatin-induced acute kidney injury and control mice. By correlative microscopy, we detected MSCs labeled with NPs in the lungs, spleen, kidney, and intestine of cisplatin-treated mice and in the lungs and spleen of control mice. Our results confirm that labeling MSCs with metal NPs did not affect the ultrastructure of MSCs and their ability to settle in various organs. This study demonstrates the usefulness of cobalt ferrite NPs in ex vivo visualization of MSCs and offers correlative microscopy as a useful method in routine histopathology laboratories for tracing MSCs in paraffin-embedded tissue.
Collapse
Affiliation(s)
- Željka Večerić-Haler
- Department of Nephrology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Karmen Wechtersbach
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-543-7684
| |
Collapse
|
12
|
Nanodiamonds as Possible Tools for Improved Management of Bladder Cancer and Bacterial Cystitis. Int J Mol Sci 2022; 23:ijms23158183. [PMID: 35897760 PMCID: PMC9329713 DOI: 10.3390/ijms23158183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nanodiamonds (NDs) are a class of carbon nanomaterials with sizes ranging from a few nm to micrometres. Due to their excellent physical, chemical and optical properties, they have recently attracted much attention in biomedicine. In addition, their exceptional biocompatibility and the possibility of precise surface functionalisation offer promising opportunities for biological applications such as cell labelling and imaging, as well as targeted drug delivery. However, using NDs for selective targeting of desired biomolecules within a complex biological system remains challenging. Urinary bladder cancer and bacterial cystitis are major diseases of the bladder with high incidence and poor treatment options. In this review, we present: (i) the synthesis, properties and functionalisation of NDs; (ii) recent advances in the study of various NDs used for better treatment of bladder cancer and (iii) bacterial cystitis; and (iv) the use of NDs in theranostics of these diseases.
Collapse
|
13
|
Lu Y, Wang S, Wang Y, Li M, Liu Y, Xue D. Current Researches on Nanodrug Delivery Systems in Bladder Cancer Intravesical Chemotherapy. Front Oncol 2022; 12:879828. [PMID: 35720013 PMCID: PMC9202556 DOI: 10.3389/fonc.2022.879828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors in urinary system. Intravesical chemotherapy is a common adjuvant therapy after transurethral resection of bladder tumors. However, it has several disadvantages such as low drug penetration rate, short residence time, unsustainable action and inability to release slowly, thus new drug delivery and new modalities in delivery carriers need to be continuously explored. Nano-drug delivery system is a novel way in treatment for bladder cancer that can increase the absorption rate and prolong the duration of drug, as well as sustain the action by controlling drug release. Currently, nano-drug delivery carriers mainly included liposomes, polymers, and inorganic materials. In this paper, we reveal current researches in nano-drug delivery system in bladder cancer intravesical chemotherapy by describing the applications and defects of liposomes, polymers and inorganic material nanocarriers, and provide a basis for the improvement of intravesical chemotherapy drugs in bladder cancer.
Collapse
Affiliation(s)
- Yilei Lu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yuhang Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Mingshan Li
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yili Liu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Dongwei Xue
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
A Biomimetic Porcine Urothelial Model for Assessing Escherichia coli Pathogenicity. Microorganisms 2022; 10:microorganisms10040783. [PMID: 35456833 PMCID: PMC9029248 DOI: 10.3390/microorganisms10040783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Urinary tract infections can be severe, sometimes fatal, diseases whose etiological pathogens are predominantly uropathogenic strains of E. coli (UPEC). To investigate the UPEC pathogenesis, several models have already been established with minor or major disadvantages. The aim was to develop a simple, fast, and inexpensive biomimetic in vitro model based on normal porcine urothelial (NPU) cells that are genetically and physiologically similar to human bladder urothelium and to perform basic studies of E. coli pathogenicity. Initially, the model was tested using a set of control E. coli strains and, subsequently, with human E. coli strains isolated either from patients with urinary infections or from the feces of healthy individuals. A drop in viability of NPU cells was used as a measure of the pathogenicity of the individual strain tested. To visualize the subcellular events, transmission and scanning electron microscopy was performed. The strains were tested for the presence of different virulence-associated genes, phylogroup, type of core lipid, O-serotype, and type of lipopolysaccharide and a statistical analysis of possible correlations between strains’ characteristics and the effect on the model was performed. Results showed that our model has the discriminatory power to distinguish pathogenic from non-pathogenic E. coli strains, and to identify new, potentially pathogenic strains.
Collapse
|
15
|
Attachment of Cancer Urothelial Cells to the Bladder Epithelium Occurs on Uroplakin-Negative Cells and Is Mediated by Desmosomal and Not by Classical Cadherins. Int J Mol Sci 2021; 22:ijms22115565. [PMID: 34070317 PMCID: PMC8197456 DOI: 10.3390/ijms22115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Urinary bladder cancer is often multifocal; however, the intraluminal dissemination of the urothelial cancer cells is poorly understood. The involvement of N-cadherin in the adhesion of the cancer urothelial cells to the urothelium had not previously been studied. Therefore, we herein explore the possibility of the intraluminal dissemination of the urothelial cancer cells by evaluating the role of classical cadherins in the adhesion of urothelial cancer cells to the urothelium. We used E-cadherin negative T24 cells and established a T24 Ncadlow cell line with an additionally decreased expression of N-cadherin in the plasma membrane and a decreased secretion of proform of metalloproteinase 2. The labelled T24 and T24 Ncadlow cells were seeded onto urothelial in vitro models. After 24 h in co-culture, unattached cancer cells were rinsed and urothelia with attached cancer urothelial cells were processed for fluorescence and electron microscopy. Both the T24 and T24 Ncadlow cells attached to the urothelium, yet only to the uroplakin-negative urothelial cells. The ultrastructural analysis showed that T24 and T24 Ncadlow cells adhere to poorly differentiated urothelial cells by desmosomes. To achieve this, they first disrupt tight junctions of superficial urothelial cells. This study indicates that the lack of E-cadherin expression and decreased expression of N-cadherin in the plasma membrane of T24 cells does not interfere with their adhesion to the urothelium; therefore, our results suggest that intraluminal dissemination of cancer urothelial cells along the urothelium occurs on uroplakin-negative cells and is desmosome-mediated.
Collapse
|
16
|
Resnik N, Tratnjek L, Kreft ME, Kisovec M, Aden S, Bedina Zavec A, Anderluh G, Podobnik M, Veranič P. Cytotoxic Activity of LLO Y406A Is Targeted to the Plasma Membrane of Cancer Urothelial Cells. Int J Mol Sci 2021; 22:ijms22073305. [PMID: 33805017 PMCID: PMC8037347 DOI: 10.3390/ijms22073305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Identification of novel agents for bladder cancer treatment is highly desirable due to the high incidence of tumor recurrence and the risk of progression to muscle-invasive disease. The key feature of the cholesterol-dependent toxin listeriolysin O mutant (LLO Y406A) is its preferential activity at pH 5.7, which could be exploited either directly for selective targeting of cancer cells or the release of accumulated therapeutics from acidic endosomes. Therefore, our goal was to compare the cytotoxic effect of LLO Y406A on cancer cells (RT4) and normal urothelial cells (NPU), and to identify which cell membranes are the primary target of LLO Y406A by viability assays, life-cell imaging, fluorescence, and electron microscopy. LLO Y406A decreased viability, altered cell morphology, provoked membrane blebbing, and induced apoptosis in RT4 cells, while it did not affect NPU cells. LLO Y406A did not cause endosomal escape in RT4 cells, while the plasma membrane of RT4 cells was revealed as the primary target of LLO Y406A. It has been concluded that LLO Y406A has the ability to selectively eliminate cancer urothelial cells through pore-forming activity at the plasma membrane, without cytotoxic effects on normal urothelial cells. This promising selective activity merits further testing as an anti-cancer agent.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
- Correspondence: ; Tel.: +386-1-543-7682
| |
Collapse
|
17
|
Standardization of esophageal adenocarcinoma in vitro model and its applicability for model drug testing. Sci Rep 2021; 11:6664. [PMID: 33758229 PMCID: PMC7988140 DOI: 10.1038/s41598-021-85530-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
FLO-1 cell line represents an important tool in esophageal adenocarcinoma (EAC) research as a verified and authentic cell line to study the disease pathophysiology and antitumor drug screenings. Since in vitro characteristics of cells depend on the microenvironment and culturing conditions, we performed a thorough characterization of the FLO-1 cell line under different culturing conditions with the aim of (1) examining the effect of serum-free growth medium and air–liquid interface (A–L) culturing, which better reflect physiological conditions in vivo and (2) investigating the differentiation potential of FLO-1 cells to mimic the properties of the in vivo esophageal epithelium. Our study shows that the composition of the media influenced the morphological, ultrastructural and molecular characteristics of FLO-1 cells, such as the expression of junctional proteins. Importantly, FLO-1 cells formed spheres at the A–L interface, recapitulating key elements of tumors in the esophageal tube, i.e., direct contact with the gas phase and three-dimensional architecture. On the other hand, FLO-1 models exhibited high permeability to model drugs and zero permeability markers, and low transepithelial resistance, and therefore poorly mimicked normal esophageal epithelium. In conclusion, the identified effect of culture conditions on the characteristics of FLO-1 cells should be considered for standardization, data reproducibility and validity of the in vitro EAC model. Moreover, the sphere-forming ability of FLO-1 cells at the A–L interface should be considered in EAC tumor biology and anticancer drug studies as a reliable and straightforward model with the potential to increase the predictive efficiency of the current in vitro approaches.
Collapse
|
18
|
The Antibacterial Activity of Human Amniotic Membrane against Multidrug-Resistant Bacteria Associated with Urinary Tract Infections: New Insights from Normal and Cancerous Urothelial Models. Biomedicines 2021; 9:biomedicines9020218. [PMID: 33672670 PMCID: PMC7924402 DOI: 10.3390/biomedicines9020218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Urinary tract infections (UTIs) represent a serious global health issue, especially due to emerging multidrug-resistant UTI-causing bacteria. Recently, we showed that the human amniotic membrane (hAM) could be a candidate for treatments and prevention of UPEC and Staphylococcus aureus infections. However, its role against multidrug-resistant bacteria, namely methicillin-resistant S. aureus (MRSA), extended-spectrum beta-lactamases (ESBL) producing Escherichia coli and Klebsiella pneumoniae, vancomycin-resistant Enterococci (VRE), carbapenem-resistant Acinetobacter baumannii, and Pseudomonas aeruginosa has not yet been thoroughly explored. Here, we demonstrate for the first time that the hAM homogenate had antibacterial activity against 7 out of 11 tested multidrug-resistant strains, the greatest effect was on MRSA. Using novel approaches, its activity against MRSA was further evaluated in a complex microenvironment of normal and cancerous urinary bladder urothelia. Even short-term incubation in hAM homogenate significantly decreased the number of bacteria in MRSA-infected urothelial models, while it did not affect the viability, number, and ultrastructure of urothelial cells. The hAM patches had no antibacterial activity against any of the tested strains, which further exposes the importance of the hAM preparation. Our study substantially contributes to basic knowledge on the antibacterial activity of hAM and reveals its potential to be used as an antibacterial agent against multidrug-resistant bacteria.
Collapse
|
19
|
Skočaj M, Bizjak M, Strojan K, Lojk J, Erdani Kreft M, Miš K, Pirkmajer S, Bregar VB, Veranič P, Pavlin M. Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. Int J Mol Sci 2020; 21:ijms21207545. [PMID: 33066271 PMCID: PMC7589566 DOI: 10.3390/ijms21207545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Many studies evaluated the short-term in vitro toxicity of nanoparticles (NPs); however, long-term effects are still not adequately understood. Here, we investigated the potential toxic effects of biomedical (polyacrylic acid and polyethylenimine coated magnetic NPs) and two industrial (SiO2 and TiO2) NPs following different short-term and long-term exposure protocols on two physiologically different in vitro models that are able to differentiate: L6 rat skeletal muscle cell line and biomimetic normal porcine urothelial (NPU) cells. We show that L6 cells are more sensitive to NP exposure then NPU cells. Transmission electron microscopy revealed an uptake of NPs into L6 cells but not NPU cells. In L6 cells, we obtained a dose-dependent reduction in cell viability and increased reactive oxygen species (ROS) formation after 24 h. Following continuous exposure, more stable TiO2 and polyacrylic acid (PAA) NPs increased levels of nuclear factor Nrf2 mRNA, suggesting an oxidative damage-associated response. Furthermore, internalized magnetic PAA and TiO2 NPs hindered the differentiation of L6 cells. We propose the use of L6 skeletal muscle cells and NPU cells as a novel approach for assessment of the potential long-term toxicity of relevant NPs that are found in the blood and/or can be secreted into the urine.
Collapse
Affiliation(s)
- Matej Skočaj
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Maruša Bizjak
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Klemen Strojan
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Jasna Lojk
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Vladimir Boštjan Bregar
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Correspondence: (P.V.); (M.P.)
| | - Mojca Pavlin
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: (P.V.); (M.P.)
| |
Collapse
|
20
|
El-Shahawy AAG, Abdel Moaty SA, Zaki AH, Mohamed NA, GadelHak Y, Mahmoud RK, Farghali AA. Prostate Cancer Cellular Uptake of Ternary Titanate Nanotubes/CuFe 2O 4/Zn-Fe Mixed Metal Oxides Nanocomposite. Int J Nanomedicine 2020; 15:619-631. [PMID: 32099355 PMCID: PMC6996550 DOI: 10.2147/ijn.s228279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/07/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Certainly, there is a demand for stronger recognition of how nanoparticles can move through the cell membrane. Prostate cancer is one of the forcing sources of cancer-relevant deaths among men. AIM OF THE WORK The current research studied the power of prostate cancer cells to uptake a ternary nanocomposite TNT/CuFe2O4/Zn-Fe mixed metal oxides (MMO). METHODOLOGY The nanocomposite was synthesized by a chemical method and characterized by a High-resolution transmission electron microscope, Field emission scanning electron microscope, X-ray diffraction, Fourier transmission infra-red, X-ray photoelectron spectroscopy, dynamic light scattering. Besides, it was implemented as an inorganic anticancer agent versus Prostate cancer PC-3 cells. RESULTS The results revealed cellular uptake validity, cell viability reduction, ultra-structures alterations, morphological changes and membrane damage of PC-3 cells. CONCLUSION The prepared ternary nanocomposite was highly uptake by PC-3 cells and possessed cytotoxicity that was dose and time-dependent. To conclude, the study offered the potential of the investigated ternary nanocomposite as a promising prostate anticancer agent.
Collapse
Affiliation(s)
- Ahmed AG El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - SA Abdel Moaty
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - AH Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Nada A Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser GadelHak
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - RK Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - AA Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Resnik N, Prezelj T, De Luca GMR, Manders E, Polishchuk R, Veranič P, Kreft ME. Helical organization of microtubules occurs in a minority of tunneling membrane nanotubes in normal and cancer urothelial cells. Sci Rep 2018; 8:17133. [PMID: 30459350 PMCID: PMC6244236 DOI: 10.1038/s41598-018-35370-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Tunneling membrane nanotubes (TnTs) are membrane protrusions connecting nearby or distant cells in vitro and in vivo. Functions of TnTs in cellular processes are various and rely on TnT structure, which also depends on cytoskeletal composition. In the present study, we focused on the organization of microtubules (MTs) and intermediate filaments (IFs) in TnTs of urothelial cells. We analysed TnTs of normal porcine urothelial cells, which morphologically and physiologically closely resemble normal human urothelial cells, and of cancer cells derived from invasive human urothelial neoplasm. Wide-field fluorescence, confocal and super-resolution microscopy techniques, together with image analyses and 3D reconstructions enlightened specific MT-IF organization in TnTs, and for the first time revealed that MTs and IFs co-occur in the majority of normal and cancer urothelial cell TnTs. Our findings show that in the initiation segment of TnTs, MTs are cross-linked with each other into filamentous network, however in the middle and the attaching segment of TnT, MTs can helically enwrap IFs, the phenomenon that has not been shown before within the TnTs. In this study, we assess MT-IF co-occurrence in TnTs and present evidence that such helical organization of MTs enwrapping IFs is only occurring in a minority of the TnTs. We also discuss the possible cell-biological and physiological reasons for helical organization of MTs in TnTs.
Collapse
Affiliation(s)
- Nataša Resnik
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Tim Prezelj
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | | | - Erik Manders
- University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Peter Veranič
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Erman A, Kapun G, Novak S, Pavlin M, Dražić G, Drobne D, Veranič P. How cancer cells attach to urinary bladder epithelium in vivo: study of the early stages of tumorigenesis in an orthotopic mouse bladder tumor model. Histochem Cell Biol 2018; 151:263-273. [PMID: 30280243 DOI: 10.1007/s00418-018-1738-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
The majority of bladder cancers in humans are non-muscle-invasive cancers that recur frequently after standard treatment procedures. Mouse models are widely used to develop anti-tumor treatments. The purpose of our work was to establish an orthotopic mouse bladder tumor model and to explore early stages of implantation of cancerous MB49 cells in vivo using various labeling and microscopic techniques. To distinguish cancer cells from normal urothelial cells in mouse urinary bladders, we performed molecular characterization of MB49 cells before intravesical injection experiments. In this new approach we applied internalized metal nanoparticles to unequivocally discriminate cancer cells from normal cells. This method revealed that cancer cells attached to the urothelium or basal lamina within just 1 hour of intravesical injection, whereas small tumors and localized hyperplastic urothelial regions developed within two days. We found that cancer cells initially adhere to normal urothelial cells through filopodia and by focal contacts with basal lamina. This is the first in vivo characterization of intercellular contacts between cancerous and normal urothelial cells in the bladder. Our study yields new data about poorly known early events of tumorigenesis in vivo, which could be helpful for the translation into clinic.
Collapse
Affiliation(s)
- Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Gregor Kapun
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Goran Dražić
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention. Mol Nutr Food Res 2018; 62:e1800079. [PMID: 30079608 DOI: 10.1002/mnfr.201800079] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Bladder cancer is a significant health burden due to its high prevalence, risk of mortality, morbidity, and high cost of medical care. Epidemiologic evidence suggests that diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Phytochemicals in cruciferous vegetables, such as glucosinolates, which are enzymatically hydrolyzed to bioactive isothiocyanates, are possible mediators of an anticancer effect. In vitro studies have shown inhibition of bladder cancer cell lines, cell cycle arrest, and induction of apoptosis by these isothiocyanates, in particular sulforaphane and erucin. Although not yet completely understood, many mechanisms of anticancer activity at the steps of cancer initiation, promotion, and progression have been attributed to these isothiocyanates. They target multiple pathways including the adaptive stress response, phase I/II enzyme modulation, pro-growth, pro-survival, pro-inflammatory signaling, angiogenesis, and even epigenetic modulation. Multiple in vivo studies have shown the bioavailability of isothiocyanates and their antitumoral effects. Although human studies are limited, they support oral bioavailability with reasonable plasma and urine concentrations achieved. Overall, both cell and animal studies support a potential role for isothiocyanates in bladder cancer prevention and treatment. Future studies are necessary to examine clinically relevant outcomes and define guidelines on ameliorating the bladder cancer burden.
Collapse
Affiliation(s)
- Besma Abbaoui
- Foods for Health Discovery Theme, The College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Christopher R Lucas
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210.,Department of Mechanical and Aerospace Engineering, The College of Engineering, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Ken M Riedl
- Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Amir Mortazavi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
24
|
Kostevšek N, Hudoklin S, Kreft ME, Serša I, Sepe A, Jagličić Z, Vidmar J, Ščančar J, Šturm S, Kobe S, Žužek Rožman K. Magnetic interactions and in vitro study of biocompatible hydrocaffeic acid-stabilized Fe–Pt clusters as MRI contrast agents. RSC Adv 2018; 8:14694-14704. [PMID: 35540786 PMCID: PMC9080024 DOI: 10.1039/c8ra00047f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022] Open
Abstract
A detailed magnetic study of separated Fe–Pt NPs and Fe–Pt clusters was performed to predict their optimal size and morphology for the maximum saturation magnetization, a factor that is known to influence the performance of a magnetic-resonance-imaging (MRI) contrast agent. Excellent stability and biocompatibility of the nanoparticle suspension was achieved using a novel coating based on hydrocaffeic acid (HCA), which was confirmed with a detailed Fourier-transform infrared spectroscopy (FTIR) study. An in vitro study on a human-bladder papillary urothelial neoplasm RT4 cell line confirmed that HCA-Fe–Pt nanoparticles showed no cytotoxicity, even at a very high concentration (550 μg Fe–Pt per mL), with no delayed cytotoxic effect being detected. This indicates that the HCA coating provides excellent biocompatibility of the nanoparticles, which is a prerequisite for the material to be used as a safe contrast agent for MRI. The cellular uptake and internalization mechanism were studied using ICP-MS and TEM analyses. Furthermore, it was shown that even a very low concentration of Fe–Pt nanoparticles (<10 μg mL−1) in the cells is enough to decrease the T2 relaxation times by 70%. In terms of the MRI imaging, this means a large improvement in the contrast, even at a low nanoparticle concentration and an easier visualization of the tissues containing nanoparticles, proving that HCA-coated Fe–Pt nanoparticles have the potential to be used as an efficient and safe MRI contrast agent. Study of magnetic interactions revealed optimal size and morphology of Fe–Pt nanoparticles. Novel biocompatible hydrocaffeic acid coating was used to prepare highly efficient and safe MRI contrast agent, which was proven by in vitro study.![]()
Collapse
|
25
|
In focus in HCB. Histochem Cell Biol 2017; 149:1-2. [PMID: 29218409 DOI: 10.1007/s00418-017-1625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|