1
|
Wahl F, Huo J, Du S, Schoen J, Chen S. Maternal stress and the early embryonic microenvironment: investigating long-term cortisol effects on bovine oviductal epithelial cells using air-liquid interface culture. J Anim Sci Biotechnol 2024; 15:129. [PMID: 39358766 PMCID: PMC11447938 DOI: 10.1186/s40104-024-01087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 10/04/2024] Open
Abstract
The oviduct epithelium is the initial maternal contact site for embryos after fertilization, offering the microenvironment before implantation. This early gestation period is particularly sensitive to stress, which can cause reduced fertility and reproductive disorders in mammals. Nevertheless, the local impact of elevated stress hormones on the oviduct epithelium has received limited attention to date, except for a few reports on polyovulatory species like mice and pigs. In this study, we focused on the effects of chronic maternal stress on cattle, given its association with infertility issues in this monoovulatory species. Bovine oviduct epithelial cells (BOEC) differentiated at the air-liquid interface (ALI) were stimulated with 250 nmol/L cortisol for 1 or 3 weeks. Subsequently, they were assessed for morphology, bioelectrical properties, and gene expression related to oviduct function, glucocorticoid pathway, cortisol metabolism, inflammation, and apoptosis. Results revealed adverse effects of cortisol on epithelium structure, featured by deciliation, vacuole formation, and multilayering. Additionally, cortisol exposure led to an increase in transepithelial potential difference, downregulated mRNA expression of the major glucocorticoid receptor (NR3C1), upregulated the expression of cortisol-responsive genes (FKBP5, TSC22D3), and significant downregulation of oviductal glycoprotein 1 (OVGP1) and steroid receptors PGR and ESR1. The systematic comparison to a similar experiment previously performed by us in porcine oviduct epithelial cells, indicated that bovine cultures were more susceptible to elevated cortisol levels than porcine. The distinct responses between both species are likely linked to their divergence in the cortisol-induced expression changes of HSD11B2, an enzyme controlling the cellular capacity to metabolise cortisol. These findings provide insights into the species-specific reactions and reproductive consequences triggered by maternal stress.
Collapse
Affiliation(s)
- Fiona Wahl
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Jianchao Huo
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Shuaizhi Du
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jennifer Schoen
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Shuai Chen
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
2
|
Xue Y, Zheng H, Xiong Y, Li K. Extracellular vesicles affecting embryo development in vitro: a potential culture medium supplement. Front Pharmacol 2024; 15:1366992. [PMID: 39359245 PMCID: PMC11445000 DOI: 10.3389/fphar.2024.1366992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are nanometer-sized lipid bilayer vesicles released by cells, playing a crucial role in mediating cellular communication. This review evaluates the effect of EVs on early embryonic development in vitro by systematically searching the literature across three databases, Embase, PubMed, and Scopus, from inception (Embase, 1947; PubMed, 1996; and Scopus, 2004) to 30 June 2024. A total of 28 studies were considered relevant and included in this review. The EVs included in these investigations have been recovered from a range of sources, including oviduct fluid, follicular fluid, uterine fluid, seminal plasma, embryos, oviduct epithelial cells, endometrial epithelial cells, amniotic cells, and endometrial-derived mesenchymal stem cells collected primarily from mice, rabbits, cattle and pigs. This diversity in EV sources highlights the broad interest and potential applications of EVs in embryo culture systems. These studies have demonstrated that supplementation with EVs derived from physiologically normal biofluids and cells to the embryo culture medium system has positive effects on embryonic development. Conversely, EVs derived from cells under pathological conditions have shown a negative impact. This finding underscores the importance of the source and condition of EVs used in culture media. Further, the addition of EVs as a culture medium supplement holds significant therapeutic potential for optimizing in vitro embryo culture systems. In conclusion, this evaluation offers a thorough assessment of the available data on the role of EVs in embryo culture media and highlights the potential and challenges of using EVs in vitro embryo production.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haixia Zheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Huo J, Mówińska AM, Eren AN, Schoen J, Chen S. Oxygen levels affect oviduct epithelium functions in air-liquid interface culture. Histochem Cell Biol 2024; 161:521-537. [PMID: 38530407 PMCID: PMC11162385 DOI: 10.1007/s00418-024-02273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/28/2024]
Abstract
Key reproductive events such as fertilization and early embryonic development occur in the lumen of the oviduct. Since investigating these processes in vivo is both technically challenging and ethically sensitive, cell culture models have been established to reproduce the oviductal microenvironment. Compartmentalized culture systems, particularly air-liquid interface cultures (ALI; cells access the culture medium only from the basolateral cell side), result in highly differentiated oviduct epithelial cell cultures. The oxygen (O2) tension within the oviduct is 4-10% across species, and its reduced O2 content is presumed to be important for early reproductive processes. However, cell culture models of the oviduct are typically cultivated without O2 regulation and therefore at about 18% O2. To investigate the impact of O2 levels on oviduct epithelium functions in vitro, we cultured porcine oviduct epithelial cells (POEC) at the ALI using both physiological (5%) and supraphysiological (18%) O2 levels and two different media regimes. Epithelium architecture, barrier function, secretion of oviduct fluid surrogate (OFS), and marker gene expression were comparatively assessed. Under all culture conditions, ALI-POEC formed polarized, ciliated monolayers with appropriate barrier function. Exposure to 18% O2 accelerated epithelial differentiation and significantly increased the apical OFS volume and total protein content. Expression of oviduct genes and the abundance of OVGP1 (oviduct-specific glycoprotein 1) in the OFS were influenced by both O2 tension and medium choice. In conclusion, oviduct epithelial cells can adapt to a supraphysiological O2 environment. This adaptation, however, may alter their capability to replicate in vivo tissue characteristics.
Collapse
Affiliation(s)
- Jianchao Huo
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Aleksandra Maria Mówińska
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Ali Necmi Eren
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Jennifer Schoen
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
- Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany.
| | - Shuai Chen
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| |
Collapse
|
5
|
McGlade EA, Mao J, Stephens KK, Kelleher AM, Maddison LA, Bernhardt ML, DeMayo FJ, Lydon JP, Winuthayanon W. Generation of Oviductal Glycoprotein 1 Cre Mouse Model for the Study of Secretory Epithelial Cells of the Oviduct. Endocrinology 2024; 165:bqae070. [PMID: 38916490 PMCID: PMC11210311 DOI: 10.1210/endocr/bqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.
Collapse
Affiliation(s)
- Emily A McGlade
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jiude Mao
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kalli K Stephens
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Andrew M Kelleher
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Lisette A Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miranda L Bernhardt
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Yamatoya K, Kurosawa M, Hirose M, Miura Y, Taka H, Nakano T, Hasegawa A, Kagami K, Yoshitake H, Goto K, Ueno T, Fujiwara H, Shinkai Y, Kan FWK, Ogura A, Araki Y. The fluid factor OVGP1 provides a significant oviductal microenvironment for the reproductive process in golden hamster†. Biol Reprod 2024; 110:465-475. [PMID: 37995271 PMCID: PMC10941085 DOI: 10.1093/biolre/ioad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The mammalian oviductal lumen is a specialized chamber that provides an environment that strictly regulates fertilization and early embryogenesis, but the regulatory mechanisms to gametes and zygotes are unclear. We evaluated the oviductal regulation of early embryonic development using Ovgp1 (encoding an oviductal humoral factor, OVGP1)-knockout golden hamsters. The experimental results revealed the following: (1) female Ovgp1-knockout hamsters failed to produce litters; (2) in the oviducts of Ovgp1-knockout animals, fertilized eggs were sometimes identified, but their morphology showed abnormal features; (3) the number of implantations in the Ovgp1-knockout females was low; (4) even if implantations occurred, the embryos developed abnormally and eventually died; and (5) Ovgp1-knockout female ovaries transferred to wild-type females resulted in the production of Ovgp1-knockout egg-derived OVGP1-null litters, but the reverse experiment did not. These results suggest that OVGP1-mediated physiological events are crucial for reproductive process in vivo, from fertilization to early embryonic development. This animal model shows that the fate of the zygote is determined not only genetically, but also by the surrounding oviductal microenvironment.
Collapse
Affiliation(s)
- Kenji Yamatoya
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Masaru Kurosawa
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akiko Hasegawa
- Department of Obstetrics & Gynecology, Hyogo Medical University, Hyogo, Japan
| | - Kyosuke Kagami
- Department of Obstetrics & Gynecology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Hiroshi Yoshitake
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takashi Ueno
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics & Gynecology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Saitama, Japan
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yoshihiko Araki
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
- Division of Microbiology and Immunology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Obstetrics & Gynecology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Bollig KJ, Senapati S, Takacs P, Robins JC, Haisenleder DJ, Beer LA, Speicher DW, Koelper NC, Barnhart KT. Evaluation of novel biomarkers for early pregnancy outcome prediction†. Biol Reprod 2024; 110:548-557. [PMID: 38011676 PMCID: PMC10941089 DOI: 10.1093/biolre/ioad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE To assess performance and discriminatory capacity of commercially available enzyme-linked immunosorbent assays of biomarkers for predicting first trimester pregnancy outcome in a multi-center cohort. DESIGN In a case-control study at three academic centers of women with pain and bleeding in early pregnancy, enzyme-linked immunosorbent assays of biomarkers were screened for assay performance. Performance was assessed via functional sensitivity, assay reportable range, recovery/linearity, and intra-assay precision (%Coefficient of Variation). Top candidates were analyzed for discriminatory capacity for viability and location among 210 women with tubal ectopic pregnancy, viable intrauterine pregnancy, or miscarriage. Assay discrimination was assessed by visual plots, area under the curve with 95% confidence intervals, and measures of central tendency with two-sample t-tests. RESULTS Of 25 biomarkers evaluated, 22 demonstrated good or acceptable assay performance. Transgelin-2, oviductal glycoprotein, and integrin-linked kinase were rejected due to poor performance. The best biomarkers for discrimination of pregnancy location were pregnancy-specific beta-1-glycoprotein 9, pregnancy-specific beta-1-glycoprotein 1, insulin-like growth factor binding protein 1, kisspeptin (KISS1), pregnancy-specific beta-1-glycoprotein 3, and beta parvin (PARVB). The best biomarkers for discrimination of pregnancy viability were pregnancy-specific beta-1-glycoprotein 9, pregnancy-specific beta-1-glycoprotein 3, EH domain-containing protein 3, KISS1, WAP four-disulfide core domain protein 2 (HE4), quiescin sulfhydryl oxidase 2, and pregnancy-specific beta-1-glycoprotein 1. CONCLUSION Performance of commercially available enzyme-linked immunosorbent assays was acceptable for a panel of novel biomarkers to predict early pregnancy outcome. Of these, six and seven candidates demonstrated good discriminatory capacity of pregnancy location and viability, respectively, when validated in a distinct external population. Four markers demonstrated good discrimination for both location and viability.
Collapse
Affiliation(s)
- Kassie J Bollig
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Takacs
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jared C Robins
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Daniel J Haisenleder
- Department of Internal Medicine and the Center for Research in Reproduction, University of Virginia, Charlottesville, VA, USA
| | - Lynn A Beer
- Center for Systems & Computational Biology, The Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Center for Systems & Computational Biology, The Wistar Institute, Philadelphia, PA, USA
| | - Nathanael C Koelper
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt T Barnhart
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Visnyaiová K, Varga I, Feitscherová C, Pavlíková L, Záhumenský J, Mikušová R. Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ. Front Cell Dev Biol 2024; 12:1325565. [PMID: 38516130 PMCID: PMC10955054 DOI: 10.3389/fcell.2024.1325565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The uterine tube, as well as other parts of the upper female reproductive system, is immunologically unique in its requirements for tolerance to allogenic sperm and semi-allogenic embryos, yet responds to an array of sexually transmitted pathogens. To understand this dichotomy, there is a need to understand the functional morphology of immune cells in the wall of the uterine tube. Thus, we reviewed scientific literature regarding immune cells and the human uterine tube by using the scientific databases. The human uterine tube has a diverse population of immunocompetent cells representing both the innate and adaptive immune systems. We describe in detail the possible roles of cells of the mononuclear phagocyte system (macrophages and dendritic cells), T and B lymphocytes, natural killer cells, neutrophils and mast cells in association with the reproductive functions of uterine tubes. We are also discussing about the possible "immune privilege" of the uterine tube, as another mechanism to tolerate sperm and embryo without eliciting an inflammatory immune response. In uterine tube is not present an anatomical blood-tissue barrier between antigens and circulation. However, the immune cells of the uterine tube probably represent a type of "immunological barrier," which probably includes the uterine tube among the immunologically privileged organs. Understanding how immune cells in the female reproductive tract play roles in reproduction is essential to understand not only the mechanisms of gamete transport and fertilization as well as embryo transport through the uterine tube, but also in improving results from assisted reproduction.
Collapse
Affiliation(s)
- Kristína Visnyaiová
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Feitscherová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lada Pavlíková
- Department of Rehabilitation Studies, Faculty of Health Care Studies, University of Western Bohemia, Pilsen, Czechia
| | - Jozef Záhumenský
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Renáta Mikušová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
9
|
Chen W, Li Z, Zhong R, Sun W, Chu M. Expression profiles of oviductal mRNAs and lncRNAs in the follicular phase and luteal phase of sheep (Ovis aries) with 2 fecundity gene (FecB) genotypes. G3 (BETHESDA, MD.) 2023; 14:jkad270. [PMID: 38051961 PMCID: PMC10755197 DOI: 10.1093/g3journal/jkad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
FecB (also known as BMPR1B) is a crucial gene in sheep reproduction, which has a mutation (A746G) that was found to increase the ovulation rate and litter size. The FecB mutation is associated with reproductive endocrinology, such mutation can control external estrous characteristics and affect follicle-stimulating hormone during the estrous cycle. Previous researches showed that the FecB mutation can regulate the transcriptomic profiles in the reproductive-related tissues including hypothalamus, pituitary, and ovary during the estrous cycle of small-tailed Han (STH) sheep. However, little research has been reported on the correlation between FecB mutation and the estrous cycle in STH sheep oviduct. To investigate the coding and noncoding transcriptomic profiles involved in the estrous cycle and FecB in the sheep oviduct, RNA sequencing was performed to analyze the transcriptomic profiles of mRNAs and long noncoding RNAs (lncRNAs) in the oviduct during the estrous cycle of STH sheep with mutant (FecBBB) and wild-type (FecB++) genotypes. In total, 21,863 lncRNAs and 43,674 mRNAs were screened, the results showed that mRNAs had significantly higher expression levels than the lncRNAs, and the expression levels of these screened transcripts were lower in the follicular phase than they were in the luteal phase. Among them, the oviductal glycoprotein gene (OVGP1) had the highest expression level. In the comparison between the follicular and luteal phases, 57 differentially expressed (DE) lncRNAs and 637 DE mRNAs were detected, including FSTL5 mRNA and LNC_016628 lncRNA. In the comparison between the FecBBB and FecB++ genotypes, 26 DE lncRNAs and 421 DE mRNAs were detected, including EEF1D mRNA and LNC_006270 lncRNA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis indicated that the DE mRNAs were enriched mainly in terms related to reproduction such as the tight junction, SAGA complex, ATP-binding cassette, nestin, and Hippo signaling pathway. The interaction network between DE lncRNAs and DE mRNAs indicated that LNC_018420 may be the key regulator in sheep oviduct. Together, our results can provide novel insights into the oviductal transcriptomic function against a FecB mutation background in sheep reproduction.
Collapse
Affiliation(s)
- Weihao Chen
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhifeng Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Neubrand L, Pothmann H, Besenfelder U, Havlicek V, Gabler C, Dolezal M, Aurich C, Drillich M, Wagener K. In vivo dynamics of pro-inflammatory factors, mucins, and polymorph nuclear neutrophils in the bovine oviduct during the follicular and luteal phase. Sci Rep 2023; 13:22353. [PMID: 38102308 PMCID: PMC10724147 DOI: 10.1038/s41598-023-49151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Dynamic functional changes in the oviductal microenvironment are the prerequisite for the establishment of pregnancy. The objective of this study was to gain the first insights into oestrous cycle-dependent dynamics of polymorph nuclear neutrophils (PMN) and the mRNA abundance of selected genes and their correlations in the oviduct of living cows. Mini-cytobrush samples were taken from the oviducts of healthy heifers (n = 6) and cows (n = 7) during the follicular (FOL) and luteal phase (LUT) by transvaginal endoscopy. Total RNA was isolated from the samples and subjected to reverse transcription-quantitative PCR for selected pro-inflammatory factors, glycoproteins, and a metabolic marker. The percentage of PMN was determined by cytological examination. The mean PMN percentage was 2.8-fold greater during LUT than FOL. During LUT, significantly greater mRNA abundance of the pro-inflammatory factors IL1B, CXCL1, CXCL3, and CXCL8 was observed. The OVGP1 mRNA abundance was twice as high during FOL than in LUT. Pearson correlation, principal component analysis and heatmap analyses indicated characteristic functional patterns with strong correlations among investigated factors. Using this novel approach, we illustrate complex physiological dynamics and interactions of the mRNA expression of pro-inflammatory factors, mucins, OVGP1, and PMN in the oviduct during the oestrous cycle.
Collapse
Affiliation(s)
- L Neubrand
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - H Pothmann
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - U Besenfelder
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - V Havlicek
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - C Gabler
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - M Dolezal
- Platform for Bioinformatics and Biostatistics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - C Aurich
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Unit for Reproduction Medicine and Udder Health, Clinic for Farm Animals, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Weigert M, Li Y, Zhu L, Eckart H, Bajwa P, Krishnan R, Ackroyd S, Lastra RR, Bilecz A, Basu A, Lengyel E, Chen M. A Cellular atlas of the human fallopian tube reveals the metamorphosis of secretory epithelial cells during the menstrual cycle and menopause. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298470. [PMID: 38045369 PMCID: PMC10690352 DOI: 10.1101/2023.11.22.23298470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The fallopian tube, connecting the uterus with the ovary, is a dynamic organ that undergoes cyclical changes and is the site of several diseases, including serous cancer. Here, we use single-cell technologies to construct a comprehensive cell map of healthy pre-menopausal fallopian tubes, capturing the impact of the menstrual cycle and menopause on different fallopian tube cells at the molecular level. The comparative analysis between pre- and post-menopausal fallopian tubes reveals substantial shifts in cellular abundance and gene expression patterns, highlighting the physiological changes associated with menopause. Further investigations into menstrual cycle phases illuminate distinct molecular states in secretory epithelial cells caused by hormonal fluctuations. The markers we identified characterizing secretory epithelial cells provide a valuable tool for classifying ovarian cancer subtypes. Graphical summary Graphical summary of results. During the proliferative phase (estrogen high ) of the menstrual cycle, SE2 cells (OVGP1 + ) dominate the fallopian tube (FT) epithelium, while SE1 cells (OVGP1 - ) dominate the epithelium during the secretory phase. Though estrogen levels decrease during menopause, SE post-cells (OVGP1 + , CXCL2 + ) make up most of the FT epithelium.
Collapse
|
12
|
Csöbönyeiová M, Varga I, Lapides L, Pavlíková L, Feitscherová C, Klein M. From a Passive Conduit to Highly Dynamic Organ. What are the Roles of Uterine Tube Epithelium in Reproduction? Physiol Res 2022. [DOI: 10.33549/physiolres.934954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intra-abdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
Collapse
Affiliation(s)
| | - I Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
13
|
CSÖBÖNYEIOVÁ M, VARGA I, LAPIDES L, PAVLÍKOVÁ L, FEITSCHEROVÁ C, KLEIN M. From a Passive Conduit to Highly Dynamic Organ. What are the Roles of Uterine Tube Epithelium in Reproduction? Physiol Res 2022; 71:S11-S20. [PMID: 36592437 PMCID: PMC9853994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intra-abdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
Collapse
Affiliation(s)
- Mária CSÖBÖNYEIOVÁ
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivan VARGA
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Lenka LAPIDES
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic,ISCARE, Reproduction Clinic, Gynecology and Urology, Bratislava, Slovak Republic
| | - Lada PAVLÍKOVÁ
- Department of Rehabilitation Studies, Faculty of Health Care Studies, University of West Bohemia, Pilsen, Czech Republic
| | - Claudia FEITSCHEROVÁ
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Martin KLEIN
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
14
|
Bai C, Su M, Zhang Y, Lin Y, Sun Y, Song L, Xiao N, Xu H, Wen H, Zhang M, Ping J, Liu J, Hui R, Li H, Chen J. Oviductal Glycoprotein 1 Promotes Hypertension by Inducing Vascular Remodeling Through an Interaction With MYH9. Circulation 2022; 146:1367-1382. [PMID: 36172862 DOI: 10.1161/circulationaha.121.057178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hypertension is a common cardiovascular disease that is related to genetic and environmental factors, but its mechanisms remain unclear. DNA methylation, a classic epigenetic modification, not only regulates gene expression but is also susceptible to environmental factors, linking environmental factors to genetic modification. Therefore, globally screening differential genomic DNA methylation in patients with hypertension is important for investigating hypertension mechanisms. METHODS Differential genomic DNA methylation in patients with hypertension, individuals with prehypertension, and healthy control individuals was screened using Illumina 450K BeadChip and verified by pyrosequencing. Plasma OVGP1 (oviduct glycoprotein 1) levels were determined using an enzyme-linked immunosorbent assay. Ovgp1 transgenic and knockout mice were generated to analyze the function of OVGP1. The blood pressure levels of the mouse models were measured using the tail-cuff system and radiotelemetry methods. The role of OVGP1 in vascular remodeling was determined by vascular relaxation studies. Protein-protein interactions were investigated using a pull-down/mass spectrometry assay and verified with coimmunoprecipitation and pull-down assays. RESULTS We found a hypomethylated site at cg20823859 in the promoter region of OVGP1 and plasma OVGP1 levels were significantly increased in patients with hypertension. This finding indicates that OVGP1 is associated with hypertension. In Ovgp1 transgenic mice, OVGP1 overexpression caused an increase in blood pressure, dysfunctional vasoconstriction and vasodilation, remodeling of arterial walls, and increased vascular superoxide stress and inflammation, and these phenomena were exacerbated by angiotensin II infusion. In contrast, OVGP1 deficiency attenuated angiotensin II-induced vascular oxidase stress, inflammation, and collagen deposition. These findings indicate that OVGP1 is a prohypertensive factor that directly promotes vascular remodeling. Pull-down and coimmunoprecipitation assays showed that MYH9 (nonmuscle myosin heavy chain IIA) interacted with OVGP1, whereas inhibition of MYH9 attenuated OVGP1-induced hypertension and vascular remodeling. CONCLUSIONS Hypomethylation at cg20823859 in the promoter region of OVGP1 is associated with hypertension and induces upregulation of OVGP1. The interaction between OVGP1 and MYH9 contributes to vascular remodeling and dysfunction. Therefore, OVGP1 is a prohypertensive factor that promotes vascular remodeling by binding with MYH9.
Collapse
Affiliation(s)
- Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China (C.B.)
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China (M.S.)
| | - Yaohua Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China (Y.Z.)
| | - Yahui Lin
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases (Y.L.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiedan Ping
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital (C.B., Y.Z., Y.S., L.S., N.X., H.X., H.W., M.Z., J.P., J.L., R.H., H.L., J.C.), National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China (J.C.)
| |
Collapse
|
15
|
Hishikawa Y, Takizawa T, Koji T. In focus in HCB: new histochemical insights into mammalian gametogenesis. Histochem Cell Biol 2022; 157:269-271. [PMID: 35230484 DOI: 10.1007/s00418-022-02083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Takehiko Koji
- Office of Research Initiative and Development, Nagasaki University, Nagasaki, 852-8521, Japan.
| |
Collapse
|