1
|
Maas H, Noort W. Knee movements cause changes in the firing behaviour of muscle spindles located within the mono-articular ankle extensor soleus in the rat. Exp Physiol 2024; 109:125-134. [PMID: 36827200 PMCID: PMC10988709 DOI: 10.1113/ep090764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
We recently showed that within an intact muscle compartment, changing the length of one muscle affects the firing behaviour of muscle spindles located within a neighbouring muscle. The conditions tested, however, involved muscle lengths and relative positions that were beyond physiological ranges. The aim of the present study was to investigate the effects of simulated knee movements on the firing behaviour of muscle spindles located within rat soleus (SO) muscle. Firing from single muscle spindle afferents in SO was measured intra-axonally for different lengths (static) and during lengthening (dynamic) of the lateral gastrocnemius and plantaris muscles. Also, the location of the spindle within the muscle was assessed. Changing the length of synergistic ankle plantar flexors (simulating different static knee positions, between 45 and 130°) affected the force threshold, but not the length threshold, of SO muscle spindles. The effects on type II afferents were substantially (four times) higher than those on type IA afferents. Triangular stretch-shortening of synergistic muscles (simulating dynamic knee joint rotations of 15°) caused sudden changes in the firing rate of SO type IA and II afferents. Lengthening decreased and shortening increased the firing rate, independent of spindle location. This supports our prediction that the major point of application of forces exerted by connections between adjacent muscles is at the distal end of SO. We conclude that muscle spindles provide the CNS with information about the condition of adjacent joints that the muscle does not span.
Collapse
Affiliation(s)
- Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Flight Muscle and Wing Mechanical Properties are Involved in Flightlessness of the Domestic Silkmoth, Bombyx mori. INSECTS 2020; 11:insects11040220. [PMID: 32252362 PMCID: PMC7240457 DOI: 10.3390/insects11040220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
Flight loss has occurred in many winged insect taxa. The flightless silkmoth Bombyx mori, is domesticated from the wild silkmoth, Bombyx mandarina, which can fly. In this paper, we studied morphological characteristics attributed to flightlessness in silkmoths. Three domestic flightless B. mori strains and one B. mandarina population were used to compare morphological components of the flight apparatus, including wing characteristics (shape, forewing area, loading, and stiffness), flight muscle (weight, ratio, and microscopic detail) and body mass. Compared with B. mandarina, B. mori strains have a larger body, greater wing loading, more flexible wings and a lower flight muscle ratio. The arrangement in microscopy of dorsal longitudinal flight muscles (DLFMs) of B. mori was irregular. Comparative analysis of the sexes suggests that degeneration of flight muscles and reduction of wing mechanical properties (stiffness) are associated with silkmoth flightlessness. The findings provide important clues for further research of the molecular mechanisms of B. mori flight loss.
Collapse
|
3
|
Dependence of muscle and deep fascia stiffness on the contraction levels of the quadriceps: An in vivo supersonic shear-imaging study. J Electromyogr Kinesiol 2019; 45:33-40. [DOI: 10.1016/j.jelekin.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
|
4
|
Holt NC. Beyond bouncy gaits: The role of multiscale compliance in skeletal muscle performance. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:50-59. [DOI: 10.1002/jez.2261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Natalie C. Holt
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona
| |
Collapse
|
5
|
Bordoni B, Marelli F, Morabito B, Castagna R. A New Concept of Biotensegrity Incorporating Liquid Tissues: Blood and Lymph. J Evid Based Integr Med 2018; 23:2515690X18792838. [PMID: 30124054 PMCID: PMC6102753 DOI: 10.1177/2515690x18792838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The definition of fascia includes tissues of mesodermal derivation, considered as
specialized connective tissue: blood and lymph. As water shapes rocks, bodily fluids
modify shapes and functions of bodily structures. Bodily fluids are silent witnesses of
the mechanotransductive information, allowing adaptation and life, transporting
biochemical and hormonal signals. While the solid fascial tissue divides, supports, and
connects the different parts of the body system, the liquid fascial tissue feeds and
transports messages for the solid fascia. The focus of this article is to reconsider the
model of biotensegrity because it does not take into account the liquid fascia, and to try
to integrate the fascial continuum with the lymph and the blood in a new model. The name
given to this new model is RAIN—Rapid Adaptability of Internal Network.
Collapse
Affiliation(s)
- Bruno Bordoni
- 1 Institute of Hospitalization and Care with Scientific Address, Foundation Don Carlo Gnocchi IRCCS, Milan, Italy.,2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Fabiola Marelli
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Bruno Morabito
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Roberto Castagna
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy
| |
Collapse
|
6
|
McLoon LK, Vicente A, Fitzpatrick KR, Lindström M, Pedrosa Domellöf F. Composition, Architecture, and Functional Implications of the Connective Tissue Network of the Extraocular Muscles. Invest Ophthalmol Vis Sci 2018; 59:322-329. [PMID: 29346490 PMCID: PMC5773232 DOI: 10.1167/iovs.17-23003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally. Methods Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment. Results Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles. Conclusions A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - André Vicente
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Krysta R Fitzpatrick
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mona Lindström
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Fatima Pedrosa Domellöf
- Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Maas H, Veeger HEJD, Stegeman DF. Understanding the constraints of finger motor control. J Electromyogr Kinesiol 2017; 38:182-186. [PMID: 29089176 DOI: 10.1016/j.jelekin.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands.
| | - H E J Dirkjan Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands; Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Dick F Stegeman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands; Donders Institute of Brain, Cognition and Behaviour, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Marinho HVR, Amaral GM, Moreira BS, Santos TRT, Magalhães FA, Souza TR, Fonseca ST. Myofascial force transmission in the lower limb: An in vivo experiment. J Biomech 2017; 63:55-60. [DOI: 10.1016/j.jbiomech.2017.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 01/26/2023]
|
9
|
Mirakhorlo M, Maas H, Veeger DHEJ. Timing and extent of finger force enslaving during a dynamic force task cannot be explained by EMG activity patterns. PLoS One 2017; 12:e0183145. [PMID: 28817708 PMCID: PMC5560573 DOI: 10.1371/journal.pone.0183145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/31/2017] [Indexed: 11/19/2022] Open
Abstract
Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22–30 years) flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N) orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS) and extensor digitorum (ED) in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N) with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260–370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly) responsible for the observed increase in force enslaving during index finger flexion.
Collapse
Affiliation(s)
- Mojtaba Mirakhorlo
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- * E-mail:
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - DirkJan H. E. J. Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
10
|
Resistance to radial expansion limits muscle strain and work. Biomech Model Mechanobiol 2017; 16:1633-1643. [PMID: 28432448 DOI: 10.1007/s10237-017-0909-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle's ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.
Collapse
|
11
|
van den Noort JC, van Beek N, van der Kraan T, Veeger DHEJ, Stegeman DF, Veltink PH, Maas H. Variable and Asymmetric Range of Enslaving: Fingers Can Act Independently over Small Range of Flexion. PLoS One 2016; 11:e0168636. [PMID: 27992598 PMCID: PMC5167409 DOI: 10.1371/journal.pone.0168636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
The variability in the numerous tasks in which we use our hands is very large. However, independent movement control of individual fingers is limited. To assess the extent of finger independency during full-range finger flexion including all finger joints, we studied enslaving (movement in non-instructed fingers) and range of independent finger movement through the whole finger flexion trajectory in single and multi-finger movement tasks. Thirteen young healthy subjects performed single- and multi-finger movement tasks under two conditions: active flexion through the full range of movement with all fingers free to move and active flexion while the non-instructed finger(s) were restrained. Finger kinematics were measured using inertial sensors (PowerGlove), to assess enslaving and range of independent finger movement. Although all fingers showed enslaving movement to some extent, highest enslaving was found in adjacent fingers. Enslaving effects in ring and little finger were increased with movement of additional, non-adjacent fingers. The middle finger was the only finger affected by restriction in movement of non-instructed fingers. Each finger showed a range of independent movement before the non-instructed fingers started to move, which was largest for the index finger. The start of enslaving was asymmetrical for adjacent fingers. Little finger enslaving movement was affected by multi-finger movement. We conclude that no finger can move independently through the full range of finger flexion, although some degree of full independence is present for smaller movements. This range of independent movement is asymmetric and variable between fingers and between subjects. The presented results provide insight into the role of finger independency for different types of tasks and populations.
Collapse
Affiliation(s)
- Josien C. van den Noort
- Biomedical Signals and Systems, MIRA Institute, University of Twente, Enschede, the Netherlands
- Department of Rehabilitation medicine, VU University medical center, MOVE Research Institute Amsterdam, the Netherlands
- * E-mail:
| | - Nathalie van Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Thomas van der Kraan
- Donders Institute, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - DirkJan H. E. J. Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Dick F. Stegeman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
- Donders Institute, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter H. Veltink
- Biomedical Signals and Systems, MIRA Institute, University of Twente, Enschede, the Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| |
Collapse
|
12
|
Mörl F, Siebert T, Häufle D. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study. Biomech Model Mechanobiol 2015; 15:245-58. [DOI: 10.1007/s10237-015-0688-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 11/30/2022]
|
13
|
A semiautomatic method for in vivo three-dimensional quantitative analysis of fascial layers mobility based on 3D ultrasound scans. Int J Comput Assist Radiol Surg 2015; 10:1721-35. [DOI: 10.1007/s11548-015-1167-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
|
14
|
Stahl VA, Nichols TR. Short-term effect of crural fasciotomy on kinematic variability and propulsion during level locomotion. J Mot Behav 2014; 46:339-49. [PMID: 24914468 DOI: 10.1080/00222895.2014.914885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Treadmill locomotion can be characterized by consistent step-to-step kinematics despite the redundant degrees of freedom. The authors investigated the effect of disrupting the crural fascia in decerebrate cats to determine if the crural fascia contributed to kinematic variability and propulsion in the limb. Crural fasciotomy resulted in statistically significant decreases in velocity and acceleration in the joint angles during level walking, before, during, and after paw-off, particularly at the ankle. A further finding was an increase in variance of the limb segment trajectories in the frontal plane. The crural fascia therefore provides force transmission and reduction in kinematic variability to the limb during locomotion.
Collapse
Affiliation(s)
- V A Stahl
- a School of Applied Physiology, Georgia Institute of Technology , Atlanta
| | | |
Collapse
|
15
|
Pancheri F, Eng C, Lieberman D, Biewener A, Dorfmann L. A constitutive description of the anisotropic response of the fascia lata. J Mech Behav Biomed Mater 2014; 30:306-23. [DOI: 10.1016/j.jmbbm.2013.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|
16
|
Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 2007; 209:289-310. [PMID: 16928199 PMCID: PMC2100333 DOI: 10.1111/j.1469-7580.2006.00619.x] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite the functional importance of the human quadriceps femoris in movements such as running, jumping, lifting and climbing, and the known effects of muscle architecture on muscle function, no research has fully described the complex architecture of this muscle group. We used ultrasound imaging techniques to measure muscle thickness, fascicle angle and fascicle length at multiple regions of the four quadriceps muscles in vivo in 31 recreationally active, but non-strength-trained adult men and women. Our analyses revealed a reasonable similarity in the superficial quadriceps muscles, which is suggestive of functional similarity (at least during the uni-joint knee extension task) given that they act via a common tendon. The deep vastus intermedius (VI) is architecturally dissimilar and therefore probably serves a different function(s). Architecture varies significantly along the length of the superficial muscles, which has implications for the accuracy of models that assume a constant intramuscular architecture. It might also have consequences for the efficiency of intra- and intermuscular force transmission. Our results provide some evidence that subjects with a given architecture of one superficial muscle, relative to the rest of the subject sample, also have a similar architecture in other superficial muscles. However, this is not necessarily true for vastus lateralis (VL), and was not the case for VI. Therefore, the relative architecture of one muscle cannot confidently be used to estimate the relative architecture of another. To confirm this, we calculated a value of whole quadriceps architecture by four different methods. Regardless of the method used, we found that the absolute or relative architecture of one muscle could not be used as an indicator of whole quadriceps architecture, although vastus medialis, possibly in concert with VL and the anterior portion of VI, could be used to provide a useful snapshot. Importantly, our estimates of whole quadriceps architecture show a gender difference in whole quadriceps muscle thickness, and that muscle thickness is positively correlated with fascicle angle whereas fascicle length is negatively, although weakly, correlated with fascicle angle. These results are supportive of the validity of estimates of whole quadriceps architecture. These data are interpreted with respect to their implications for neural control strategies, region-specific adaptations in muscle size in response to training, and gender-dependent differences in the response to exercise training.
Collapse
Affiliation(s)
- Anthony J Blazevich
- Centre for Sports Medicine and Human Performance, School of Sport and Education, Brunel University, Uxbridge, UK.
| | | | | |
Collapse
|
17
|
Maas H, Lehti TM, Tiihonen V, Komulainen J, Huijing PA. Controlled intermittent shortening contractions of a muscle–tendon complex: muscle fibre damage and effects on force transmission from a single head of rat EDL. J Muscle Res Cell Motil 2005; 26:259-73. [PMID: 16322914 DOI: 10.1007/s10974-005-9043-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 10/12/2005] [Indexed: 12/23/2022]
Abstract
This study was performed to examine effects of prolonged (3 h) intermittent shortening (amplitude 2 mm) contractions (muscles were excited maximally) of head III of rat extensor digitorum longus muscle (EDL III) on indices of muscle damage and on force transmission within the intact anterior crural compartment. Three hours after the EDL III exercise, muscle fibre damage, as assessed by immunohistochemical staining of structural proteins (i.e. dystrophin, desmin, titin, laminin-2), was found in EDL, tibialis anterior (TA) and extensor hallucis longus (EHL) muscles. The damaged muscle fibres were not uniformly distributed throughout the muscle cross-sections, but were located predominantly near the interface of TA and EDL muscles as well as near intra- and extramuscular neurovascular tracts. In addition, changes were observed in desmin, muscle ankyrin repeat protein 1, and muscle LIM protein gene expression: significantly (P<0.01) higher (1.3, 45.5 and 2.3-fold, respectively) transcript levels compared to the contralateral muscles. Post-EDL III exercise, length-distal force characteristics of EDL III were altered significantly (P<0.05): at high EDL III lengths, active forces decreased and the length range between active slack length and optimum length increased. For all EDL III lengths tested, proximal passive and active force of EDL decreased. The slope of the EDL III length-TA+EHL force curve decreased, which indicates a decrease of the degree of intermuscular interaction between EDL III and TA+EHL. It is concluded that prolonged intermittent shortening contractions of a single head of multi-tendoned EDL muscle results in structural damage to muscle fibres as well as altered force transmission within the compartment. A possible role of myofascial force transmission is discussed.
Collapse
Affiliation(s)
- Huub Maas
- Instituut voor Fundamentele and Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit , Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|