1
|
Visser A, Piskin D, Büchel D, Baumeister J. Electrocortical activity during resistance exercises in healthy young adults-a systematic review. Front Sports Act Living 2024; 6:1466776. [PMID: 39664745 PMCID: PMC11631587 DOI: 10.3389/fspor.2024.1466776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Resistance training (RT) is known to induce both peripheral and central adaptations, resulting in enhanced strength, sports performance, and health benefits. These adaptations are specific to the training stimuli. The acute cortical mechanisms of single sessions resistance exercise (RE) are not yet understood. Therefore, this review investigates the electrocortical activity during acute RE regarding the specific RE stimuli. Methods A systematic literature search was conducted across three databases, focusing on the acute electrocortical activity associated with the muscle contraction type, load, and volume of RE in healthy young adults. Results Out of an initial 1,332 hits, 19 studies were included for data synthesis. The findings from these studies show that the RE load, contraction type, and volume during RE significantly affect brain activity. The current literature exhibits methodological heterogeneity attributed to variations in study quality, differences in the location of cortical sources, the cortical outcome parameter and the use of diverse training interventions. Discussion Despite inconsistencies in the current literature, this review highlights the need to investigate time and frequency-specific characteristics when examining electrocortical activity during RE. More research is necessary to further explore the acute cortical mechanisms related to resistance exercise. Future research could improve our understanding of acute neural responses to RE and provide insights into mechanism underlying more long-term neuroplastic adaptations to RT.
Collapse
Affiliation(s)
- Anton Visser
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Paderborn, Germany
| | | | | | | |
Collapse
|
2
|
Oh E, Shin S, Kim SP. Brain-computer interface in critical care and rehabilitation. Acute Crit Care 2024; 39:24-33. [PMID: 38224957 PMCID: PMC11002623 DOI: 10.4266/acc.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
This comprehensive review explores the broad landscape of brain-computer interface (BCI) technology and its potential use in intensive care units (ICUs), particularly for patients with motor impairments such as quadriplegia or severe brain injury. By employing brain signals from various sensing techniques, BCIs offer enhanced communication and motor rehabilitation strategies for patients. This review underscores the concept and efficacy of noninvasive, electroencephalogram-based BCIs in facilitating both communicative interactions and motor function recovery. Additionally, it highlights the current research gap in intuitive "stop" mechanisms within motor rehabilitation protocols, emphasizing the need for advancements that prioritize patient safety and individualized responsiveness. Furthermore, it advocates for more focused research that considers the unique requirements of ICU environments to address the challenges arising from patient variability, fatigue, and limited applicability of current BCI systems outside of experimental settings.
Collapse
Affiliation(s)
- Eunseo Oh
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Seyoung Shin
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| |
Collapse
|
3
|
Tankisi H, Versace V, Kuppuswamy A, Cole J. The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability. Clin Neurophysiol Pract 2023; 9:39-50. [PMID: 38274859 PMCID: PMC10808861 DOI: 10.1016/j.cnp.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Though a common symptom, fatigue is difficult to define and investigate, occurs in a wide variety of neurological and systemic disorders, with differing pathological causes. It is also often accompanied by a psychological component. As a symptom of long-term COVID-19 it has gained more attention. In this review, we begin by differentiating fatigue, a perception, from fatigability, quantifiable through biomarkers. Central and peripheral nervous system and muscle disorders associated with these are summarised. We provide a comprehensive and objective framework to help identify potential causes of fatigue and fatigability in a given disease condition. It also considers the effectiveness of neurophysiological tests as objective biomarkers for its assessment. Among these, twitch interpolation, motor cortex stimulation, electroencephalography and magnetencephalography, and readiness potentials will be described for the assessment of central fatigability, and surface and needle electromyography (EMG), single fibre EMG and nerve conduction studies for the assessment of peripheral fatigability. The purpose of this review is to guide clinicians in how to approach fatigue, and fatigability, and to suggest that neurophysiological tests may allow an understanding of their origin and interactions. In this way, their differing types and origins, and hence their possible differing treatments, may also be defined more clearly.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Denmark
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Annapoorna Kuppuswamy
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK
- Department of Biomedical Sciences, University of Leeds, UK
| | - Jonathan Cole
- Clinical Neurophysiology, University Hospitals Dorset (Poole), UK
- University of Bournemouth, Poole, UK
| |
Collapse
|
4
|
Visuomotor Tracking Task for Enhancing Activity in Motor Areas of Stroke Patients. Brain Sci 2022; 12:brainsci12081063. [PMID: 36009126 PMCID: PMC9406091 DOI: 10.3390/brainsci12081063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Recovery of motor function following stroke requires interventions to enhance ipsilesional cortical activity. To improve finger motor function following stroke, we developed a movement task with visuomotor feedback and measured changes in motor cortex activity by electroencephalography. Stroke patients performed two types of movement task on separate days using the paretic fingers: a visuomotor tracking task requiring the patient to match a target muscle force pattern with ongoing feedback and a simple finger flexion/extension task without feedback. Movement-related cortical potentials (MRCPs) were recorded before and after the two motor interventions. The amplitudes of MRCPs measured from the ipsilesional hemisphere were significantly enhanced after the visuomotor tracking task but were unchanged by the simple manual movement task. Increased MRCP amplitude preceding movement onset revealed that the control of manual movement using visual feedback acted on the preparatory stage from motor planning to execution. A visuomotor tracking task can enhance motor cortex activity following a brief motor intervention, suggesting efficient induction of use-dependent cortical plasticity in stroke.
Collapse
|
5
|
Suviseshamuthu ES, Shenoy Handiru V, Allexandre D, Hoxha A, Saleh S, Yue GH. EEG-Based Spectral Analysis Showing Brainwave Changes Related to Modulating Progressive Fatigue During a Prolonged Intermittent Motor Task. Front Hum Neurosci 2022; 16:770053. [PMID: 35360287 PMCID: PMC8962200 DOI: 10.3389/fnhum.2022.770053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/10/2022] [Indexed: 12/03/2022] Open
Abstract
Repeatedly performing a submaximal motor task for a prolonged period of time leads to muscle fatigue comprising a central and peripheral component, which demands a gradually increasing effort. However, the brain contribution to the enhancement of effort to cope with progressing fatigue lacks a complete understanding. The intermittent motor tasks (IMTs) closely resemble many activities of daily living (ADL), thus remaining physiologically relevant to study fatigue. The scope of this study is therefore to investigate the EEG-based brain activation patterns in healthy subjects performing IMT until self-perceived exhaustion. Fourteen participants (median age 51.5 years; age range 26−72 years; 6 males) repeated elbow flexion contractions at 40% maximum voluntary contraction by following visual cues displayed on an oscilloscope screen until subjective exhaustion. Each contraction lasted ≈5 s with a 2-s rest between trials. The force, EEG, and surface EMG (from elbow joint muscles) data were simultaneously collected. After preprocessing, we selected a subset of trials at the beginning, middle, and end of the study session representing brain activities germane to mild, moderate, and severe fatigue conditions, respectively, to compare and contrast the changes in the EEG time-frequency (TF) characteristics across the conditions. The outcome of channel- and source-level TF analyses reveals that the theta, alpha, and beta power spectral densities vary in proportion to fatigue levels in cortical motor areas. We observed a statistically significant change in the band-specific spectral power in relation to the graded fatigue from both the steady- and post-contraction EEG data. The findings would enhance our understanding on the etiology and physiology of voluntary motor-action-related fatigue and provide pointers to counteract the perception of muscle weakness and lack of motor endurance associated with ADL. The study outcome would help rationalize why certain patients experience exacerbated fatigue while carrying out mundane tasks, evaluate how clinical conditions such as neurological disorders and cancer treatment alter neural mechanisms underlying fatigue in future studies, and develop therapeutic strategies for restoring the patients' ability to participate in ADL by mitigating the central and muscle fatigue.
Collapse
Affiliation(s)
- Easter S. Suviseshamuthu
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
- *Correspondence: Easter S. Suviseshamuthu
| | - Vikram Shenoy Handiru
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| | - Didier Allexandre
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| | - Armand Hoxha
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Soha Saleh
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| | - Guang H. Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers Biomedical Health Sciences, Newark, NJ, United States
| |
Collapse
|
6
|
Differences in Physiological Signals Due to Age and Exercise Habits of Subjects during Cycling Exercise. SENSORS 2021; 21:s21217220. [PMID: 34770526 PMCID: PMC8587887 DOI: 10.3390/s21217220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022]
Abstract
Numerous studies indicated the physical benefits of regular exercise, but the neurophysiological mechanisms of regular exercise in elders were less investigated. We aimed to compare changes in brain activity during exercise in elderly people and in young adults with and without regular exercise habits. A total of 36 healthy young adults (M/F:18/18) and 35 healthy elderly adults (M/F:20/15) participated in this study. According to exercise habits, each age group were classified into regular and occasional exerciser groups. ECG, EEG, and EMG signals were recorded using V-AMP with a 1-kHz sampling rate. The participants were instructed to perform three 5-min bicycle rides with different exercise loads. The EEG spectral power of elders who exercised regularly revealed the strongest positive correlation with their exercise intensity by using Pearson correlation analysis. The results demonstrate that exercise-induced significant cortical activation in the elderly participants who exercised regularly, and most of the p-values are less than 0.001. No significant correlation was observed between spectral power and exercise intensity in the elders who exercised occasionally. The young participants who exercised regularly had greater cardiac and neurobiological efficiency. Our results may provide a new exercise therapy reference for adult groups with different exercise habits, especially for the elders.
Collapse
|
7
|
Physical or Cognitive Exertion Does Not Influence Cortical Movement Preparation for Rapid Arm Movements. Motor Control 2020; 24:473-498. [DOI: 10.1123/mc.2019-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/18/2022]
Abstract
The contribution of central factors to movement preparation (e.g., the contingent negative variation [CNV]) and the influence of fatigue on such factors are still unclear, even though executive cognitive functions are regarded as key elements in motor control. Therefore, this study examined CNV amplitude with electroencephalography in 22 healthy humans during a rapid arm movement task prior to and following three experimental conditions: (a) a no exertion/control condition, (b) a physical exertion, and (c) a cognitive exertion. CNV amplitude was affected neither by a single bout of physical/cognitive exertion nor by the control condition. Furthermore, no time-on-task effects of the rapid arm movement task on the CNV were found. Exertion did not affect cortical movement preparation, which is in contrast to previous findings regarding time-on-task effects of exertion on CNV. Based on the current findings, the rapid arm movement task is deemed suitable to measure cortical movement preparation, without being affected by learning effects and physical/cognitive exertion.
Collapse
|
8
|
Fiorio M. Modulation of the Motor System by Placebo and Nocebo Effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 139:297-319. [PMID: 30146052 DOI: 10.1016/bs.irn.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is strong behavioral evidence that placebo and nocebo effects can influence aspects of motor performance like speed, force, and resistance to fatigue in athletes and non-athletes alike. These behavioral studies were essential for extending experimental investigation of the placebo and nocebo effects from the pain to the motor domain and to reveal how verbal suggestions and experiential learning are involved in shaping modulatory systems and related behavioral responses. However, the neural underpinnings of these effects in the motor domain are still largely unknown. Studies in healthy subjects demonstrated that the placebo-induced enhancement of force is associated with increased activity in the corticospinal system and that the placebo-induced reduction of fatigue can be disclosed by recording the readiness potential, an electrophysiological sign of movement preparation. Further evidence derives from studies in patients with Parkinson's disease that have directly demonstrated that placebo-induced improvements in motor symptoms are related to changes in subcortical neural firing activity and dopamine release. Future investigations are needed to better clarify the complex neural architecture underpinning the placebo and nocebo effects in the motor domain.
Collapse
Affiliation(s)
- Mirta Fiorio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
9
|
Falvo MJ, Rohrbaugh JW, Alexander T, Earhart GM. Effects of Parkinson disease and antiparkinson medication on central adaptations to repetitive grasping. Life Sci 2018. [PMID: 29526800 DOI: 10.1016/j.lfs.2018.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cortical activity during motor task performance is attenuated in individuals with Parkinson disease (PD) relative to age-matched adults without PD, and this activity is enhanced with antiparkinson medication. It remains unclear, however, whether the relative change in cortical activity over the duration of the task, i.e., central adaptation, is affected individuals with PD, and if so, whether medication corrects for any unique behaviors. Movement-related cortical potentials (MRCPs) were recorded from scalp electrode sites Cz and C1 during 150 repetitive handgrip contractions at 70% of maximal voluntary contraction, in individuals with PD (n = 10) both ON and OFF of their PD medication, and neurologically normal age- and sex-matched controls (n = 10). Repetitions were divided into two Blocks (Block 1 and 2: repetitions 1-60 and 91-150, respectively), and the composite MRCP slopes were calculated during periods representing movement initiation (-2 s to movement onset) and execution (movement onset to 1 s). No significant interactions were noted for either comparison (PD OFF vs. control; PD OFF vs. PD ON), irrespective of electrode site (Cz or C1) or movement period (initiation or execution). Despite similar MRCP slopes and task performance, PD OFF endorsed greater perceived exertion during task performance than controls. In the present study, we observed attenuated task-related cortical activity among individuals with PD OFF relative to controls, but a similar relative adaptive response to a fatiguing task. Additionally, although antiparkinson medication enhanced cortical activity (PD OFF vs. PD ON), central adaptation was similar.
Collapse
Affiliation(s)
- Michael J Falvo
- War Related Illness and Injury Study Center, VA New Jersey Health Care System; East Orange, NJ, United States; New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - John W Rohrbaugh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Thomas Alexander
- War Related Illness and Injury Study Center, VA New Jersey Health Care System; East Orange, NJ, United States; New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Gammon M Earhart
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
10
|
Di Russo F, Berchicci M, Bozzacchi C, Perri R, Pitzalis S, Spinelli D. Beyond the “Bereitschaftspotential”: Action preparation behind cognitive functions. Neurosci Biobehav Rev 2017; 78:57-81. [DOI: 10.1016/j.neubiorev.2017.04.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023]
|
11
|
Spring JN, Place N, Borrani F, Kayser B, Barral J. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue. Front Hum Neurosci 2016; 10:257. [PMID: 27313522 PMCID: PMC4887485 DOI: 10.3389/fnhum.2016.00257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/17/2016] [Indexed: 01/16/2023] Open
Abstract
Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.
Collapse
Affiliation(s)
- Jérôme Nicolas Spring
- Institute of Sport Sciences, Faculty of Social and Political Sciences, University of Lausanne Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences and Department of Physiology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences and Department of Physiology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Jérôme Barral
- Institute of Sport Sciences, Faculty of Social and Political Sciences, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
12
|
Piedimonte A, Benedetti F, Carlino E. Placebo-induced decrease in fatigue: evidence for a central action on the preparatory phase of movement. Eur J Neurosci 2014; 41:492-7. [DOI: 10.1111/ejn.12806] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Alessandro Piedimonte
- Department of Neuroscience; National Institute of Neuroscience; University of Turin Medical School; Corso Raffaello 30 Turin 10125 Italy
| | - Fabrizio Benedetti
- Department of Neuroscience; National Institute of Neuroscience; University of Turin Medical School; Corso Raffaello 30 Turin 10125 Italy
| | - Elisa Carlino
- Department of Neuroscience; National Institute of Neuroscience; University of Turin Medical School; Corso Raffaello 30 Turin 10125 Italy
| |
Collapse
|
13
|
Guo F, Wang JY, Sun YJ, Yang AL, Zhang RH. Movement-related cortical potentials during muscle fatigue induced by upper limb submaximal isometric contractions. Neuroreport 2014; 25:1136-43. [PMID: 25089802 DOI: 10.1097/wnr.0000000000000242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to examine the central neurophysiological mechanisms during fatigue induced by submaximal isometric contractions. A total of 23 individuals participated in the study and were assigned to fatigue and nonfatigue groups. Handgrip force, root mean square (RMS) of surface electromyography (sEMG) signal and movement-related cortical potentials during self-paced submaximal handgrip isometric contractions were assessed for each participant. The experimental data showed significant decreases in both maximal voluntary contraction [-24.3%; F(3, 42)=19.62, P<0.001, ηp=0.48] and RMS [-30.1%; F(3, 42)=19.01, P<0.001, ηp=0.57] during maximal voluntary contractions and a significant increase [F(3, 42)=14.27, P<0.001, ηp=0.50] in the average RMS of sEMG over four blocks in the fatigue group. There was no significant difference in the readiness potential between the fatigue and the nonfatigue groups at early stages, and at late stages, significant differences were observed only at the Fp1 and FC1 sites. Motor potential amplitudes were significantly higher in the fatigue group than in the nonfatigue group irrespective of block or electrode positions. Positive waveforms were observed in the prefrontal cortex in states without muscle fatigue, whereas a negative waveform pattern was observed with muscle fatigue. Significant within-subject correlations were observed between motor potential at the C1 site and RMS of sEMG (r=-0.439, P=0.02, ηp=0.11). Neurophysiological evidence indicates that cortical activity increases in the prefrontal cortex, primary motor cortex and supplementary motor cortex with muscle fatigue. Muscle fatigue appears to have considerable effects on the components of movement-related cortical potentials during movement execution, whereas the readiness potential before movement is sensitive to cognitive demands during prolonged exercise. Our results provide additional evidence for a link between central motor command during movement execution and motor unit recruitment.
Collapse
Affiliation(s)
- Feng Guo
- aDepartment of Physiology, College of Basic Medical Sciences, Jilin University, Jilin bCollege of Human Kinesiology cDepartment of Physical Education, Shenyang Sport University, Shenyang, China
| | | | | | | | | |
Collapse
|
14
|
Menotti F, Berchicci M, Di Russo F, Damiani A, Vitelli S, Macaluso A. The role of the prefrontal cortex in the development of muscle fatigue in Charcot–Marie–Tooth 1A patients. Neuromuscul Disord 2014; 24:516-23. [DOI: 10.1016/j.nmd.2014.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/19/2014] [Indexed: 02/02/2023]
|
15
|
Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks. Int Arch Med 2014; 7:9. [PMID: 24602228 PMCID: PMC3946007 DOI: 10.1186/1755-7682-7-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex.
Collapse
|
16
|
Berchicci M, Menotti F, Macaluso A, Di Russo F. The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Front Hum Neurosci 2013; 7:135. [PMID: 23596408 PMCID: PMC3625743 DOI: 10.3389/fnhum.2013.00135] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/26/2013] [Indexed: 01/10/2023] Open
Abstract
Fatigue has been defined as an exercise-induced decline in force generation capacity because of changes at both the peripheral and central levels. Movement is preceded and accompanied by brain activities related to the preparation and execution of movement (movement related cortical potentials, MRCP), which have been correlated with the perception of effort (RPE). We combined force measurements, surface electromyography (sEMG), peripheral electrical stimulation (maximal twitch, MT) and MRCP analysis to further our understanding of the neural correlates of peripheral and central changes during a fatiguing task involving the lower limbs. Eighteen healthy volunteers performed 4 blocks of isometric knee extensions at 40% of the maximal voluntary contraction (MVC) for a total of 240 2-s contractions. At the baseline and after each block, we measured RPE, MT and MVC. We simultaneously recorded the force of the knee extensor muscles, root mean square (RMS) of the sEMG of the vastus lateralis muscle, and electroencephalography (EEG) from 64 channels. The MRCPs were extracted from the EEG recordings and averaged in the early (Block 1-2) and late (Block 3-4) blocks. Two cohorts were obtained by cluster analysis based on the RPE (i.e., perception of effort) and MT (i.e., peripheral fatigue). We observed a significant decline in both the MVC (-13%) and RMS (-25%) of the sEMG signal over the course of the task; thus, muscle fatigue had occurred in all of the participants regardless of the cohort. The MRCP amplitude was larger in the fatigued than the non-fatigued MT cohort in the supplementary and premotor areas, whereas the MRCP amplitude was larger in the fatigued than the non-fatigued RPE cohort in the aforementioned areas, and also in the primary motor and prefrontal cortices (PFC). The increase in the positive activity of the PFC, along with the perception of effort, represents a novel result, suggesting that it is modulated more by the perception of effort than peripheral fatigue.
Collapse
Affiliation(s)
- Marika Berchicci
- Department of Human Movement, Social and Health Sciences, University of Rome “Foro Italico”Rome, Italy
| | - Federica Menotti
- Department of Human Movement, Social and Health Sciences, University of Rome “Foro Italico”Rome, Italy
| | - Andrea Macaluso
- Department of Human Movement, Social and Health Sciences, University of Rome “Foro Italico”Rome, Italy
| | - Francesco Di Russo
- Department of Human Movement, Social and Health Sciences, University of Rome “Foro Italico”Rome, Italy
- Neuropsychological Unit, Santa Lucia Foundation IRCCSRome, Italy
| |
Collapse
|
17
|
Flanagan SD, Dunn-Lewis C, Comstock BA, Maresh CM, Volek JS, Denegar CR, Kraemer WJ. Cortical Activity during a Highly-Trained Resistance Exercise Movement Emphasizing Force, Power or Volume. Brain Sci 2012; 2:649-66. [PMID: 24961265 PMCID: PMC4061814 DOI: 10.3390/brainsci2040649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/10/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022] Open
Abstract
Cortical activity is thought to reflect the biomechanical properties of movement (e.g., force or velocity of movement), but fatigue and movement familiarity are important factors that require additional consideration in electrophysiological research. The purpose of this within-group quantitative electroencephalogram (EEG) investigation was to examine changes in cortical activity amplitude and location during four resistance exercise movement protocols emphasizing rate (PWR), magnitude (FOR), or volume (VOL) of force production, while accounting for movement familiarity and fatigue. EEG signals were recorded during each complete repetition and were then grouped by functional region, processed to eliminate artifacts, and averaged to compare overall differences in the magnitude and location of cortical activity between protocols over the course of six sets. Biomechanical, biochemical, and exertional data were collected to contextualize electrophysiological data. The most fatiguing protocols were accompanied by the greatest increases in cortical activity. Furthermore, despite non-incremental loading and lower force levels, VOL displayed the largest increases in cortical activity over time and greatest motor and sensory activity overall. Our findings suggest that cortical activity is strongly related to aspects of fatigue during a high intensity resistance exercise movement.
Collapse
Affiliation(s)
- Shawn D Flanagan
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Courtenay Dunn-Lewis
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Brett A Comstock
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Carl M Maresh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Jeff S Volek
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - Craig R Denegar
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | - William J Kraemer
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
18
|
Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. Psychophysiology 2012; 49:1242-53. [DOI: 10.1111/j.1469-8986.2012.01399.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
|
19
|
Strengthened functional connectivity in the brain during muscle fatigue. Neuroimage 2011; 60:728-37. [PMID: 22197785 DOI: 10.1016/j.neuroimage.2011.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/22/2011] [Accepted: 12/07/2011] [Indexed: 11/24/2022] Open
Abstract
Fatigue caused by sustaining submaximal-intensity muscle contraction(s) involves increased activation in the brain such as primary motor cortex (M1), primary sensory cortex (S1), premotor and supplementary motor area (PM&SMA) and prefrontal cortex (PFC). The synchronized increases in activation level in these cortical areas suggest fatigue-related strengthening of functional coupling within the motor control network. In the present study, this hypothesis was tested using the cross-correlation based functional connectivity (FC) analysis method. Ten subjects performed a 20-minute intermittent (3.5s ON/6.5s OFF, 120 trials total) handgrip task using the right hand at 50% maximal voluntary contraction (MVC) force level while their brain was scanned by a 3 T Siemens Trio scanner using echo planar imaging (EPI) sequence. A representative signal time course of the left M1 was extracted by averaging the time course data of a 2-mm cluster of neighboring voxels of local maximal activation foci, which was identified by a general linear model. Two FC activation maps were created for each subject by cross-correlating the time course data of the minimal (the first 10 trials) and significant (the last 10 trials) fatigue stages across all the voxels in the brain to the corresponding representative time course. Histogram and quantile regression analysis were used to compare the FC between the minimal and significant fatigue stages and the results showed a significant increase in FC among multiple cortical regions, including right M1 and bilateral PM&SMA, S1 and PFC. This strengthened FC indicates that when muscle fatigue worsens, many brain regions increase their coupling with the left M1, the primary motor output control center for the right handgrip, to compensate for diminished force generating capability of the muscle in a coordinated fashion by enhancing the descending command for greater muscle recruitment to maintain the same force.
Collapse
|
20
|
Dunn-Lewis C, Flanagan SD, Comstock BA, Maresh CM, Volek JS, Denegar CR, Kupchak BR, Kraemer WJ. Recovery patterns in electroencephalographic global field power during maximal isometric force production. J Strength Cond Res 2011; 25:2818-27. [PMID: 21857362 DOI: 10.1519/jsc.0b013e318229c32d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In previous work, cortical activity decreased with fatigue following novel movements or small muscle group actions. These muscle actions, however, do not appear related to the cortical activity seen with biologically relevant and highly trained movement patterns (i.e., ingrained patterns). The cortical recovery response to ingrained patterns-and how it differs with altered load, speed, or volume - is unknown. The purpose of this balanced, within-group study was to investigate differences in cortical activity 24 hours after physically distinct variations of a highly trained squat exercise (n = 7, minimum 4 years resistance training experience). Four resistance protocols were chosen: rate of force development (PWR, 6 × 3 squat jumps at 30% of 1 repetition maximum [1RM]); magnitude of force development (FOR, 6 × 3 squat at 95% of 1RM); volume of force development (VOL, 6 × 10 squat at 80% of their 1RM); and control (CTRL, 6 sets unracking an empty bar). Twenty-four hours later, subjects performed a peak isometric squat while electroencephalographic and biochemical markers of exertion and fatigue were obtained. Global field power detected the quantity of activity superficial to motor regions. Waveforms of activity throughout the isometric squats were obtained and grand averages calculated to produce quantitative depictions of cortical activity. Significance was P ≤ 0.05. Peak isometric squat force was not statistically different 24 hours postexercise (Force [N]: PWR: 2828.79 ± 461.17; FOR: 2887.64 ± 453.09; VOL: 2910.17 ± 625.81; CTRL 2768.53 ± 374.85). Subjects produced similar and characteristic cortical activity patterns during isometric squats despite varying indices of fatigue. Differences were observed based upon the use or nonuse of aerobic endurance exercise in their training program. Patterns of activity in data seem to have emerged based on differences in training preference. Global Field Power (uV) during the isometric squat for PWR was 26.98 ± 14.64; FOR 24.06 ± 19.05; VOL 23.05 ± 13.37; and CTRL 15.78 ± 8.11. Previous research suggests that cortical activity decreases with physical activity; however, despite substantial endocrine, perceptual, and biomechanical differences between protocols, cortical activity was not decreased below control during the performance of a maximal isometric squat 24 hours after various exercise protocols.
Collapse
|
21
|
Falvo MJ, Sirevaag EJ, Rohrbaugh JW, Earhart GM. Central adaptations to repetitive grasping in healthy aging. Brain Topogr 2011; 24:292-301. [PMID: 21519868 DOI: 10.1007/s10548-011-0183-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Augmented cortical activity during repetitive grasping mitigates repetition-related decrease in cortical efficiency in young adults. It is unclear if similar processes occur with healthy aging. We recorded movement-related cortical potentials (MRCP) during 150 repetitive handgrip contractions at 70% of maximal voluntary contraction (MVC) in healthy young (n = 10) and old (n = 10) adults. Repetitions were grouped into two Blocks (Block 1 and 2: repetitions 1-60 and 91-150, respectively) and analyzed separately to assess the effects of aging and block. EMG of the flexor digitorum superficialis and handgrip force were also recorded. No changes in EMG or MVC were observed across blocks for either group. Significant interactions (P < 0.05) were observed for MRCPs recorded from mesial (FCz, Cz, CPz) and motor (C1, C3, Cz) electrode sites, with younger adults demonstrating significant increases in MRCP amplitude. Focal MRCP activity in response to repetitive grasping resulted in minimal changes (i.e. Block 1 versus Block 2) in older adults. Central adaptive processes change across the lifespan, showing increasingly less focal activation in older adults during repetitive grasping. Our findings are consistent with previous paradigms demonstrating more diffuse cortical activation during motor tasks in older adults.
Collapse
Affiliation(s)
- Michael J Falvo
- War Related Illness and Injury Study Center, Department of Veterans Affairs, VA New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07108, USA.
| | | | | | | |
Collapse
|
22
|
Time frequency based coherence analysis between EEG and EMG activities in fatigue duration. J Med Syst 2010; 34:131-8. [PMID: 20433051 DOI: 10.1007/s10916-008-9224-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In voluntary movements, functional role of synchronized neuronal activity in the human motor system is important to detect and diagnose of the some diseases. In some previous studies, EEG signals and responses belong to an exercise are examined and an increased EEG activity reported in alpha frequency band. The reason of this is not clear whether a change is a direct result of the exhaustion or whether it is an adaptation. Time frequency based coherence analysis may be excellent tools to asses the fatigue stages. The experiment was planned with three fatigue stage and the cortical-muscular synchronizations were observed and examined. Simultaneously cortical electroencephalography (EEG) activities and electromyography (EMG) activities that are activated by phasic voluntary movements are recorded for 10 healthy young person and relation of the coherence between the signals are observed in time frequency domain. There is a decreasing significant coherence activity in third fatigue stage against to first and second fatigue stages. Time frequency based coherence analysis is a good method to explore motor cortex control of muscle activity in the fatigued persons. Time frequency based coherence analysis gives useful result for recordings of simultaneously cortical activity EEG and EMG during a phasic voluntary movement to determination of fatigue levels.
Collapse
|
23
|
Falvo MJ, Sirevaag EJ, Rohrbaugh JW, Earhart GM. Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. Eur J Appl Physiol 2010; 109:923-33. [PMID: 20306270 DOI: 10.1007/s00421-010-1432-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2010] [Indexed: 11/28/2022]
Abstract
Early effects of a resistance training program include neural adaptations at multiple levels of the neuraxis, but direct evidence of central changes is lacking. Plasticity exhibited by multiple supraspinal centers following training may alter slow negative electroencephalographic activity, referred to as movement-related cortical potentials (MRCP). The purpose of this study was to determine whether MRCPs are altered in response to resistance training. Eleven healthy participants (24.6 +/- 3.5 years) performed 3 weeks of explosive unilateral leg extensor resistance training. MRCP were assessed during 60 self-paced leg extensions against a constant nominal load before and after training. Resistance training was effective (P < 0.001) in increasing leg extensor peak force (+22%), rate of force production (+32%) as well as muscle activity (iEMG; +47%, P < 0.05). These changes were accompanied by several MRCP effects. Following training, MRCP amplitude was attenuated at several scalp sites overlying motor-related cortical areas (P < 0.05), and the onset of MRCP at the vertex was 28% (561 ms) earlier. In conclusion, the 3-week training protocol in the present study elicited significant strength gains which were accompanied by neural adaptations at the level of the cortex. We interpret our findings of attenuated cortical demand for submaximal voluntary movement as evidence for enhanced neural economy as a result of resistance training.
Collapse
Affiliation(s)
- Michael J Falvo
- Program in Physical Therapy, Washington University School of Medicine, 4444 Forest Park Ave, Campus Box 8502, St. Louis, MO 63108, USA.
| | | | | | | |
Collapse
|
24
|
Bittencourt J, Velasques B, Machado S, Cunha M, Budde H, Basile LF, Cagy M, Piedade R, Ribeiro P. Changes of somatomotor and parietal regions produced by different amounts of electrical stimulation. Neurosci Lett 2010; 469:150-4. [DOI: 10.1016/j.neulet.2009.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/12/2009] [Accepted: 11/21/2009] [Indexed: 10/20/2022]
|
25
|
Thut G, Pascual-Leone A. A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr 2009; 22:219-32. [PMID: 19862614 DOI: 10.1007/s10548-009-0115-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 10/03/2009] [Indexed: 10/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) has developed into a powerful tool for studying human brain physiology and brain-behavior relations. When applied in sessions of repeated stimulation, TMS can lead to changes in neuronal activity/excitability that outlast the stimulation itself. Such aftereffects are at the heart of the offline TMS protocols in cognitive neuroscience and neurotherapeutics. However, whether these aftereffects are of applied interest critically depends on their magnitude and duration, which should fall within an experimentally or clinically useful range without increasing risks and adverse effects. In this short review, we survey combined TMS-EEG studies to characterize the TMS-aftereffects as revealed by EEG to contribute to the characterization of the most effective and promising repetitive TMS-parameters. With one session of conventional repetitive TMS (of fixed pulse frequency), aftereffects were consistently comparable in magnitude to EEG-changes reported after learning or with fatigue, and were short-lived (<70 min). The few studies using recently developed protocols (such as theta burst stimulation) suggest comparable effect-size but longer effect-durations. Based on the reviewed data, it is expected that TMS-efficacy can be further promoted by repeating TMS-sessions, by using EEG-gated TMS to tailor TMS to current neuronal state, or by other, non-conventional TMS-protocols. Newly emerging developments in offline TMS research for cognitive neuroscience and neurotherapeutics are outlined.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Department of Psychology, University of Glasgow, UK.
| | | |
Collapse
|
26
|
Zwarts M, Bleijenberg G, van Engelen B. Clinical neurophysiology of fatigue. Clin Neurophysiol 2008; 119:2-10. [DOI: 10.1016/j.clinph.2007.09.126] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 09/07/2007] [Accepted: 09/23/2007] [Indexed: 10/22/2022]
|
27
|
van Duinen H, Renken R, Maurits N, Zijdewind I. Effects of motor fatigue on human brain activity, an fMRI study. Neuroimage 2007; 35:1438-49. [PMID: 17408974 DOI: 10.1016/j.neuroimage.2007.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 11/29/2022] Open
Abstract
The main purpose of this study was to investigate effects of motor fatigue on brain activation in humans, using fMRI. First, we assessed brain activation that correlated with muscle activity during brief contractions at different force levels (force modulation). Second, a similar analysis was done for sustained contractions inducing motor fatigue. Third, we studied changes in brain activation due to motor fatigue over time. And fourth, we investigated cross-over effects of fatigue by comparing brain activation before and after the fatiguing condition during simple and high-order motor tasks (reaction time tasks). Several motor areas in the brain showed increased activity with increased muscle activity, both during force modulation and motor fatigue. Interestingly, the cerebellum showed a smaller increase in activation, during compensatory activation due to fatigue, while additional activation was found in the pre-supplementary motor area and in a frontal area. During motor fatigue, there was a decrease in force production, an increase in force variability, and an increase in muscle activity. Brain areas comparable with the aforementioned areas also showed stronger activation over time. After fatigue, reaction time task performance remained the same (compared to before fatigue), while increased activation in orbitofrontal areas was found. Furthermore, there was a reduction in subjects' maximal voluntary contraction force, accompanied by a decrease in activation of the supplementary motor area (SMA). These results suggest that especially the activity in the SMA and frontal areas is affected by motor fatigue.
Collapse
Affiliation(s)
- Hiske van Duinen
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | | | | | | |
Collapse
|