1
|
Opsomer L, Delhaye BP, Théate V, Thonnard JL, Lefèvre P. A haptic illusion created by gravity. iScience 2023; 26:107246. [PMID: 37485356 PMCID: PMC10362320 DOI: 10.1016/j.isci.2023.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Human dexterity requires very fine and efficient control of fingertip forces, which relies on the integration of cutaneous and proprioceptive feedback. Here, we examined the influence of gravity on isometric force control. We trained participants to reproduce isometric vertical forces on a dynamometer held between the thumb and the index finger in normal gravity and tested them during parabolic flight creating phases of microgravity and hypergravity, thereby strongly influencing the motor commands and the proprioceptive feedback. We found that gravity creates the illusion that upward forces are larger than downward forces of the same magnitude. The illusion increased under hypergravity and was abolished under microgravity. Gravity also affected the control of the grip force employed to secure the grasp. These findings suggest that gravity biases the haptic estimation of forces, which has implications for the design of haptic devices to be used during flight or space activities.
Collapse
Affiliation(s)
- Laurent Opsomer
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Benoit P. Delhaye
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Vincent Théate
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, 1200 Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kolev OI, Clement G, Reschke MF. Astronauts eye-head coordination dysfunction over the course of twenty space shuttle flights. J Vestib Res 2023; 33:313-324. [PMID: 37248929 DOI: 10.3233/ves-220127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Coordination of motor activity is adapted to Earth's gravity (1 g). However, during space flight the gravity level changes from Earth gravity to hypergravity during launch, and to microgravity (0 g) in orbit. This transition between gravity levels may alter the coordination between eye and head movements in gaze performance. OBJECTIVE We explored how weightlessness during space flight altered the astronauts' eye-head coordination (EHC) with respect to flight day and target eccentricity. METHODS Thirty-four astronauts of 20 Space Shuttle missions had to acquire visual targets with angular offsets of 20°, 30°, and 49°. RESULTS Measurements of eye, head, and gaze positions collected before and during flight days 1 to 15 indicated changes during target acquisition that varied as a function of flight days and target eccentricity. CONCLUSIONS The in-flight alterations in EHC were presumably the result of a combination of several factors, including a transfer from allocentric to egocentric reference for spatial orientation in absence of a gravitational reference, the generation of slower head movements to attenuate motion sickness, and a decrease in smooth pursuit and vestibulo-ocular reflex performance. These results confirm that humans have several strategies for gaze behavior, between which they switch depending on the environmental conditions.
Collapse
Affiliation(s)
- Ognyan I Kolev
- Neuroscience Laboratories, NASA Johnson Space Center, Houston, TX, USA
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Gilles Clement
- COMETE, INSERM & University of Caen Normandy, Caen, France
- KBRwyle, Houston, TX, USA
| | - Millard F Reschke
- Neuroscience Laboratories, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
4
|
Rannaud Monany D, Barbiero M, Lebon F, Babič J, Blohm G, Nozaki D, White O. Motor imagery helps updating internal models during microgravity exposure. J Neurophysiol 2022; 127:434-443. [PMID: 34986019 DOI: 10.1152/jn.00214.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skilled movements result from a mixture of feedforward and feedback mechanisms conceptualized by internal models. These mechanisms subserve both motor execution and motor imagery. Current research suggests that imagery allows updating feedforward mechanisms, leading to better performance in familiar contexts. Does this still hold in radically new contexts? Here, we test this ability by asking participants to imagine swinging arm movements around shoulder in normal gravity condition and in microgravity in which studies showed that movements slow down. We timed several cycles of actual and imagined arm pendular movements in three groups of subjects during parabolic flight campaign. The first, control, group remained on the ground. The second group was exposed to microgravity but did not imagine movements inflight. The third group was exposed to microgravity and imagined movements inflight. All groups performed and imagined the movements before and after the flight. We predicted that a mere exposure to microgravity would induce changes in imagined movement duration. We found this held true for the group who imagined the movements, suggesting an update of internal representations of gravity. However, we did not find a similar effect in the group exposed to microgravity despite the fact participants lived the same gravitational variations as the first group. Overall, these results suggest that motor imagery contributes to update internal representations of movement in unfamiliar environments, while a mere exposure proved to be insufficient.
Collapse
Affiliation(s)
- Dylan Rannaud Monany
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France
| | - Marie Barbiero
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France.,Centre National d'Etudes Spatiales, University of Burgundy, Dijon, France
| | - Florent Lebon
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France
| | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Daichi Nozaki
- Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Olivier White
- Cognition, Action, and Sensorimotor Plasticity, University of Burgundy, Dijon, France
| |
Collapse
|
5
|
Meigal AY, Tretjakova OG, Gerasimova-Meigal LI, Sayenko IV. Program of Seven 45-min Dry Immersion Sessions Improves Choice Reaction Time in Parkinson's Disease. Front Physiol 2021; 11:621198. [PMID: 33519524 PMCID: PMC7841462 DOI: 10.3389/fphys.2020.621198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/11/2020] [Indexed: 01/26/2023] Open
Abstract
The study hypothesis held that in subjects with Parkinson's disease (PD), the reaction time (RT) tests of the higher cognition demand would have more readily improved under the program of analog microgravity (μG) modeled with "dry" immersion (DI). To test this hypothesis, 10 subjects with PD have passed through a program of seven DI sessions (each 45 min long) within 25-30 days, with overall μG dose 5 1/4 h. Five patients were enrolled as controls, without DI (noDI group). Simple RT (SRT), disjunctive RT (DRT), and choice RT (CRT) were assessed in four study points: before the DI program (preDI), 1 day after the DI program (postDI), 2 weeks after the DI program (DI2w), and 2 months after the DI program (DI2m). The motor time (MT) was assessed with the tapping test (TT). Additionally, signal detection time (SDT) and central processing time (CPT) were extracted from the data. Before the program of DI, the RT tests are in accordance with their cognition load: SRT (284 ± 37 ms), DRT (338 ± 38 ms), and CRT (540 ± 156 ms). In accordance with the hypothesis, CRT and DRT have improved under DI by, respectively, 20 and 8% at the study point "DI2w," whereas SRT, SDT, and MT did not change (<5% in the preDI point, p > 0.05). Thus, the program of DI provoked RT improvement specifically in the cognitively loaded tasks, in a "dose of cognition-reaction" manner. The accuracy of reaction has changed in none of the RT tests. The neurophysiologic, hormonal/neuroendocrine, behavioral, neural plasticity, and acclimation mechanisms may have contributed to such a result.
Collapse
Affiliation(s)
- Alexander Yu. Meigal
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Olesya G. Tretjakova
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Liudmila I. Gerasimova-Meigal
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Irina V. Sayenko
- State Scientific Center, “Institute of Biomedical Problems,” Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
The influence of microgravity on cerebral blood flow and electrocortical activity. Exp Brain Res 2019; 237:1057-1062. [PMID: 30741333 DOI: 10.1007/s00221-019-05490-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Changes in gravity conditions have previously been reported to influence brain hemodynamics as well as neuronal activity. This paper attempts to identify a possible link between changes in brain blood flow and neuronal activity during microgravity. Middle cerebral artery flow velocity (MCAv) was measured using Doppler ultrasound. Brain cortical activity (i.e., cortical current density) was measured using electroencephalography. Finger blood pressure was recorded and exported to generate beat-by-beat systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), and cerebrovascular conductance index (CVCi). Seventeen participants were evaluated under normal gravity conditions and microgravity conditions, during 15 bouts of 22-s intervals of weightlessness during a parabolic flight. Although MAP decreased and CO increased, MCAv remained unchanged in the microgravity condition. CVCi as the quotient of MCAv and MAP increased in microgravity. Cortical current density showed a global decrease. Our data support earlier data reporting a decrease in the amplitude of event-related potentials recorded during microgravity. However, the general decrease in neural excitability in microgravity seems not to be dependent on hemodynamic changes.
Collapse
|
7
|
Opsomer L, Théate V, Lefèvre P, Thonnard JL. Dexterous Manipulation During Rhythmic Arm Movements in Mars, Moon, and Micro-Gravity. Front Physiol 2018; 9:938. [PMID: 30065666 PMCID: PMC6056656 DOI: 10.3389/fphys.2018.00938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Predicting the consequences of one’s own movements can be challenging when confronted with completely novel environmental dynamics, such as microgravity in space. The absence of gravitational force disrupts internal models of the central nervous system (CNS) that have been tuned to the dynamics of a constant 1-g environment since birth. In the context of object manipulation, inadequate internal models produce prediction uncertainty evidenced by increases in the grip force (GF) safety margin that ensures a stable grip during unpredicted load perturbations. This margin decreases with practice in a novel environment. However, it is not clear how the CNS might react to a reduced, but non-zero, gravitational field, and if adaptation to reduced gravity might be beneficial for subsequent microgravity exposure. That is, we wondered if a transfer of learning can occur across various reduced-gravity environments. In this study, we investigated the kinematics and dynamics of vertical arm oscillations during parabolic flight maneuvers that simulate Mars gravity, Moon gravity, and microgravity, in that order. While the ratio of and the correlation between GF and load force (LF) evolved progressively with practice in Mars gravity, these parameters stabilized much quicker to subsequently presented Moon and microgravity conditions. These data suggest that prior short-term adaptation to one reduced-gravity field facilitates the CNS’s ability to update its internal model during exposure to other reduced gravity fields.
Collapse
Affiliation(s)
- Laurent Opsomer
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vincent Théate
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lefèvre
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- System and Cognition Division, Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Mathematical Engineering Department, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Cliniques Universitaires Saint-Luc, Physical and Rehabilitation Medicine Department, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Van Ombergen A, Wuyts FL, Jeurissen B, Sijbers J, Vanhevel F, Jillings S, Parizel PM, Sunaert S, Van de Heyning PH, Dousset V, Laureys S, Demertzi A. Intrinsic functional connectivity reduces after first-time exposure to short-term gravitational alterations induced by parabolic flight. Sci Rep 2017; 7:3061. [PMID: 28607373 PMCID: PMC5468234 DOI: 10.1038/s41598-017-03170-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/26/2017] [Indexed: 11/16/2022] Open
Abstract
Spaceflight severely impacts the human body. However, little is known about how gravity and gravitational alterations affect the human brain. Here, we aimed at measuring the effects of acute exposure to gravity transitions. We exposed 28 naïve participants to repetitive alterations between normal, hyper- and microgravity induced by a parabolic flight (PF) and measured functional MRI connectivity changes. Scans were acquired before and after the PF. To mitigate motion sickness, PF participants received scopolamine prior to PF. To account for the scopolamine effects, 12 non-PF controls were scanned prior to and after scopolamine injection. Changes in functional connectivity were explored with the Intrinsic Connectivity Contrast (ICC). Seed-based analysis on the regions exhibiting localized changes was subsequently performed to understand the networks associated with the identified nodes. We found that the PF group was characterized by lower ICC scores in the right temporo-parietal junction (rTPJ), an area involved in multisensory integration and spatial tasks. The encompassed network revealed PF-related decreases in within- and inter-hemispheric anticorrelations between the rTPJ and the supramarginal gyri, indicating both altered vestibular and self-related functions. Our findings shed light on how the brain copes with gravity transitions, on gravity internalization and are relevant for the understanding of bodily self-consciousness.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium
| | - Floris L Wuyts
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium.
| | - Ben Jeurissen
- Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Floris Vanhevel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Steven Jillings
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Stefan Sunaert
- KU Leuven - University of Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium
| | - Paul H Van de Heyning
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), University of Antwerp, Antwerp, Belgium
| | - Vincent Dousset
- University of Bordeaux, CHU de Bordeaux, INSERM Magendie, Bordeaux, France
| | - Steven Laureys
- Coma Science Group, GIGA-Research & Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Athena Demertzi
- Coma Science Group, GIGA-Research & Neurology Department, University and University Hospital of Liège, Liège, Belgium
- Institut du Cerveau et de la Moelle Epinière - Brain and Spine Insititute, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
9
|
Leapman MS, Jones JA, Coutinho K, Sagalovich D, Garcia MM, Olsson CA, Stock JA. Up and Away: Five Decades of Urologic Investigation in Microgravity. Urology 2017; 106:18-25. [PMID: 28495507 DOI: 10.1016/j.urology.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 11/17/2022]
Abstract
A renewed global interest in manned space exploration has emerged, propelled by the challenge of reaching a new frontier: travel to the Red Planet, Mars. As the physiological changes induced by microgravity bear direct relevance to the safety and viability of these goals, we provide a historical narrative of the urologic investigations in space. We review the significant contributions to the understanding of the urologic consequences associated with exposure to microgravity, considerations for prolonged missions, and forward-looking efforts to manage emergent conditions remotely. Historical insights gleaned are poised to inform interplanetary travel, where urologic pathology will remain an important practical consideration.
Collapse
Affiliation(s)
- Michael S Leapman
- Department of Urology, Yale University School of Medicine, New Haven, CT.
| | - Jeffrey A Jones
- Department of Urology and Center for Space Medicine, Baylor College of Medicine, Houston, TX
| | | | | | - Maurice M Garcia
- Department of Urology, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
10
|
Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats. Neuroreport 2016; 27:1202-5. [PMID: 27607230 DOI: 10.1097/wnr.0000000000000675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.
Collapse
|
11
|
Abstract
Ground-based analog facilities have had wide use in mimicking some of the features of spaceflight in a more-controlled and less-expensive manner. One such analog is parabolic flight, in which an aircraft flies repeated parabolic trajectories that provide short-duration periods of free fall (0 g) alternating with high-g pullout or recovery phases. Parabolic flight is unique in being able to provide true 0 g in a ground-based facility. Accordingly, it lends itself well to the investigation of specific areas of human spaceflight that can benefit from this capability, which predominantly includes neurovestibular effects, but also others such as human factors, locomotion, and medical procedures. Applications to research in artificial gravity and to effects likely to occur in upcoming commercial suborbital flights are also possible.
Collapse
Affiliation(s)
- Mark Shelhamer
- Department of Otolaryngology-Head and Neck, Department of Surgery, Johns Hopkins University. School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Wollseiffen P, Vogt T, Abeln V, Strüder HK, Askew CD, Schneider S. Neuro-cognitive performance is enhanced during short periods of microgravity. Physiol Behav 2015; 155:9-16. [PMID: 26657021 DOI: 10.1016/j.physbeh.2015.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
There is increasing interest in the effects of microgravity on cognitive processing, particularly as it relates to the potential for human space travel. While findings to date are quite inconsistent, studies reporting a decrement in cognitive performance have generally not been able to distinguish between the direct influence of microgravity, and any associated influence of stress. Furthermore, the currently available findings are primarily based on behavioral observations, and there is a need to better understand the underlying neurophysiological responses. The current study aimed to determine the effects of microgravity on neurophysiological processing during a mental arithmetic task (executive function). During the normal- and microgravity phases of a parabolic flight, four levels of a mental arithmetic task were presented on a touchscreen tablet. The latency between the appearance of the problem and the participants' response was identified as reaction time. In addition visual evoked potentials N1 and P2 were determined using an active EEG system and analyzed using source localization algorithms. Results showed an increase in reaction time with increasing levels of task difficulty. During the most complex levels, reaction time was significantly reduced during microgravity. This observation was independent of previous parabolic flight experience as well as the use of anti-motion-sickness medication. P2 amplitude decrease during microgravity was concomitant to a related involvement of the superior frontal and medial frontal gyrus. It is concluded that cortical processes are enhanced during microgravity, and that previously reported impairments in cognitive performance are likely attributable to increased stress rather than weightlessness itself.
Collapse
Affiliation(s)
- Petra Wollseiffen
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Tobias Vogt
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Vera Abeln
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Heiko K Strüder
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Christopher D Askew
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| | - Stefan Schneider
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany; School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia.
| |
Collapse
|
13
|
Goel N, Bale TL, Epperson CN, Kornstein SG, Leon GR, Palinkas LA, Stuster JW, Dinges DF. Effects of sex and gender on adaptation to space: behavioral health. J Womens Health (Larchmt) 2014; 23:975-86. [PMID: 25259837 DOI: 10.1089/jwh.2014.4911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article is part of a larger body of work entitled, "The Impact of Sex and Gender on Adaptation to Space." It was developed in response to a recommendation from the 2011 National Academy of Sciences Decadal Survey, "Recapturing a Future for Space Exploration: Life and Physical Sciences for a New Era," which emphasized the need to fully understand sex and gender differences. In this article, our workgroup-consisting of expert scientists and clinicians from academia and the private sector-investigated and summarized the current body of published and unpublished human research performed to date related to sex- and gender-based differences in behavioral adaptations to human spaceflight. This review identifies sex-related differences in: (1) sleep, circadian rhythms, and neurobehavioral measures; (2) personality, group interactions, and work performance and satisfaction; and (3) stress and clinical disorders. Differences in these areas substantially impact the risks and optimal medical care required by space-faring women. To ensure the health and safety of male and female astronauts during long-duration space missions, it is imperative to understand the influences that sex and gender have on behavioral health changes occurring during spaceflight.
Collapse
Affiliation(s)
- Namni Goel
- 1 Department of Psychiatry, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Psychophysiological responses of artificial gravity exposure to humans. Eur J Appl Physiol 2014; 114:2061-71. [DOI: 10.1007/s00421-014-2927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
15
|
Marušič U, Meeusen R, Pišot R, Kavcic V. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity. Eur J Sport Sci 2014; 14:813-22. [PMID: 24734884 DOI: 10.1080/17461391.2014.908959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Understanding the effects of increased and decreased gravity on central nervous system is essential for developing proper physical and cognitive countermeasures to assure safe and effective space missions and human survival in space. This short review covers the available literature on the brain electrocortical activity effects of decreased and increased gravitational force comparing to the 1g Earth conditions. Among all neuroimaging methods such as functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), diffusion tensor imaging (DTI), the electroencephalography (EEG) was found to be suitable method to monitor brain electrocortical activity in the extreme environments. Due to complexity and high cost of space flight missions, ground-based models have been employed to simulate microgravity effects on human body. Surprisingly, there is very limited number of publications reporting gravity-dependent EEG spectral changes. With increased gravity there are initially increased EEG activity in higher frequencies and at around 4 g appears loss of consciousness with accompanying slowing of EEG due to hypoxia. In microgravity, the most prevalent changes in EEG are faster frequencies such as alpha and beta. The results from simulated microgravity (bed rest) are pointing to changes in theta and alpha, representing signs of cortical inhibition. The changes in EEG activity in space flight are attributed to a decreased sensorimotor input while in parabolic flights short and fast transitions from hyper to microgravity presumably reflect lower arousal levels and emotional processes in microgravity. Thus, based on limited research about gravity-related changes in EEG from different environments it is difficult to draw any unequivocal conclusions. Additional systematic studies about electrocortical activity in space and parabolic flights, as well as longer bed rest studies are needed in order to advance knowledge about brain functioning in extreme conditions such as space flights.
Collapse
Affiliation(s)
- Uroš Marušič
- a Science and Research Centre, Institute for Kinesiology Research , University of Primorska , Koper , Slovenia
| | | | | | | |
Collapse
|
16
|
Rai B, Kaur J. Periodontal status, salivary immunoglobulin, and microbial counts after short exposure to an isolated environment. J Oral Sci 2013; 55:139-43. [DOI: 10.2334/josnusd.55.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
17
|
Brümmer V, Schneider S, Vogt T, Strüder H, Carnahan H, Askew CD, Csuhaj R. Coherence between brain cortical function and neurocognitive performance during changed gravity conditions. J Vis Exp 2011:2670. [PMID: 21654620 DOI: 10.3791/2670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Previous studies of cognitive, mental and/or motor processes during short-, medium- and long-term weightlessness have only been descriptive in nature, and focused on psychological aspects. Until now, objective observation of neurophysiological parameters has not been carried out--undoubtedly because the technical and methodological means have not been available--, investigations into the neurophysiological effects of weightlessness are in their infancy (Schneider et al. 2008). While imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) would be hardly applicable in space, the non-invasive near-infrared spectroscopy (NIRS) technique represents a method of mapping hemodynamic processes in the brain in real time that is both relatively inexpensive and that can be employed even under extreme conditions. The combination with electroencephalography (EEG) opens up the possibility of following the electrocortical processes under changing gravity conditions with a finer temporal resolution as well as with deeper localization, for instance with electrotomography (LORETA). Previous studies showed an increase of beta frequency activity under normal gravity conditions and a decrease under weightlessness conditions during a parabolic flight (Schneider et al. 2008a+b). Tilt studies revealed different changes in brain function, which let suggest, that changes in parabolic flight might reflect emotional processes rather than hemodynamic changes. However, it is still unclear whether these are effects of changed gravity or hemodynamic changes within the brain. Combining EEG/LORETA and NIRS should for the first time make it possible to map the effect of weightlessness and reduced gravity on both hemodynamic and electrophysiological processes in the brain. Initially, this is to be done as part of a feasibility study during a parabolic flight. Afterwards, it is also planned to use both techniques during medium- and long-term space flight. It can be assumed that the long-term redistribution of the blood volume and the associated increase in the supply of oxygen to the brain will lead to changes in the central nervous system that are also responsible for anaemic processes, and which can in turn reduce performance (De Santo et al. 2005), which means that they could be crucial for the success and safety of a mission (Genik et al. 2005, Ellis 2000). Depending on these results, it will be necessary to develop and employ extensive countermeasures. Initial results for the MARS500 study suggest that, in addition to their significance in the context of the cardiovascular and locomotor systems, sport and physical activity can play a part in improving neurocognitive parameters. Before this can be fully established, however, it seems necessary to learn more about the influence of changing gravity conditions on neurophysiological processes and associated neurocognitive impairment.
Collapse
Affiliation(s)
- Vera Brümmer
- Institute of Movement and Neurosciences, German Sport University Cologne.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mierau A, Girgenrath M. Exaggerated force production in altered Gz-levels during parabolic flight: the role of computational resources allocation. ERGONOMICS 2010; 53:278-285. [PMID: 20099180 DOI: 10.1080/00140130903380901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The purpose of the present experiment was to examine whether the previously observed exaggerated isometric force production in changed-Gz during parabolic flight (Mierau et al. 2008) can be explained by a higher computational demand and, thus, inadequate allocation of the brain's computational resources to the task. Subjects (n = 12) were tested during the micro-Gz, high-Gz and normal-Gz episodes of parabolic flight. They produced isometric forces of different magnitudes and directions, according to visually prescribed vectors with their right, dominant hand and performed a choice reaction-time task with their left hand. Tasks were performed either separately (single-task) or simultaneously (dual-task). Dual-task interference was present for both tasks, indicating that each task was resources-demanding. However, this interference remained unaffected by the Gz-level. It was concluded that exaggerated force production in changed-Gz is probably not related to inadequate allocation of the brain's computational resources to the force production task. Statement of Relevance: The present study shows that deficient motor performance in changed-Gz environments (both micro-Gz and high-Gz) is not necessarily related to inadequate computational resources allocation, as was suggested in some previous studies. This finding is of great relevance not only for fundamental research, but also for the training and safety of humans operating in changed-Gz environments, such as astronauts and jet pilots.
Collapse
Affiliation(s)
- Andreas Mierau
- Institute of Physiology and Anatomy, German Sport University, Cologne, Germany.
| | | |
Collapse
|
19
|
Ohta H. [Potential use of microgravitational environment for biological research]. Nihon Yakurigaku Zasshi 2009; 134:73-7. [PMID: 19672001 DOI: 10.1254/fpj.134.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Schneider S, Guardiera S, Abel T, Carnahan H, Strüder HK. Artificial gravity results in changes in frontal lobe activity measured by EEG tomography. Brain Res 2009; 1285:119-26. [DOI: 10.1016/j.brainres.2009.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/22/2009] [Accepted: 06/07/2009] [Indexed: 10/20/2022]
|
21
|
Kaufmann I, Schachtner T, Feuerecker M, Schelling G, Thiel M, Choukèr A. Parabolic flight primes cytotoxic capabilities of polymorphonuclear leucocytes in humans. Eur J Clin Invest 2009; 39:723-8. [PMID: 19473213 DOI: 10.1111/j.1365-2362.2009.02136.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previously performed in vitro studies suggested that gravitational stress may alter functions of immune cells. This study investigated the in vivo effects of parabolic flight manoeuvres as a short-term model of micro- and hypergravity on the cytotoxic and microbicidal polymorphonuclear leucocyte (PMN) functions as the key element of innate immunity. MATERIAL AND METHODS Twenty-one healthy male volunteers underwent 30 subsequent parabolic flight manoeuvres. Each manoeuvre produced 22-s periods of nearly weightlessness close to <<0g>>, with each parabola starting with a pull-up and ending with a pull-out (hypergravity) at 1.8 g for about 20 s each. Blood samples were drawn 24 h prior to take off (T0), after 25-30 parabolas (T1), and 24 h (T2) and 48 h (T3) after flight for determination of (i) leucocyte number and subpopulations, (ii) PMNs' capabilities to produce hydrogen peroxide (H(2)O(2)) and to adhere and phagocytose particles and (iii) plasma cytokines known to prime PMN functions [interleukin-8 (IL-8), tumour necrosis factor-alpha (TNF-alpha), granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF)]. RESULTS Parabolic flight induced an increase in leucocyte number with a significant elevation of the PMN fraction. The spontaneous H(2)O(2) production by PMNs did not change; however, the capability of PMNs to produce H(2)O(2) in response to soluble stimuli [N-formyl-methionyl-leucyl-phenylalanine (fMLP), fMLP and TNF-alpha, calcium ionophore (A23187), phorbol myristate acetate (PMA)] was increased. Adhesive and phagocytic properties of PMNs were not altered. Regarding priming cytokines, IL-8 and G-CSF were significantly elevated. CONCLUSIONS Our data indicate that parabolic flight induces priming of the cytotoxic capabilities of PMNs without affecting microbicidal functions.
Collapse
Affiliation(s)
- I Kaufmann
- Department of Anaesthesiology, Ludwig-Maximilians-University, Klinikum Grosshadern, Marchioninistrasse 15, Munich, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Schneider S, Askew CD, Brümmer V, Kleinert J, Guardiera S, Abel T, Strüder HK. The effect of parabolic flight on perceived physical, motivational and psychological state in men and women: correlation with neuroendocrine stress parameters and electrocortical activity. Stress 2009; 12:336-49. [PMID: 19006009 DOI: 10.1080/10253890802499175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Previous findings of decreased mental and perceptual motor performance during parabolic flights have been attributed mainly to the primary effects of weightlessness rather than the accompanying effects of stress and altered mood. Although recent studies have alluded to the possible negative effects of stress on performance, there has been no attempt to investigate this during parabolic flights. Over a period of 3 years, 27 human participants (male n = 18, mean age +/- SD 34.67 +/- 7.59 years; female n = 9, 36.22 +/- 9.92 years) were recruited with the aim to evaluate if, and to what extent, parabolic flights are accompanied by changes in mood. Furthermore, the relationships between mood and physiological markers of stress and arousal, namely circulating stress hormones (ACTH, cortisol, epinephrine, norepinephrine, prolactin and brain activity (EEG)) were investigated. A strong and significant correlation was found between circulating stress hormone concentrations and perceived physical state, motivational state (MOT) and psychological strain (PSYCHO), whereas no interaction between mood and EEG or EEG and stress hormone concentrations was observed. Therefore, two different stress responses appear to be present during parabolic flight. The first seems to be characterised by general cortical arousal, whereas the second seems to evolve from the adrenomedullary system. It is likely that both these mechanisms have different effects on mental and perceptual motor performance, which require further investigation and should to be taken into account when interpreting previous weightlessness research.
Collapse
Affiliation(s)
- Stefan Schneider
- Department of Exercise Neuroscience, Institute of Motor Control and Movement Technique, German Sport University Cologne, Carl-Diem Weg 6, Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cheron G, Cebolla AM, Petieau M, Bengoetxea A, Palmero-Soler E, Leroy A, Dan B. Adaptive changes of rhythmic EEG oscillations in space implications for brain-machine interface applications. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 86:171-87. [PMID: 19607999 DOI: 10.1016/s0074-7742(09)86013-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dramatic development of brain machine interfaces has enhanced the use of human brain signals conveying mental action for controlling external actuators. This chapter will outline current evidences that the rhythmic electroencephalographic activity of the brain is sensitive to microgravity environment. Experiments performed in the International Space Station have shown significant changes in the power of the astronauts' alpha and mu oscillations in resting condition, and other adaptive modifications in the beta and gamma frequency range during the immersion in virtual navigation. In this context, the dynamic aspects of the resting or default condition of the awaken brain, the influence of the "top-down" dynamics, and the possibility to use a more constrained configuration by a new somatosensory-evoked potential (gating approach) are discussed in the sense of future uses of brain computing interface in space mission. Although, the state of the art of the noninvasive BCI approach clearly demonstrates their ability and the great expectance in the field of rehabilitation for the restoration of defective communication between the brain and external world, their future application in space mission urgently needs a better understanding of brain neurophysiology, in particular in aspects related to neural network rhythmicity in microgravity.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Neurophysiology and Biomechanics of Movementa, Université Libre de Bruxelles, CP 168, 50 Av. F. Roosevelt, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Schneider S, Guardiera S, Kleinert J, Steinbacher A, Abel T, Carnahan H, Strüder HK. Centrifugal acceleration to 3Gz is related to increased release of stress hormones and decreased mood in men and women. Stress 2008; 11:339-47. [PMID: 18800307 DOI: 10.1080/10253890701802743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
It has been suggested that the central and peripheral neural processes (CPNP) are affected by gravitational changes. Based on the previous experiments during parabolic flights, central and peripheral changes may not only be due to the changed gravitational forces but also due to neuroendocrine reactions related to the psycho-physiological consequences of gravitational changes. The present study focuses on the interaction of neuroendocrine changes and the physical and mental states after acceleration to three-time terrestrial gravity (3Gz). Eleven participants (29.4+/-5.1 [SD] years (male (n=8): 30+/-5.1 years; female (n=3): 27.7+/-2.1 years) underwent a 15 min acceleration to 3Gz in a human centrifuge. Before and after the acceleration to 3Gz circulating stress hormone concentrations (cortisol, adrenocorticotropic hormone (ACTH), prolactin, epinephrine, norepinephrine) and perceived physical and mental states were recorded. A second control group of 11 participants underwent the same testing procedure in a laboratory session. Serum cortisol concentration during exposure to the centrifugal acceleration increased by 70%, plasma concentration of ACTH increased threefold, prolactin twofold, epinephrine by 70% and norepinephrine by 45%, whereas the perceived physical well-being decreased. These findings demonstrate that psycho-physiological changes have to be regarded as a relevant factor for the changes in CPNP during phases of hypergravity exposure.
Collapse
Affiliation(s)
- Stefan Schneider
- Department of Exercise Neuroscience, Institute of Motor Control and Movement Technique, German Sport University Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Schneider S, Brümmer V, Carnahan H, Dubrowski A, Askew CD, Strüder HK. What happens to the brain in weightlessness? A first approach by EEG tomography. Neuroimage 2008; 42:1316-23. [PMID: 18606233 DOI: 10.1016/j.neuroimage.2008.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 12/01/2022] Open
Abstract
Basic changes in environmental conditions are fundamental to understanding brain cortical mechanisms. Several studies have reported impairment of central nervous processes during weightlessness. There is ongoing debate as to whether these impairments are attributable to primary physiological effects or secondary psychological effects of the weightlessness environment. This study evaluates the physiological effects of changed gravity conditions on brain cortical activity. In a first experiment, EEG activity of seven participants was recorded at normal, increased and zero gravity during a parabolic flight. Additionally an EEG under normal gravity conditions preflight was recorded. In a second experiment, 24 participants were exposed to a supine, seated and 9 degree head-down tilt position while EEG was recorded. Data were analysed using low resolution brain electromagnetic tomography (LORETA). Beta-2 EEG activity (18-35 Hz) was found to be increased in the right superior frontal gyrus under normal gravity conditions inflight. By exposure to weightlessness a distinct inhibition of this activity within the same areas could be noticed. As the tilt experiment showed changes in the left inferior temporal gyrus in supine and tilted positions we conclude that the observed changes under weightlessness are not explainable by hemodynamic changes but rather reflect emotional processes related to the experience of weightlessness. These findings suggest that weightlessness has a major impact on electro cortical activity and may affect central nervous and adaptation processes.
Collapse
Affiliation(s)
- Stefan Schneider
- Department of Exercise Neuroscience, Institute of Motor Control and Movement Technique, German Sport University Cologne, Carl-Diem Weg 6, 50933 Köln, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Schneider S, Brümmer V, Mierau A, Carnahan H, Dubrowski A, Strüder HK. Increased brain cortical activity during parabolic flights has no influence on a motor tracking task. Exp Brain Res 2007; 185:571-9. [DOI: 10.1007/s00221-007-1187-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
|
28
|
Isometric force production during changed-Gz episodes of parabolic flight. Eur J Appl Physiol 2007; 102:313-8. [PMID: 17940790 DOI: 10.1007/s00421-007-0591-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
|