1
|
Tsavlis D, Domvri K, Porpodis K, Papoutsopoulou S, Anestakis D, Tzoumaka A, Meditskou S, Symeonidoy K, Spandou E. Erythropoietin Reduces Inflammation, Oxidative Stress, and Apoptosis in a Rat Model of Bleomycin-Induced Idiopathic Pulmonary Fibrosis. J Pers Med 2024; 14:972. [PMID: 39338226 PMCID: PMC11433300 DOI: 10.3390/jpm14090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial disease with unknown etiology and no effective cure, posing a great health burden to society. Erythropoietin (EPO) has been demonstrated to have protective roles in various tissues such as brain, spinal cord, heart, kidney and lung tissues. In this study, we investigate the specific anti-inflammatory, antioxidant and antiapoptotic effects of erythropoietin on lung tissue in a bleomycin-induced rat model of idiopathic pulmonary fibrosis. METHODS Recombinant human EPO or saline was injected, and the animals were monitored for 14 days after bleomycin instillation. Their hematocrit and serum EPO levels were determined. Histological and immunohistochemical analyses were performed. RESULTS The extent of tissue injury, determined through morphometric analysis, was significantly decreased in size in animals treated with erythropoietin. An immunohistochemical analysis of the expression of cyclooxygenase-2 (COX-2), inducible synthase of nitric oxide (i-NOS), metalloproteinase-9 (MMP-9), erythropoietin receptor (EPO-R), and cytochrome-C (cyt-C) found these enzymes to be decreased in a statistically significant manner in animals treated with erythropoietin when compared to a non-treated group. CONCLUSIONS The reduced expression of COX-2, i-NOS, MMP-9, EPO-R, and i-NOS in the lung tissues of animals treated with EPO indicates the anti-inflammatory, antioxidant and antiapoptotic action of erythropoietin, suggesting its potential therapeutic role in pulmonary fibrosis.
Collapse
Affiliation(s)
- Drosos Tsavlis
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (K.S.); (E.S.)
| | - Kalliopi Domvri
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.D.); (S.M.)
| | - Konstantinos Porpodis
- Department of Pulmonology, Aristotle University of Thessaloniki, General Hospital G. Papanikolaou, 57010 Thessaloniki, Greece;
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece;
| | - Doxakis Anestakis
- Department of Pathology & Forensic Sciences, Medical School, University of Cyprus, 1678 Nicosia, Cyprus;
| | - Anna Tzoumaka
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (K.S.); (E.S.)
| | - Soultana Meditskou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.D.); (S.M.)
| | - Konstantina Symeonidoy
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (K.S.); (E.S.)
| | - Evangelia Spandou
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (K.S.); (E.S.)
| |
Collapse
|
2
|
Breenfeldt Andersen A, Graae J, Bejder J, Bonne TC, Seier S, Debertin M, Eibye K, Hostrup M, Nordsborg NB. Microdoses of Recombinant Human Erythropoietin Enhance Time Trial Performance in Trained Males and Females. Med Sci Sports Exerc 2023; 55:311-321. [PMID: 36317927 DOI: 10.1249/mss.0000000000003052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE We investigated the effects of recombinant human erythropoietin (rHuEPO) administration on exercise endurance, maximal aerobic performance, and total hemoglobin mass (tHb). We hypothesized that frequent, small intravenous injections of epoetin β would increase time trial performance, peak oxygen uptake (V̇O 2peak ), and tHb in both males and females. METHODS We included 48 healthy, recreational to trained males ( n = 24, mean ± SD V̇O 2peak = 55 ± 5 mL O 2 ·kg -1 ⋅min -1 ) and females ( n = 24; V̇O 2peak of 46 ± 4 mL O 2 ·kg -1 ⋅min -1 ) in a counterbalanced, double-blind, randomized, placebo-controlled study design stratified by sex. Time trial performance, V̇O 2peak , and tHb were determined before and after intravenous injections of either rHuEPO (9 IU·kg bw -1 epoetin β) or saline (0.9% NaCl) three times weekly for 4 wk. RESULTS A time-treatment effect ( P < 0.05) existed for time trial performance. Within the rHuEPO group, mean power output increased by 4.1% ± 4.2% ( P < 0.001). Likewise, a time-treatment effect ( P < 0.001) existed for V̇O 2peak , where the rHuEPO group improved V̇O 2peak and peak aerobic power by 4.2% ± 6.1% ( P < 0.001) and 2.9% ± 4.0% ( P < 0.01), respectively. A time-treatment effect ( P < 0.001) existed for tHb, where the rHuEPO group increased tHb by 6.7% ± 3.4% ( P < 0.001). A main effect of "sex" alone was also evident ( P < 0.001), but no sex-specific interactions were found. No changes were observed in the placebo group for mean power output, V̇O 2peak , peak aerobic power, or tHb. CONCLUSIONS Microdoses with intravenous rHuEPO provide a sufficient erythropoietic stimuli to augment tHb and enhance aerobic-dominated performance in both trained males and females.
Collapse
Affiliation(s)
| | - Jonathan Graae
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Thomas C Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Søren Seier
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Maren Debertin
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Kasper Eibye
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
3
|
Larsen S, Dam Søndergård S, Eg Sahl R, Frandsen J, Morville T, Dela F, Helge JW. Acute erythropoietin injection increases muscle mitochondrial respiratory capacity in young men: a double-blinded randomized crossover trial. J Appl Physiol (1985) 2021; 131:1340-1347. [PMID: 34498946 DOI: 10.1152/japplphysiol.00995.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim was to investigate if acute recombinant human erythropoietin (rHuEPO) injection had an effect on mitochondrial function and if exercise would have an additive effect. Furthermore, to investigate if in vitro incubation with rHuEPO had an effect on muscle mitochondrial respiratory capacity. Eight healthy young men were recruited for this double-blinded randomized placebo-controlled crossover study. rHuEPO (400 IU/kg body wt) or saline injection was given intravenously, before an acute bout of exercise. Resting metabolic rate and fat oxidation were measured. Biopsies were obtained at baseline, 120 min after injection, and right after the acute exercise bout. Mitochondrial function (mitochondrial respiration and H2O2 emission) was measured in permeabilized skeletal muscle using high-resolution respirometry and fluorometry. Specific gene expression and enzyme activity were measured. Skeletal muscle mitochondrial respiratory capacity was measured with and without incubation with rHuEPO. Fat oxidation at rest increased after rHuEPO injection, but no difference was found in fat oxidation during exercise. Mitochondrial respiratory capacity was increased after rHuEPO injection when pyruvate was in the assay, which was not the case when saline was injected. No changes were seen in H2O2 emission after rHuEPO injection or acute exercise. Incubation of skeletal muscle fibers in vitro with rHuEPO increased mitochondrial respiratory capacity. Acute rHuEPO injection increased mitochondrial respiratory capacity when pyruvate was used in the assay. No statistical difference was found in H2O2 emission capacity, although a numerical increase was seen after rHuEPO injection. In vitro incubation of the skeletal muscle sample with rHuEPO increases mitochondrial respiratory capacity.NEW & NOTEWORTHY The effect of an acute rHuEPO injection on skeletal muscle mitochondrial function was investigated in young healthy male subjects. rHuEPO has an acute effect on skeletal muscle mitochondrial respiratory capacity in humans, where an increased mitochondrial respiratory capacity was seen. This could be the first step leading to increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Stine Dam Søndergård
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronni Eg Sahl
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Morville
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Christensen B, Nellemann B, Thorsen K, Nielsen MM, Pedersen SB, Ornstrup MJ, JØrgensen JOL, Jessen N. Prolonged erythropoietin treatment does not impact gene expression in human skeletal muscle. Muscle Nerve 2015; 51:554-61. [PMID: 25088500 DOI: 10.1002/mus.24355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 01/12/2023]
Abstract
INTRODUCTION We tested for the presence of erythropoietin receptor (Epo-R) in human skeletal muscle and alterations in gene expression after prolonged use of an erythropoiesis-stimulating agent (ESA). METHODS Nine healthy men were treated with ESA for 10 weeks (darbepoietin alfa). Muscle biopsies were collected before and after treatment. Alterations in gene expression were evaluated by gene array. Western blot and PCR analysis were used to test for Epo-R presence in human skeletal muscle. RESULTS Very low Epo-R mRNA levels were found, but a new and sensitive antibody did not identify Epo-R protein in human skeletal muscle. The between-subject variation in skeletal muscle gene expression was greater than that observed in response to prolonged ESA treatment. CONCLUSIONS Erythropoietin is unlikely to exert direct effects in human skeletal muscle due to a lack of Epo-R protein. Furthermore, prolonged ESA treatment does not seem to exert either direct or indirect effects on skeletal muscle gene expression.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark; Medical Research Laboratories, Aarhus University, Aarhus, Denmark; Section of Sports Sciences, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Caillaud C, Connes P, Ben Saad H, Mercier J. Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans. J Physiol Biochem 2015; 71:9-16. [DOI: 10.1007/s13105-014-0374-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023]
|
6
|
Nordsborg NB, Robach P, Boushel R, Calbet JAL, Lundby C. Erythropoietin does not reduce plasma lactate, H+, and K+during intense exercise. Scand J Med Sci Sports 2014; 25:e566-75. [DOI: 10.1111/sms.12374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
- N. B. Nordsborg
- Department of Nutrition, Exercise and Sport (NEXS); University of Copenhagen; Copenhagen Denmark
| | - P. Robach
- Site de l'Ecole Nationale de Ski et d'Alpinisme; Ecole Nationale des Sports de Montagne; Chamonix France
| | - R. Boushel
- Åstrand Laboratory; The Swedish School of Sport and Health Sciences; Stockholm Sweden
| | - J. A. L. Calbet
- Department of Physical Education; University of Las Palmas de Gran Canaria; Las Palmas Spain
| | - C. Lundby
- Institute of Physiology and Center for Integrative Human Physiology; University of Zürich; Zurich Switzerland
| |
Collapse
|
7
|
Guadalupe-Grau A, Plenge U, Helbo S, Kristensen M, Andersen PR, Fago A, Belhage B, Dela F, Helge JW. Effects of an 8-weeks erythropoietin treatment on mitochondrial and whole body fat oxidation capacity during exercise in healthy males. J Sports Sci 2014; 33:570-8. [DOI: 10.1080/02640414.2014.951872] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Larsen MS, Vissing K, Thams L, Sieljacks P, Dalgas U, Nellemann B, Christensen B. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men. Exp Physiol 2014; 99:1409-20. [PMID: 25128327 DOI: 10.1113/expphysiol.2014.080606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim was to investigate the ability of an erythropoiesis-stimulating agent (ESA), alone or in combination with endurance training, to induce changes in human skeletal muscle fibre and vascular morphology. In a comparative study, 36 healthy untrained men were randomly dispersed into the following four groups: sedentary-placebo (SP, n = 9); sedentary-ESA (SE, n = 9); training-placebo (TP, n = 10); or training-ESA (TE, n = 8). The ESA or placebo was injected once weekly. Training consisted of progressive bicycling three times per week for 10 weeks. Before and after the intervention period, muscle biopsies and magnetic resonance images were collected from the thigh muscles, blood was collected, body composition measured and endurance exercise performance evaluated. The ESA treatment (SE and TE) led to elevated haematocrit, and both ESA treatment and training (SE, TP and TE) increased maximal O2 uptake. With regard to skeletal muscle morphology, TP alone exhibited increases in whole-muscle cross-sectional area and fibre diameter of all fibre types. Also exclusively for TP was an increase in type IIa fibres and a corresponding decrease in type IIx fibres. Furthermore, an overall training effect (TP and TE) was statistically demonstrated in whole-muscle cross-sectional area, muscle fibre diameter and type IIa and type IIx fibre distribution. With regard to muscle vascular morphology, TP and TE both promoted a rise in capillary to muscle fibre ratio, with no differences between the two groups. There were no effects of ESA treatment on any of the muscle morphological parameters. Despite the haematopoietic effects of ESA, we provide novel evidence that endurance training rather than ESA treatment induces adaptational changes in angiogenesis and muscle morphology.
Collapse
Affiliation(s)
- Mads S Larsen
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristian Vissing
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Line Thams
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Sieljacks
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Ulrik Dalgas
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Britt Christensen
- Section of Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Lamon S, Russell AP. The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 2013; 4:176. [PMID: 23874302 PMCID: PMC3710958 DOI: 10.3389/fphys.2013.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin (EPO) primarily activates erythroid cell proliferation and growth and is active in several types of non-hematopoietic cells via its interaction with the EPO-receptor (EPO-R). This review focuses on the role of EPO in skeletal muscle. The EPO-R is expressed in skeletal muscle cells and EPO may promote myoblast differentiation and survival via the activation of the same signaling cascades as in hematopoietic cells, such as STAT5, MAPK and Akt. Inconsistent results exist with respect to the detection of the EPO-R mRNA and protein in muscle cells, tissue and across species and the use of non-specific EPO-R antibodies contributes to this problem. Additionally, the inability to reproducibly detect an activation of the known EPO-induced signaling pathways in skeletal muscle questions the functionality of the EPO-R in muscle in vivo. These equivocal findings make it difficult to distinguish between a direct effect of EPO on skeletal muscle, via the activation of its receptor, and an indirect effect resulting from a better oxygen supply to the muscle. Consequently, the precise role of EPO in skeletal muscle and its regulatory mechanism/s remain to be elucidated. Further studies are required to comprehensively establish the importance of EPO and its function in skeletal muscle health.
Collapse
Affiliation(s)
- Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | | |
Collapse
|
10
|
Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E. Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study. BMC Med Genomics 2012; 5:29. [PMID: 22748015 PMCID: PMC3473259 DOI: 10.1186/1755-8794-5-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/21/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Erythropoietin (EPO) is known to improve exercise performance by increasing oxygen blood transport and thus inducing a higher maximum oxygen uptake (VO2max). Furthermore, treatment with (or overexpression of) EPO induces protective effects in several tissues, including the myocardium. However, it is not known whether EPO exerts this protective effect when present at physiological levels. Given that EPO receptors have been identified in skeletal muscle, we hypothesized that EPO may have a direct, protective effect on this tissue. Thus, the objectives of the present study were to confirm a decrease in exercise performance and highlight muscle transcriptome alterations in a murine EPO functional knock-out model (the EPO-d mouse). METHODS We determined VO2max peak velocity and critical speed in exhaustive runs in 17 mice (9 EPO-d animals and 8 inbred controls), using treadmill enclosed in a metabolic chamber. Mice were sacrificed 24h after a last exhaustive treadmill exercise at critical speed. The tibialis anterior and soleus muscles were removed and total RNA was extracted for microarray gene expression analysis. RESULTS The EPO-d mice's hematocrit was about 50% lower than that of controls (p<0.05) and their performance level was about 25% lower (p<0.001). A total of 1583 genes exhibited significant changes in their expression levels. However, 68 genes were strongly up-regulated (normalized ratio>1.4) and 115 were strongly down-regulated (normalized ratio<0.80). The transcriptome data mining analysis showed that the exercise in the EPO-d mice induced muscle hypoxia, oxidative stress and proteolysis associated with energy pathway disruptions in glycolysis and mitochondrial oxidative phosphorylation. CONCLUSIONS Our results showed that the lack of functional EPO induced a decrease in the aerobic exercise capacity. This decrease was correlated with the hematocrit and reflecting poor oxygen supply to the muscles. The observed alterations in the muscle transcriptome suggest that physiological concentrations of EPO exert both direct and indirect muscle-protecting effects during exercise. However, the signaling pathway involved in these protective effects remains to be described in detail.
Collapse
Affiliation(s)
- Laurence Mille-Hamard
- Unité de Biologie Intégrative des Adaptations à l'Exercice - INSERM 902, Genopole, F-91058, Evry, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Three weeks of erythropoietin treatment hampers skeletal muscle mitochondrial biogenesis in rats. J Physiol Biochem 2012; 68:593-601. [PMID: 22627788 DOI: 10.1007/s13105-012-0178-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 12/23/2022]
Abstract
The blood O(2)-carrying capacity is maintained by the O(2)-regulated production of erythropoietin (Epo), which stimulates the proliferation and survival of red blood cell progenitors. Epo has been thought to act exclusively on erythroid progenitor cells. However, recent studies have identified the erythropoietin receptor (EpoR) in other cells, such as neurons, astrocytes, microglia, heart, cancer cell lines, and skeletal muscle provides evidence for a potential role of Epo in other tissues. In this study we aimed to determine the effect of recombinant human erythropoietin (rHuEpo) on skeletal muscle adaptations such as mitochondrial biogenesis, myogenesis, and angiogenesis in different muscle fibre types. Fourteen male Wistar rats were randomly divided into two experimental groups, and saline or rHuEpo (300 IU) was administered subcutaneously three times a week for 3 weeks. We evaluated the protein expression of intermediates involved in the mitochondrial biogenesis cascade, the myogenic cascade, and in angiogenesis in the oxidative soleus muscle and in the glycolytic gastrocnemius muscle. Contrary to our expectations, rHuEpo significantly hampered the mitochondrial biogenesis pathway in gastrocnemius muscle (PGC-1α, mTFA and cytochrome c). We did not find any effect of the treatment on cellular signals of myogenesis (MyoD and Myf5) or angiogenesis (VEGF) in either soleus or gastrocnemius muscles. Finally, we found no significant effect on the maximal aerobic velocity at the end of the experiment in the rHuEpo-treated animals. Our findings suggest that 3 weeks of rHuEpo treatment, which generates an increase of oxygen carrying capacity, can affect mitochondrial biogenesis in a muscle fibre-specific dependent manner.
Collapse
|
12
|
Christensen B, Lundby C, Jessen N, Nielsen TS, Vestergaard PF, Møller N, Pilegaard H, Pedersen SB, Kopchick JJ, Jørgensen JOL. Evaluation of functional erythropoietin receptor status in skeletal muscle in vivo: acute and prolonged studies in healthy human subjects. PLoS One 2012; 7:e31857. [PMID: 22384088 PMCID: PMC3285196 DOI: 10.1371/journal.pone.0031857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/18/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Christensen B, Sackmann-Sala L, Cruz-Topete D, Jørgensen JOL, Jessen N, Lundby C, Kopchick JJ. Novel serum biomarkers for erythropoietin use in humans: a proteomic approach. J Appl Physiol (1985) 2010; 110:149-56. [PMID: 20966191 DOI: 10.1152/japplphysiol.00665.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Erythropoietin (Epo) is produced primarily in the kidneys upon low blood oxygen availability and stimulates erythropoiesis in the bone marrow. Recombinant human Epo (rHuEpo), a drug developed to increase arterial oxygen content in patients, is also illicitly used by athletes to improve their endurance performance. Therefore, a robust and sensitive test to detect its abuse is needed. The aim of the present study was to investigate potential human serum biomarkers of Epo abuse employing a proteomic approach. Eight healthy male subjects were injected subcutaneously with rHuEpo (5,000 IU) every second day for a 16-day period. Serum was collected before starting the treatment regime and again at days 8 and 16 during the treatment period. Samples were homogenized and proteins separated by two-dimensional gel electrophoresis (2DE). Spots that changed significantly in response to rHuEpo treatment were identified by mass spectrometry. Both the number of reticulocytes and erythrocytes increased throughout the study, leading to a significant increase in hematocrit and hemoglobin content. In addition, transferrin levels increased but the percentage of iron bound to transferrin and ferritin levels decreased. Out of 97 serum proteins, seven were found to decrease significantly at day 16 compared with pre-Epo administration, and were identified as four isoforms of haptoglobin, two isoforms of transferrin, and a mixture of hemopexin and albumin. In support, total serum haptoglobin levels were found to be significantly decreased at both days 8 and 16. Thus a 2DE proteomic approach for discovery of novel markers of Epo action appears feasible.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This review describes some of the physiological effects of recombinant human erythropoietin (EPO) in healthy humans. At the blood level EPO increases the arterial O(2) content not only by increasing red blood cell volume, but also by an equally important decrease in plasma volume. Well before that, EPO causes a prompt decrease in plasma levels of renin and aldosterone. Renal clearance studies suggest that EPO decreases renal proximal tubular reabsorption rate leading to activation of the tubuloglomerular feedback mechanism and a fall in glomerular filtration rate. Thus, treatment with EPO may result in suppression of endogenous EPO production through a decrease in intrarenal oxygen consumption. EPO elevates the arterial blood pressure even in healthy subjects. The receptor for EPO is present in many tissues. However, the functional effects of EPO in the skeletal muscle seem limited, and although it has been speculated that non-erythropoietic effects of EPO (angiogenesis, shift in muscle fibre types, cognitive effects) may be responsible for the increase in exercise performance, this has not been confirmed. EPO-induced haemodynamic effects call for careful monitoring during the administration period. The metabolic, hormonal and renal effects of EPO do not seem to range beyond physiologically acceptable limits and are reversible. Taken together, EPO seems safe to use for experimental purposes in healthy volunteers.
Collapse
Affiliation(s)
- Carsten Lundby
- Center for Integrative Human Physiology, University of Zurich, Institute of Physiology, Room 23 H 6, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
15
|
Lundby C, Robach P, Boushel R, Thomsen JJ, Rasmussen P, Koskolou M, Calbet JAL. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport? J Appl Physiol (1985) 2008; 105:581-7. [DOI: 10.1152/japplphysiol.90484.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0 ± 102.0 ml/min before rHuEpo treatment to 2,079.8 ± 120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3 ± 138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0 ± 130.1 ml/min before treatment to 1,793.0 ± 148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0 ± 111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0 ± 160.7 before administration to 4,254.5 ± 178.4 ml/min with rHuEpo and decreased to 4,059.0 ± 161.1 ml/min with hemodilution ( P = 0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.
Collapse
|
16
|
Abstract
Regulation of pH in skeletal muscle is the sum of mechanisms involved in maintaining intracellular pH within the normal range. Aspects of pH regulation in human skeletal muscle have been studied with various techniques from analysis of membrane proteins, microdialysis, and the nuclear magnetic resonance technique to exercise experiments including blood sampling and muscle biopsies. The present review characterizes the cellular buffering system as well as the most important membrane transport systems involved (Na(+)/H(+) exchange, Na-bicarbonate co-transport and lactate/H(+) co-transport) and describes the contribution of each transport system in pH regulation at rest and during muscle activity. It is reported that the mechanisms involved in pH regulation can undergo adaptational changes in association with physical activity and that these changes are of functional importance.
Collapse
Affiliation(s)
- C Juel
- Copenhagen Muscle Research Centre, Department of Molecular Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Use of Erythropoietin as adjuvant therapy in nerve reconstruction. Langenbecks Arch Surg 2008; 393:317-23. [PMID: 18299885 DOI: 10.1007/s00423-008-0289-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Adjuvant therapies may improve the outcome after nerve reconstruction. We analyzed the influence of recombinant human Erythropoietin (rHuEpo), which has proven angiogenic and neuroprotective effects, on the quality of peripheral nerve regeneration. METHODS Thirty two female Lewis rats underwent nerve reconstruction by means of tubulization (groups I and II) or autologous sciatic nerve grafting (groups III and IV). Groups I and III received daily subcutaneous rHuEpo injections over 2 weeks (1,000 U/kg bw) with normal saline injections as controls (groups II and IV). Data on histology and muscle weight were collected after 7 weeks. Axon count and diameter were assessed by a new method based on digital segmentation. RESULTS Atrophy of the tibial muscle was less severe in the rHuEpo-treated group compared to controls resulting in significant higher muscle weight quotients (p = 0.006). The same trend was found in the gastrocnemius muscle, but without being statistically significant. No significant differences in axon count or axon diameter were detected in the presence of rHuEpo treatments. CONCLUSION Our findings give evidence for a positive effect of Erythropoietin on functional recovery after nerve grafting. Muscle recovery benefited from rHuEpo administration despite absence of improved neural morphology. Semi-automated axon detection facilitated accurate morphometrical assessment.
Collapse
|